當前位置:首頁 » 歷物理化 » 歐洲有機化學

歐洲有機化學

發布時間: 2021-08-14 01:05:53

㈠ 有機化學和無機化有什麼區別

1、研究對象不同

無機化學是除碳氫化合物及其衍生物外,對所有元素及其化合物的性質和它們的反應進行實驗研究和理論解釋的科學。

有機化學又稱為碳化合物的化學,是研究有機化合物的組成、結構、性質、制備方法與應用的科學。

2、研究方法不同

有機化學研究手段的發展經歷了從手工操作到自動化、計算機化,從常量到超微量的過程。

系統的化學知識是按照科學方法進行研究的。科學方法主要分為三步:搜集事實、建立定律、創立學說。

(1)歐洲有機化學擴展閱讀:

有機化合物和無機化合物之間沒有絕對的分界。有機化學之所以成為化學中的一個獨立學科,是因為有機化合物確有其內在的聯系和特性。

有機化學只是化學反應中的冰山一角,化學反應主要以無機為主——無機物數量不足10%,卻有超過90%的化學反應是無機反應。

㈡ 求推薦一些化學領域的比較著名的著作(書)

徐壽所譯的《化學鑒原》、《化學鑒原續編》、《化學鑒原補編》、《化學求質》、《化學求數》、《物體遇熱改易記》、《中西化學材料名日表》,加上徐建寅譯的《化學分原》。合稱化學大成,將當時西方近代無機化學、有機化學、定性分析、定量分析、物理化學以及化學實驗儀器和方法作了比較系統的介紹。這幾本書和徐壽譯著的《西藝知新初集》,《西藝知新續集》這一套介紹當時歐洲的工業技術的書籍被公認是當時最好的科技書籍。

㈢ 誰有有關有機化學的認識的文章

玻璃鋼即玻璃纖維增強材料,是國外20世紀初開發的一種新型復合材料,它具有質版輕、高強、防腐、權保溫、絕緣、隔音等諸多優點。

玻璃鋼門窗是採用中鹼玻璃纖維無捻粗紗及其織物作為增強材料,採用不飽和樹脂作為基體材料,經過特殊工藝將這兩種材料復合,並添加其它礦物填料,再通過加熱固化,拉擠成各種不同截面的空腹型材加工而成。具體來講玻璃鋼門窗的主要特點是:

抗老化、高強度。玻璃鋼型材的空腹腹腔內不用鋼板作為內襯,不需要任何單體材料輔助增強,完全依靠自身結構支撐。由於以玻璃纖維及其織物作為增強材料,經樹脂粘接後無毛絲裸露,經機械拉擠熱固化成型,因此抗折、抗彎、抗變形。

耐腐蝕、壽命長。玻璃鋼屬於優質復合材料。它對酸、鹼、鹽、油等各種腐蝕介質都具有特殊的防腐功能,不會發生銹蝕。普通PVC壽命為15年,而玻璃鋼壽命為50年,與建築物基本同壽命,因此採用玻璃鋼門窗可減少更換門窗的麻煩,節省開支。

㈣ 我學的化學專業 有機化學方向 不想干這行太久

沒有辦法,要不就換專業考研吧,學過化學的人都知道,實驗室數有機的實驗室不能呆,能換就早點換吧!

㈤ 有機結構理論奠基人都有誰

布特列洛夫是19世紀中葉傑出的化學家之一,他在創建有機化學的結構理論上做出了重要的貢獻,和凱庫勒、柯爾柏同時為結構理論的建立奠定了基礎。為了了解布特列洛夫的成就,讓我們先了解一下他所處的時代。

在1840年左右,喀山大學是俄羅斯的化學研究中心,這所大學創建於1804年,那裡有2位有名的學者研究化學:一位是克勞斯,既是解剖學家,又是化學家,他以研究鉑和發現元素釕而聞名;另一位是有機化學家齊寧,他是首先將西歐先進的科學技術和豐碩的化學成果介紹到俄羅斯的科學家之一。

盡管喀山大學有這兩位有名的化學家指導學生學習和研究化學,但是工作條件遠遠落後於西歐。例如,在克勞斯任職之前,喀山大學根本沒有化學實驗室。

直到1857年著名的有機化學家馬爾科夫尼科夫在該校學習時,化學實驗室的條件仍然是不能令人滿意的。他描述一間化學實驗室里,只有兩個實驗台,一個大爐子,一個砂浴作為加熱用具,而當時西歐的化學實驗室已經使用煤氣加熱。馬爾科夫尼科夫認為俄羅斯與西歐之間隔著一堵高牆,只有少數人能沖破它,呼吸到歐洲新鮮的空氣。而布特列洛夫正是在這樣的工作條件下開始了他的大學生活。

1828年8月25日亞歷山大·米哈伊洛維奇·布特列洛夫出生於喀山附近的齊斯托波爾鎮,他的父親是一位退伍的軍官。父親希望他成為一位數學家,但是亞歷山大·米哈伊洛維奇自認為沒有計算能力,願意從事實際的工作,於是他就進入喀山大學學習化學。一開始,布特列洛夫在克勞斯指導下學習,但是,他發現自己對齊寧的有機化學研究更加感興趣,他看到了紅色片狀結晶偶氮苯、黃色針狀結晶氧化偶氮苯和閃閃發光的聯苯胺,使他決心一生從事有機化學研究。

在齊寧循循善誘的引導下,布特列洛夫研究了各種安息香基化合物和萘的化合物,完成了尿酸、靛藍等一系列的有機制備。從這些較難的實驗中,布特列洛夫掌握了有機化學知識和實驗技能。他不僅在學校的實驗室工作,而且還在家裡制備咖啡鹼、靛紅、雙阿脲等。顯然,對於不習慣化學實驗室氣氛的家人來說,硝酸和硫酸的蒸氣聞起來很不愉快,但是布特列洛夫卻非常樂意做這些實驗。

1849年,布特列洛夫完成了學士學位論文,題目是《烏拉爾—伏爾加地區的蝴蝶的研究》,由於這位年輕人的能力很強,喀山大學希望他能留在學校工作,於是他擔任了喀山大學物理學講師。1851年,布特列洛夫獲碩士學位,論文題目是《有機化合物的氧化反應》。

1853年他完成了博士學位論文,題目是《從俄羅斯一家工廠的輕油中提取與樟腦類似的物質》。當時,喀山大學的化學和礦物學教授都同意通過這篇博士論文,但是物理學教授薩維爾也夫認為論文未能達到要求。於是,布特列洛夫只得將論文送到莫斯科大學去答辯,並於1854年獲莫斯科大學化學和物理學博士學位。布特列洛夫在獲得博士學位以後,對彼得堡進行了短期的訪問,在那裡會見了當時已在彼得堡工作的老師齊寧。

齊寧向布特列洛夫詳細地介紹了日拉爾和羅朗的學說,以及《化學的方法》和《有機化學的特點》,使布特列洛夫的眼界大為開闊。布特列洛夫回到喀山大學以後,擔任了編外教授,開始研究三碘化磷對甘露糖醇的作用,以及不同條件下松節油的性質。1858年他被提升為正教授,此後一直是喀山大學頗有名望的教授。

1857年,馬爾科夫尼科夫進入喀山大學時,就在布特列洛夫指導下學習。馬爾科夫尼科夫這樣形容他的老師:「他不僅是一位優秀和慈祥的教授,而且對每一個學生所提出的問題都仔細地聆聽,並作出詳細的回答,當我們在實驗室工作時,就好像在家裡一樣,感到很自由。」

1857年6月到1858年8月,能夠熟練運用法語和德語的布特列洛夫到西歐訪問,他首先訪問了米希爾里希的實驗室,看到了實驗室中都使用煤氣加熱,而喀山大學則還在用酒精燈或煤爐加熱,相比之下,喀山大學要落後得多,很難滿足有機分析實驗的需要。他還訪問了海德爾堡大學,當時凱庫勒還是一位講師,但是這位年輕的學者卻發表了著名的論文《碳的化學本性》,第一次介紹了原子價的概念。布特列洛夫對凱庫勒的理論十分感興趣,他們之間的學術交流和友誼對於後來布特列洛夫的研究工作產生了很大的影響。

布特列洛夫在訪問了瑞士和義大利以後,於1857年12月到達巴黎,他接受邀請訪問了霍夫曼和威廉遜的實驗室。在1857~1858年,巴黎雲集了許多知名的化學家,如杜馬、德維爾、貝特羅、巴拉德等,使布特列洛夫受益匪淺。他在巴黎時,主要在武慈的實驗室中工作,研究從乙基鈉和碘制備二碘乙烯,它與醋酸銀反應又生成亞甲基二醇的醋酸鹽。這一研究使布特列洛夫開始出名。

1858年7月布特列洛夫回到喀山大學,介紹了他訪問西歐的觀感,用他自己的話說他從學生變成了學者。他立即著手改善化學實驗室的條件,在學校里建立了一座小型的煤氣工廠,為實驗室提供良好的燃料。在這一段時期,他繼續在巴黎時的研究工作,雖然在嘗試分離出二甲基二醇上未獲得成功,但卻證明了自由甲基是不可能存在的。他還製得了甲醛的聚合物,稱之為二羥基甲基;用這種化合物與氨作用,布特列洛夫首先製得了六亞甲基四胺(即烏洛托品)。

他利用二羥基甲基與石灰水的反應,第一次合成了屬於糖類的物質,這是利用比較簡單的物質合成碳水化合物的第一個例子。這和維勒利用氰化物合成尿素,柯爾柏利用木炭、硫磺、氯和水為原料合成醋酸具有同等重要的意義。

1861年,布特列洛夫再一次訪問西歐,又與他的老朋友凱庫勒會晤。然後參加了在斯佩耶舉行的「德國自然科學家和醫生代表大會」,他在會上宣讀了論文《化合物的化學結構》,這是在有機化學中第一次使用「化學結構」這一術語。

布特列洛夫提出,化學的發展,使日拉爾、羅朗和貝采里烏斯的理論已經滿足不了要求,需要有一種新的理論來闡明有機化學。他所強調的化學結構的含義是:「假定一個原子具有一定的和有限的化學親合力,藉助於這種親合力,原子形成化合物,那麼,這種關系,或者說在組成的化合物中各原子間的相互連接,就可以用化學結構這一術語來表示。」他還指出:「一個分子的本性,取決於組合單元的本性、數量和化學結構。」因此,他認為有機化合物的化學性質與化學結構之間存在著以下關系:「根據化學結構可以推測分子的化學性質;同時,又可以根據化學性質和化學反應推測分子的化學結構。」

1862年,布特列洛夫又在《對有機化合物進行全面研究的介紹》一書中闡明了這些觀點,這本書於1867年譯成德文。不久,布特列洛夫被指定擔任喀山大學校長,但是他並不需要一個干擾他研究工作的職位,所以他請求不擔任此職。但是學校當局還是在1862年任命他為校長,而他只當了幾個月的校長,就於1863年辭去了這一職務,專心致志於研究有機化學。

1864年,他研究了二甲基鋅與碳醯氯(光氣)的作用,得到了一種醇的混合物。接著,他又用乙醯氯代替碳醯氯,與二甲基鋅反應,得到了一種新的醇,經過證明,它是叔丁基醇。這是第一次製得叔醇。柯爾柏曾經預言過叔醇這種化合物,現在由布特列洛夫製得了。後來,他還繼續改進叔醇的製法,研究它的氧化反應,分離出它的衍生物。

1868年,門捷列夫認識到化學結構研究具有深遠的意義,因此,他推選布特列洛夫擔任彼得堡大學教授。布特列洛夫還擔任過彼得堡科學院院長和美國化學會名譽會員。

1872年,布特列洛夫轉向一個新的研究領域——合成並研究三甲基醋酸的性質,他用氰化亞汞處理叔丁基碘,再使生成的叔腈水解,就製得了三甲基醋酸,這一研究使他發現了叔酮的化學結構。

1876年,布特列洛夫在華沙發表了關於二異丁烯的論文,研究了聚合機理,第一次闡明了互變異構現象。他利用硫酸與叔丁醇的作用,獲得了2種二異丁烯的異構體,並討論了異構體之間存在的化學平衡:「在研究一種物質的化學結構時,由於反應條件不同,分子總是存在著2種或2種以上的異構體。」

1886年春天,布特列洛夫的健康開始惡化,於同年8月5日突然逝世,享年58歲。他的學生馬爾科夫尼科夫不但接替了他的職位,還對有機結構理論的發展做出了貢獻,提出了著名的馬爾科夫尼科夫規則。

㈥ 什麼是金屬有機化學

人類對化學認識的進步是必然的歷史趨勢,同時,科學技術的高度分化和高度綜合的整體化趨勢也促成了當初分化了的學科之間的交叉和滲透。金屬有機化學作為化學中無機化學和有機化學兩大學科的交叉,從產生到發展直到今天逐漸地現代化,它始終處於化學學科和化工學科的最前線,生機勃勃,碩果累累。

化學主要是研究物質的組成、結構和性質;研究物質在各種不同聚集態下,在分子與原子水平上的變化和反應規律、結構和各種性質之間的相互關系;以及變化和反應過程中的結構變化、能量關系和對各種性質的影響的科學。金屬有機化學所研究的對象一般是指其結構中存在金屬—碳鍵的化合物。在目前為止人類發現的110多種化學元素中,金屬元素占絕大部分,而碳元素所衍生出的有機物不僅數量龐大,而且增長速度也很快,將這兩類以前人們認為互不相乾的物質組合起來形成的金屬有機化合物,不僅僅是兩者簡單的加和關系,而應是乘積倍數關系。其中的許多金屬有機化合物已經為國民生產和人類進步作出了特殊的貢獻。更重要的是,金屬有機化學是一門年輕的科學,是一座剛剛開始挖掘的寶藏,發展及應用潛力不可估量。下面就按時間順序來說明金屬有機化學的產生和發展。

金屬有機化學的產生與基本成形階段(1823—1950年)

1827年,丹麥葯劑師蔡司在加熱/KCl的乙醇溶液時無意中得到了一種黃色的沉澱,由於當時的條件所限,他未能表徵出這種黃色沉澱物質的結構。現已證明,這個化合物為金屬有機化合物。這也成為了無機化學與有機化學的交叉學科金屬有機化學的開端。而第一個系統研究金屬有機化學的人則首推英國化學家福朗克蘭。起初,他把他製得的一些化合物錯誤地認為是他所想要「捕捉」的自由基,但實際上得到的是金屬有機化合物。難能可貴的是,當他後來發現他得非所願時,不但沒有氣餒,反而更深入地研究了這種「新奇」的化合物,總結出了金屬有機化學的定義。

1899年,法國化學家格利雅在他的老師巴比爾的引導下,在前人研究的基礎上發現了鎂有機化合物RMgX並將它用於有機合成。這是金屬有機化學發展上本階段中最重要的一頁。他所發現的新試劑開創的新的有機合成方法在如今仍被廣泛應用。由於他的卓越貢獻,1912年,他獲得了諾貝爾化學獎,這也是第一個獲得諾貝爾獎的金屬有機化學家。當格利雅得知自己獲獎後,曾寫信強烈要求評審委員會讓他與他老師巴比爾一起分享此獎,遺憾的是他的提議遭到了拒絕。

1922年美國的米基里發現了四乙基鉛及其優良的汽油抗震性。於是1923年工業上便大規模地生產四乙基鉛作為汽油抗震劑,這是第一個工業化生產的金屬有機化合物,但後來鉛嚴重影響兒童智力發育的發現給這種「優良」的抗震劑判了死刑,現在基本上已經被淘汰。

工業上第一次用金屬有機化合物作為催化劑的配位催化過程,是1938年的德國Ruhrchemie化學公司的羅倫發現的氫甲基化反應,以此開創了金屬有機化學中的著名的羰基合成及配位催化學科。

金屬有機化學的飛速發展階段(1951年至20世紀90年代初)

1951年鮑森和米勒那並非預期的實驗結果,卻偶然發現了二茂鐵。由此引發的對金屬有機化學原有理論上的挑戰,揭開了金屬有機化學發展的新序幕。這個發現是有里程碑式意義的。憑著威爾金森和伍德沃德的智慧以及費舍爾的辛勤工作,藉助當時X射線衍射、核磁共掁、紅外光譜等物理發展而提供的先進的檢測技術手段,二茂鐵的結構得以被確認為三明治夾心結構。這個美妙而富有創意構型的分子給理論化學中的分子軌道理論的發展提供了研究平台。

同時,金屬有機在工業生產的應用好像也不甘示弱。1953—1955年德國化學家齊格勒和義大利化學家納塔發現了著名的乙烯、丙烯和其他烯烴聚合的Ziegler-Natt催化劑。這又是善於從偶然的事件中看到隱藏在後面的規律並成功應用於工業生產的成功事例。它能使得乙烯在較低壓力下得到高密度的聚乙烯。高密度的聚乙烯在硬度、強度、抗環境壓力開裂性等性能上都比原有的在高壓下聚合得到的低密度聚乙烯好,較適合生產工業製品和生活用品。加上低壓法生產相對高壓法生產聚乙烯容易得多,因此聚乙烯工業得到了突飛猛進的發展,聚乙烯很快成為產量最大的塑料品種。

在金屬有機化學開始蓬勃發展的背景之下,研究工作更需要研究者之間的合作與交流。於是1963年的一屆金屬有機化學國際會議在美國辛辛納提州召開,並開始出版金屬有機化學雜志。

從此,金屬有機化學的發展開始全方位欣欣向榮起來。20世紀60年代末期,大量新的、不同類型的金屬有機化合物被合成出來。同時物理學的發展為其提供了更為先進的檢測手段,所以通過對它們結構的測定發現了許多新的結構類型。其中典型的代表就是1965年威爾金森合成了銠-膦配合物及發現了它優良的催化性能。由伍德沃德領導下的合成的成功宣告人類可以合成任何自然界存在的物質。進入20世紀70年代後,科學家們逐漸歸納出了一些金屬有機化學反應的基元反應,從這些基元反應又發展出一些合成上有應用價值的反應。

到20世紀70年代末,結合金屬有機化合物的催化和選擇性這兩個性質發展成了催化的不對稱合成。Monsanto公司的諾爾斯合成了治療帕金森病的特效葯L-Dopa,開創了不對稱催化的新紀元。人們利用了金屬有機化合物的某些優良特性,放大、組合來為人類造福。自然界存在的許多化合物是有手性的,也就是說它本身與它的鏡像不能完全重合,就像人的左右手一樣。拿葯物分子來說,它的空間構型的某一種形式才對疾病有效,其他的構型沒有療效,或者葯效相反,甚至對人體有害。震驚了歐洲的「反應停」事件就是很好的例子。如何得到我們想要的那種構型呢?金屬有機化合物有了用武之地。金屬有機化合物就像我們人的一隻手,當它與葯物分子反應時,就像人握手一樣,兩只右手或兩只左手握在一塊比一左手和一右手握在一起匹配,於是可以通過設計好的金屬有機化合物催化劑來得到我們所需要的葯物分子。這一學科經過20世紀80年代的經驗積累,到了20世紀90年代有了飛速的發展。對其作出了卓越貢獻的三位科學家——諾爾斯、沙普勒斯和野依良治也於2001年獲得了諾貝爾化學獎。

金屬有機化學的前沿問題及未來展望

1.環保。

20世紀90年代末,原子經濟性(指原料分子中究竟有百分之幾的原子轉化成所需要的產物)成了綠色化學的主要內容。同時綠色化學的12條准則中的大部分都可以藉助金屬有機化學達到,比如預防環境污染、使用安全的助劑、提高能源經濟性、減少衍生物、新型催化劑的開發等。這需要化學家、環境學者與專家的密切協作。

2.材料。

金屬有機化合物若作為催化劑來合成電子材料、光學材料和具有特種性能的無機材料,將大有作為。同時,金屬有機化合物本身作為材料,也是研究的熱點,並有廣闊的應用前景。這方面需要化學家、物理學家、材料科學家、技術專家的密切合作。

光學材料

3.能源。

以人工固氮及人工太陽能為主體的,模擬生物功能來實現的對能源的可持續性利用,是21世紀能源方面研究的熱點及前沿。實現這一過程的核心問題,是模擬並應用自然界中植物用於固氮和轉化太陽能的化學物質酶和葉綠素的工作方式。而大部分的酶和葉綠素是金屬有機化合物。金屬有機化學在新能源利用方面將責無旁貸地大放異彩。當然化學家還需要與生物學家、工程技術專家共同協作。

4.健康。

生命最寶貴,而維持健康及治療疾病的葯物的研究與開發將是21世紀研究的熱點。金屬有機化合物不僅可以通過其催化性能來實現手性葯物的合成,而且過去有機銻對血吸蟲病、順鉑對癌症的優良療效還預示著金屬有機化合物本身就是葯物的大寶庫。這需要免疫學家、放射學家、酶化學家的通力協作。

總之,作為一門交叉學科,金屬有機化學自產生之日起,在社會需求的推動,本身問題的解決的拉動下,已成為化學中最活躍的學科之一。在新的檢測手段的強力支持下,在市場需求的不斷拉動下,在可持續發展的大背景下,金屬有機化學將成為新世紀環保、材料、能源及人類健康等方面研究開發的熱門學科,其發展應用前景不可限量。

㈦ 什麼是有機化學、無機化學和動力化學

無機化學
無機化學是研究無機物質的組成、性質、結構和反應的科學,它是化學中最古老的分支學科。無機物質包括所有化學元素和它們的化合物,不過大部分的碳化合物除外。(除二氧化碳、一氧化碳、二硫化碳、碳酸鹽等簡單的碳化合物仍屬無機物質外,其餘均屬於有機物質。)

過去認為無機物質即無生命的物質,如岩石、土壤,礦物、水等;而有機物質則是由有生命的動物和植物產生,如蛋白質、油脂、澱粉、纖維素、尿素等。1828年德意志化學家維勒從無機物氰酸銨製得尿素,從而破除了有機物只能由生命力產生的迷信,明確了這兩類物質都是由化學力結合而成。現在這兩類物質是按上述組分不同而劃分的。

無機化學發展簡史

原始人類即能辨別自然界存在的無機物質的性質而加以利用。後來偶然發現自然物質能變化成性質不同的新物質,於是加以仿效,這就是古代化學工藝的開始。

如至少在公元前6000年,中國原始人即知燒粘土製陶器,並逐漸發展為彩陶、白陶,釉陶和瓷器。公元前5000年左右,人類發現天然銅性質堅韌,用作器具不易破損。後又觀察到銅礦石如孔雀石 (鹼式碳酸銅)與燃熾的木炭接觸而被分解為氧化銅,進而被還原為金屬銅,經過反復觀察和試驗,終於掌握以木炭還原銅礦石的煉銅技術。以後又陸續掌握煉錫、煉鋅、煉鎳等技術。中國在春秋戰國時代即掌握了從鐵礦冶鐵和由鐵煉鋼的技術,公元前2世紀中國發現鐵能與銅化合物溶液反應產生銅,這個反應成為後來生產銅的方法之一。

化合物方面,在公元前17世紀的殷商時代即知食鹽(氧化鈉)是調味品,苦鹽(氫化鎂)的味苦。公元前五世紀已有琉璃(聚硅酸鹽)器皿。公元七世紀,中國即有焰硝(硝酸鉀)、硫黃和木炭做成火葯的記載。明朝宋應星在1637年刊行的《天工開物》中詳細記述了中國古代手工業技術,其中有陶瓷器、銅、鋼鐵、食鹽、焰硝、石灰、紅黃礬、等幾十種無機物的生產過程。由此可見,在化學科學建立前,人類已掌握了大量無機化學的知識和技術。

古代的煉丹術是化學科學的先驅,煉丹術就是企圖將丹砂(硫化汞)之類葯劑變成黃金,並煉制出長生不老之丹的方術。中國金丹術始於公元前2、3世紀的秦漢時代。公元142年中國金丹家魏伯陽所著的《周易參同契》是世界上最古的論述金丹術的書,約在360年有葛洪著的《抱朴子》,這兩本書記載了60多種無機物和它們的許多變化。約在公元8世紀,歐洲金丹術興起,後來歐洲的金丹術逐漸演進為近代的化學科學,而中國的金丹術則未能進一步演進。

金丹家關於無機物變化的知識主要從實驗中得來。他們設計製造了加熱爐、反應室、蒸餾器、研磨器等實驗用具。金丹家所追求的目的雖屬荒誕,但所使用的操作方法和積累的感性知識,卻成為化學科學的前驅。

由於最初化學所研究的多為無機物,所以近代無機化學的建立就標志著近代化學的創始。建立近代化學貢獻最大的化學家有三人,即英國的玻意耳、法國的拉瓦錫和英國的道爾頓。

玻意耳在化學方面進行過很多實驗,如磷、氫的制備,金屬在酸中的溶解以及硫、氫等物的燃燒。他從實驗結果闡述了元素和化合物的區別,提出元素是一種不能分出其他物質的物質。這些新概念和新觀點,把化學這門科學的研究引上了正確的路線,對建立近代化學作出了卓越的貢獻。

拉瓦錫採用天平作為研究物質變化的重要工具,進行了硫、磷的燃燒,錫、汞等金屬在空氣中加熱的定量實驗,確立了物質的燃燒是氧化作用的正確概念,推翻了盛行百年之久的燃素說。拉瓦錫在大量定量實驗的基礎上,於1774年提出質量守恆定律,即在化學變化中,物質的質量不變。1789年,在他所著的《化學概要》中,提出第一個化學元素分類表和新的化學命名法,並運用正確的定量觀點,敘述當時的化學知識,從而奠定了近代化學的基礎。由於拉瓦錫的提倡,天平開始普遍應用於化合物組成和變化的研究。

1799年,法國化學家普魯斯特歸納化合物組成測定的結果,提出定比定律,即每個化合物各組分元素的重量皆有一定比例。結合質量守恆定律,1803年道爾頓提出原子學說,宣布一切元素都是由不能再分割、不能毀滅的稱為原子的微粒所組成。並從這個學說引伸出倍比定律,即如果兩種元素化合成幾種不同的化合物,則在這些化合物中,與一定重量的甲元素化合的乙元素的重量必互成簡單的整數比。這個推論得到定量實驗結果的充分印證。原子學說建立後,化學這門科學開始宣告成立。

19世紀30年代,已知的元素已達60多種,俄國化學家門捷列夫研究了這些元素的性質,在1869年提出元素周期律:元素的性質隨著元素原子量的增加呈周期性的變化。這個定律揭示了化學元素的自然系統分類。元素周期表就是根據周期律將化學元素按周期和族類排列的,周期律對於無機化學的研究、應用起了極為重要的作用。

目前已知的元素共109種,其中94種存在於自然界,15種是人造的。代表化學元素的符號大都是拉丁文名稱縮寫。中文名稱有些是中國自古以來就熟知的元素,如金、鋁、銅、鐵、錫、硫、砷、磷等;有些是由外文音譯的,如鈉、錳、鈾、氦等;也有按意新創的,如氫(輕的氣)、溴(臭的水)、鉑(白色的金,同時也是外文名字的譯音)等。

周期律對化學的發展起著重大的推動作用。根據周期律,門捷列夫曾預言當時尚未發現的元素的存在和性質。周期律還指導了對元素及其化合物性質的系統研究,成為現代物質結構理論發展的基礎。系統無機化學一般就是指按周期分類對元素及其化合物的性質、結構及其反應所進行的敘述和討論。

19世紀末的一系列發現,開創了現代無機化學;1895年倫琴發現 X射線;1896年貝克勒爾發現鈾的放射性;1897年湯姆遜發現電子;1898年,居里夫婦發現釙和鐳的放射性。20世紀初盧瑟福和玻爾提出原子是由原子核和電子所組成的結構模型,改變了道爾頓原子學說的原子不可再分的觀念。

1916年科塞爾提出電價鍵理論,路易斯提出共價鍵理論,圓滿地解釋了元素的原子價和化合物的結構等問題。1924年,德布羅意提出電子等物質微粒具有波粒二象性的理論;1926年,薛定諤建立微粒運動的波動方程;次年,海特勒和倫敦應用量子力學處理氫分子,證明在氫分子中的兩個氫核間,電子幾率密度有顯著的集中,從而提出了化學鍵的現代觀點。

此後,經過幾方面的工作,發展成為化學鍵的價鍵理論、分子軌道理論和配位場理論。這三個基本理論是現代無機化學的理論基礎。

無機化學的研究內容

無機化學在成立之初,其知識內容已有四類,即事實、概念、定律和學說。

用感官直接觀察事物所得的材料,稱為事實;對於事物的具體特徵加以分析、比較、綜合和概括得到概念,如元素、化合物、化合、化分、氧化、還原、原子等皆是無機化學最初明確的概念;組合相應的概念以概括相同的事實則成定律,例如,不同元素化合成各種各樣的化合物,總結它們的定量關系得出質量守恆、定比、倍比等定律;建立新概念以說明有關的定律,該新概念又經實驗證明為正確的,即成學說。例如,原子學說可以說明當時已成立的有關元素化合重量關系的各定律。

化學知識的這種派生關系表明它們之間的內在聯系。定律綜合事實,學說解釋並貫串定律,從而把整個化學內容組織成為一個有系統的科學知識。人們認為近代化學是在道爾頓創立原子學說之後建立起來的,因為該學說把當時的化學內容進行了科學系統化。

系統的化學知識是按照科學方法進行研究的。科學方法主要分為三步:

搜集事實 搜集的方法有觀察和實驗。實驗是控制條件下的觀察。化學研究特別重視實驗,因為自然界的化學變化現象都很復雜,直接觀察不易得到事物的本質。例如,鐵生銹是常見的化學變化,若不控制發生作用的條件,如水氣、氧、二氧化碳、空氣中的雜質和溫度等就不易了解所起的反應和所形成的產物。

無論觀察或實驗,所搜集的事實必須切實准確。化學實驗中的各種操作,如沉澱、過濾、灼燒、稱重、蒸餾、滴定、結晶、萃取等等,都是在控制條件下獲得正確可靠事實知識的實驗手段。正確知識的獲得,既要靠熟練的技術,也要靠精密的儀器,近代化學是由天平的應用開始的。通過對每一現象的測量,並用數字表示,才算對此現象有了確切知識。

建立定律 古代化學工藝和金丹術積累的化學知識雖然很多,但不能稱為科學。要知識成為科學,必須將搜集到的大量事實加以分析比較,去粗取精,由此及彼地將類似的事實歸納成為定律。例如普魯斯特注意化合物的成分,他分析了大量的、采自世界各地的、天然的和人工合成的多種化合物,經過八年的努力後發現每一種化合物的組成都是完全相同的,於是歸納這類事實,提出定比定律。

創立學說 化學定律雖比事實為少,但為數仍多,而且各自分立,互不相關。化學家要求理解各定律的意義及其相互關系。道爾頓由表及裡地提出物質由原子構成的概念,創立原子學說,解釋了關於元素化合和化合物變化的重量關系的各個定律,並使之連貫起來,從而將化學知識按其形成的層次組織成為一門系統的科學。

由於各學科的深入發展和學科間的相互滲透,形成許多跨學科的新的研究領域。無機化學與其他學科結合而形成的新興研究領域很多,例如生物無機化學就是無機化學與生物化學結合的邊緣學科。

現代物理實驗方法如:X射線、中子衍射、電子衍射、磁共振、光譜、質譜、色譜等方法的應用,使無機物的研究由宏觀深入到微觀,從而將元素及其化合物的性質和反應同結構聯系起來,形成現代無機化學。現代無機化學就是應用現代物理技術及物質微觀結構的觀點來研究和闡述化學元素及其所有無機化合物的組成、性能、結構和反應的科學。無機化學的發展趨向主要是新型化合物的合成和應用,以及新研究領域的開辟和建立。
有機化學
有機化學是研究有機化合物的來源、制備、結構、性質、應用以及有關理論的科學,又稱碳化合物的化學。

有機化學的發展簡史

「有機化學」這一名詞於1806年首次由貝采利烏斯提出。當時是作為「無機化學」的對立物而命名的。19世紀初,許多化學家相信,在生物體內由於存在所謂「生命力」,才能產生有機化合物,而在實驗室里是不能由無機化合物合成的。

1824年,德國化學家維勒從氰經水解製得草酸;1828年他無意中用加熱的方法又使氰酸銨轉化為尿素。氰和氰酸銨都是無機化合物,而草酸和尿素都是有機化合物。維勒的實驗結果給予「生命力」學說第一次沖擊。此後,乙酸等有機化合物相繼由碳、氫等元素合成,「生命力」學說才逐漸被人們拋棄。

由於合成方法的改進和發展,越來越多的有機化合物不斷地在實驗室中合成出來,其中,絕大部分是在與生物體內迥然不同的條件下台成出來的。「生命力」學說漸漸被拋棄了, 「有機化學」這一名詞卻沿用至今。

從19世紀初到1858年提出價鍵概念之前是有機化學的萌芽時期。在這個時期,已經分離出許多有機化合物,制備了一些衍生物,並對它們作了定性描述。

法國化學家拉瓦錫發現,有機化合物燃燒後,產生二氧化碳和水。他的研究工作為有機化合物元素定量分析奠定了基礎。1830年,德國化學家李比希發展了碳、氫分析法,1833年法國化學家杜馬建立了氮的分析法。這些有機定量分析法的建立使化學家能夠求得一個化合物的實驗式。

當時在解決有機化合物分子中各原子是如何排列和結合的問題上,遇到了很大的困難。最初,有機化學用二元說來解決有機化合物的結構問題。二元說認為一個化合物的分子可分為帶正電荷的部分和帶負電荷的部分,二者靠靜電力結合在一起。早期的化學家根據某些化學反應認為,有機化合物分子由在反應中保持不變的基團和在反應中起變化的基團按異性電荷的靜電力結合。但這個學說本身有很大的矛盾。

類型說由法國化學家熱拉爾和洛朗建立。此說否認有機化合物是由帶正電荷和帶負電荷的基團組成,而認為有機化合物是由一些可以發生取代的母體化合物衍生的,因而可以按這些母體化合物來分類。類型說把眾多有機化合物按不同類型分類,根據它們的類型不僅可以解釋化合物的一些性質,而且能夠預言一些新化合物。但類型說未能回答有機化合物的結構問題。

有機化合物按不同類型分類,根據它們的類型不僅可以解釋化合物的一些性質,而且能夠預言一些新化合物。但類型說未能回答有機化合物的結構問題。

從1858年價鍵學說的建立,到1916年價鍵的電子理論的引入,是經典有機化學時期。

1858年,德國化學家凱庫勒和英國化學家庫珀等提出價鍵的概念,並第一次用短劃「-」表示「鍵」。他們認為有機化合物分子是由其組成的原子通過鍵結合而成的。由於在所有已知的化合物中,一個氫原子只能與一個別的元素的原子結合,氫就選作價的單位。一種元素的價數就是能夠與這種元素的一個原子結合的氫原子的個數。凱庫勒還提出,在一個分子中碳原子之間可以互相結合這一重要的概念。

1848年巴斯德分離到兩種酒石酸結晶,一種半面晶向左,一種半面晶向右。前者能使平面偏振光向左旋轉,後者則使之向右旋轉,角度相同。在對乳酸的研究中也遇到類似現象。為此,1874年法國化學家勒貝爾和荷蘭化學家范托夫分別提出一個新的概念,圓滿地解釋了這種異構現象。

他們認為:分子是個三維實體,碳的四個價鍵在空間是對稱的,分別指向一個正四面體的四個頂點,碳原子則位於正四面體的中心。當碳原子與四個不同的原子或基團連接時,就產生一對異構體,它們互為實物和鏡像,或左手和右手的手性關系,這一對化合物互為旋光異構體。勒貝爾和范托夫的學說,是有機化學中立體化學的基礎。

1900年第一個自由基,三苯甲基自由基被發現,這是個長壽命的自由基。不穩定自由基的存在也於1929年得到了證實。

在這個時期,有機化合物在結構測定以及反應和分類方面都取得很大進展。但價鍵只是化學家從實踐經驗得出的一種概念,價鍵的本質尚未解決。

現代有機化學時期 在物理學家發現電子,並闡明原子結構的基礎上,美國物理化學家路易斯等人於1916年提出價鍵的電子理論。

他們認為:各原子外層電子的相互作用是使各原子結合在一起的原因。相互作用的外層電子如從—個原了轉移到另一個原子,則形成離子鍵;兩個原子如果共用外層電子,則形成共價鍵。通過電子的轉移或共用,使相互作用的原子的外層電子都獲得惰性氣體的電子構型。這樣,價鍵的圖象表示法中用來表示價鍵的短劃「-」,實際上是兩個原子共用的一對電子。

1927年以後,海特勒和倫敦等用量子力學,處理分子結構問題,建立了價鍵理論,為化學鍵提出了一個數學模型。後來馬利肯用分子軌道理論處理分子結構,其結果與價鍵的電子理論所得的大體一致,由於計算簡便,解決了許多當時不能回答的問題。

有機化學的研究內容

有機化合物和無機化合物之間沒有絕對的分界。有機化學之所以成為化學中的一個獨立學科,是因為有機化合物確有其內在的聯系和特性。

位於周期表當中的碳元素,一般是通過與別的元素的原子共用外層電子而達到穩定的電子構型的。這種共價鍵的結合方式決定了有機化合物的特性。大多數有機化合物由碳、氫、氮、氧幾種元素構成,少數還含有鹵素和硫、磷等元素。因而大多數有機化合物具有熔點較低、可以燃燒、易溶於有機溶劑等性質,這與無機化合物的性質有很大不同。

在含多個碳原子的有機化合物分子中,碳原子互相結合形成分子的骨架,別的元素的原子就連接在該骨架上。在元素周期表中,沒有一種別的元素能像碳那樣以多種方式彼此牢固地結合。由碳原子形成的分子骨架有多種形式,有直鏈、支鏈、環狀等。

在有機化學發展的初期,有機化學工業的主要原料是動、植物體,有機化學主要研究從動、植物體中分離有機化合物。

19世紀中到20世紀初,有機化學工業逐漸變為以煤焦油為主要原料。合成染料的發現,使染料、制葯工業蓬勃發展,推動了對芳香族化合物和雜環化合物的研究。30年代以後,以乙炔為原料的有機合成興起。40年代前後,有機化學工業的原料又逐漸轉變為以石油和天然氣為主,發展了合成橡膠、合成塑料和合成纖維工業。由於石油資源將日趨枯竭,以煤為原料的有機化學工業必將重新發展。當然,天然的動、植物和微生物體仍是重要的研究對象。

天然有機化學主要研究天然有機化合物的組成、合成、結構和性能。20世紀初至30年代,先後確定了單糖、氨基酸、核苷酸牛膽酸、膽固醇和某些萜類的結構,肽和蛋白質的組成;30~40年代,確定了一些維生素、甾族激素、多聚糖的結構,完成了一些甾族激素和維生素的結構和合成的研究;40~50年代前後,發現青黴素等一些抗生素,完成了結構測定和合成;50年代完成了某些甾族化合物和嗎啡等生物鹼的全合成,催產素等生物活性小肽的合成,確定了胰島素的化學結構,發現了蛋白質的螺旋結構,DNA的雙螺旋結構;60年代完成了胰島素的全合成和低聚核苷酸的合成;70年代至80年代初,進行了前列腺素、維生素B12、昆蟲信息素激素的全合成,確定了核酸和美登木素的結構並完成了它們的全合成等等。

有機合成方面主要研究從較簡單的化合物或元素經化學反應合成有機化合物。19世紀30年代合成了尿素;40年代合成了乙酸。隨後陸續合成了葡萄糖酸、檸檬酸、琥珀酸、蘋果酸等一系列有機酸;19世紀後半葉合成了多種染料;20世紀40年代合成了滴滴涕和有機磷殺蟲劑、有機硫殺菌劑、除草劑等農葯;20世紀初,合成了606葯劑,30~40年代,合成了一千多種磺胺類化合物,其中有些可用作葯物。

物理有機化學是定量地研究有機化合物結構、反應性和反應機理的學科。它是在價鍵的電子學說的基礎上,引用了現代物理學、物理化學的新進展和量子力學理論而發展起來的。20世紀20~30年代,通過反應機理的研究,建立了有機化學的新體系;50年代的構象分析和哈米特方程開始半定量估算反應性與結構的關系;60年代出現了分子軌道對稱守恆原理和前線軌道理論。

有機分析即有機化合物的定性和定量分析。19世紀30年代建立了碳、氫定量分析法;90年代建立了氮的定量分析法;有機化合物中各種元素的常量分析法在19世紀末基本上已經齊全;20世紀20年代建立了有機微量定量分析法;70年代出現了自動化分析儀器。

由於科學和技術的發展,有機化學與各個學科互相滲透,形成了許多分支邊緣學科。比如生物有機化學、物理有機化學、量子有機化學、海洋有機化學等。

有機化學的研究方法

有機化學研究手段的發展經歷了從手工操作到自動化、計算機化,從常量到超微量的過程。

20世紀40年代前,用傳統的蒸餾、結晶、升華等方法來純化產品,用化學降解和衍生物制備的方法測定結構。後來,各種色譜法、電泳技術的應用,特別是高壓液相色譜的應用改變了分離技術的面貌。各種光譜、能譜技術的使用,使有機化學家能夠研究分子內部的運動,使結構測定手段發生了革命性的變化。

電子計算機的引入,使有機化合物的分離、分析方法向自動化、超微量化方向又前進了一大步。帶傅里葉變換技術的核磁共振譜和紅外光譜又為反應動力學、反應機理的研究提供了新的手段。這些儀器和x射線結構分析、電子衍射光譜分析,已能測定微克級樣品的化學結構。用電子計算機設計合成路線的研究也已取得某些進展。

未來有機化學的發展首先是研究能源和資源的開發利用問題。迄今我們使用的大部分能源和資源,如煤、天然氣、石油、動植物和微生物,都是太陽能的化學貯存形式。今後一些學科的重要課題是更直接、更有效地利用太陽能。

對光合作用做更深入的研究和有效的利用,是植物生理學、生物化學和有機化學的共同課題。有機化學可以用光化學反應生成高能有機化合物,加以貯存;必要時則利用其逆反應,釋放出能量。另一個開發資源的目標是在有機金屬化合物的作用下固定二氧化碳,以產生無窮盡的有。機化合物。這幾方面的研究均已取得一些初步結果。

其次是研究和開發新型有機催化劑,使它們能夠模擬酶的高速高效和溫和的反應方式。這方面的研究已經開始,今後會有更大的發展。

20世紀60年代末,開始了有機合成的計算機輔助設計研究。今後有機合成路線的設計、有機化合物結構的測定等必將更趨系統化、邏輯化。

化學動力學
化學動力學是研究化學反映過程的速率和反應機理的物理化學分支學科,它的研究對象是物質性質隨時間變化的非平衡的動態體系。時間是化學動力學的一個重要變數。

化學動力學的研究方法主要有兩種。一種是唯象動力學研究方法,也稱經典化學動力學研究方法,它是從化學動力學的原始實驗數據——濃度與時間的關系出發,經過分析獲得某些反應動力學參數——反應速率常數、活化能、指前因子等。用這些參數可以表徵反應體系的速率化學動力學參數是探討反應機理的有效數據。

20世紀前半葉,大量的研究工作都是對這些參數的測定、理論分析以及利用參數來研究反應機理。但是,反應機理的確認主要依賴於檢出和分析反應中間物的能力。20世紀後期,自由基鏈式反應動力學研究的普遍開展,給化學動力學帶來兩個發展趨向:一是對元反應動力學的廣泛研究;二是迫切要求建立檢測活性中間物的方法,這個要求和電子學、激光技術的發展促進了快速反應動力學的發展。目前,對暫態活性中間物檢測的時間解析度已從50年代的毫秒級提高到皮秒級。

另一種是分子反應動力學研究方法。從微觀的分子水平來看,一個化學反應是具有一定量子態的反應物分子問的互相碰撞,進行原子重排,產生一定量子態的產物分子以至互相分離的單次反應碰撞行為。用過渡態理論解釋,它是在反應體系的超勢能面上一個代表體系的質點越過反應勢壘的一次行為。

原則上,如果能從量子化學理論計算出反應體系的正確的勢能面,並應用力學定律計算具有代表性的點在其上的運動軌跡,就能計算反應速率和化學動力學的參數。但是,除了少數很簡單的化學反應以外,量子化學的計算至今還不能得到反應體系的可靠的、完整的勢能面。因此,現行的反應速率理論仍不得不借用經典統計力學的處理方法。這樣的處理必須作出某種形式的平衡假設,因而使這些速率理論不適用於非常快的反應。盡管對於衡假設的適用性研究已經很多,但日前完全用非平衡態理論處理反應速率問題尚不成熟。

經典的化學動力學實驗方法不能制備單一量子態的反應物,也不能檢測由單次反應碰撞所產生的初生態產物。分子束(即分子散射),特別是交叉分子束方法對研究化學元反應動力學的應用,使在實驗上研究單次反應碰撞成為可能。分子束實驗已經獲得了許多經典化學動力學無法取得的關於化學元反應的微觀信息,分子反應動力學是現代化學動力學的一個前沿陣地。

㈧ 歐洲無機化學和有機化學用哪個版本的課本

有機,應該是

㈨ 歐洲三區有機化學有哪些雜志比較好投稿

一般用scifinder這個程來序搜吧,這類自期刊太多了,譬如J. Org. Chem; Org. Syn.; Org. Lett.等等,但是這種網站都是要付費的,一般大學是有付費,用大學的id及通用證就能查了。

㈩ european journal of organic chemistry 是哪個資料庫

從字面翻譯應該是,歐洲有機化學周刊。您看是不是這個意思?

熱點內容
小青蛙找家教學反思 發布:2025-06-03 12:44:23 瀏覽:610
歷史學大專 發布:2025-06-03 12:43:31 瀏覽:408
中一當班主任 發布:2025-06-03 12:42:54 瀏覽:602
蘇教版一年級數學上冊教學反思 發布:2025-06-03 11:56:07 瀏覽:242
兮夜老師 發布:2025-06-03 08:24:57 瀏覽:426
化學魔塔下載 發布:2025-06-03 07:29:58 瀏覽:767
地理晨昏線圖 發布:2025-06-03 04:27:50 瀏覽:745
對環境化學的認識 發布:2025-06-03 03:26:03 瀏覽:648
生氣的英語 發布:2025-06-03 03:23:10 瀏覽:545
地理高考視頻 發布:2025-06-03 03:08:19 瀏覽:555