当前位置:首页 » 语数英语 » 7年级数学题

7年级数学题

发布时间: 2020-11-19 11:01:28

① 七年级数学题目

1、118表示( )
A、11个8连乘 B、11乘以8 C、8个11连乘 D、8个别1相加
2、-32的值是( )
A、-9 B、9 C、-6 D、6
3、下列各对数中,数值相等的是( )
A、 -32 与 -23 B、-23 与 (-2)3
C、-32 与 (-3)2 D、(-3×2)2与-3×22
4、下列说法中正确的是( )
A、23表示2×3的积 B、任何一个有理数的偶次幂是正数
C、-32 与 (-3)2互为相反数 D、一个数的平方是 ,这个数一定是
5、下列各式运算结果为正数的是( )
A、-24×5 B、(1-2)×5 C、(1-24)×5 D、1-(3×5)6
6、如果一个有理数的平方等于(-2)2,那么这个有理数等于( )
A、-2 B、2 C、4 D、2或-2
7、一个数的立方是它本身,那么这个数是( )
A、 0 B、0或1 C、-1或1 D、0或1或-1
8、如果一个有理数的正偶次幂是非负数,那么这个数是( )
A、正数 B、负数 C、 非负数 D、任何有理数
9、-24×(-22)×(-2) 3=( )
A、 29 B、-29 C、-224 D、224
10、两个有理数互为相反数,那么它们的 次幂的值( )
A、相等 B、不相等 C、绝对值相等 D、没有任何关系
11、一个有理数的平方是正数,则这个数的立方是( )
A、正数 B、负数 C、正数或负数 D、奇数
12、(-1)2001+(-1)2002÷ +(-1)2003的值等于( )
A、0 B、 1 C、-1 D、2
1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ; 的底数是 ,指数是 ,结果是 ;
2、根据幂的意义,(-3)4表示 ,-43表示 ;
4、一个数的15次幂是负数,那么这个数的2003次幂是 ;
10、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ;
1.三个互不相等的有理数即可表示为1,a+b,a的形式,又可表示为0,b/a,b的形式,试求a的2006次方+b的2007次方的值。
2.某日小明在一条南北方向的公路上跑步。他从A地上出发,每隔10分记录下自己的跑步情况(向南为正方向,单位:米):—1008,1100,-976,1010,-827,946。一小时后他停下来休息,此时他在A地的什么方向?距A地多远?小明共跑了多少米?
3.-5的16乘方是正还是负
2、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?

3、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?

4、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?
1.常熟市某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃。
2.绝对值大于1而不大于3的整数有 ,它们的和是 。
3.有理数-3,0,20,-1.25,1 , - ,-(-5) 中,正整数是 ,负整数是 ,正分数是 ,非负数是 。
4.观察下面一列数,根据规律写出横线上的数,
- ; ;- ; ; ; ;……;第2003个数是 。
5. 的倒数是 , 的相反数是 , 的绝对值是 ,
已知|a|=4,那么a= 。
6.比较大小:(1)-2 +6 ; (2) 0 -1.8 ;(3) _____
7.最小的正整数是_____;绝对值最小的有理数是_____。绝对值等于3的数是______。
绝对值等于本身的数是
8.直接写出答案(1)(-2.8)+(+1.9)= ,(2) = ,
(3) ,(4)
9.A地海拔高度是-30米,B地海拔高度是10米,C地海拔高度是-10米,则 地势最高,_____地势最低,地势最高的与地势最低的相差______米。
10.某地一周内每天的最高气温与最低气温记录如下表:
星期 一 二 三 四 五 六 日
最高气温 10℃ 12℃ 11℃ 9℃ 7℃ 5℃ 7℃
最低气温 2℃ 1℃ 0℃ -1℃ -4℃ -5℃ -5℃
则温差最大的一天是星期_____;温差最小的一天是星期_______。
二、 选择题(每题2分,共20分)
1.下列说法不正确的是 ( )
A.0既不是正数,也不是负数 B.1是绝对值最小的数
C.一个有理数不是整数就是分数 D.0的绝对值是0
2. 的相反数是 ( )
A. B. C. D.2
3.下列交换加数的位置的变形中,正确的是( )
A、 B、
C、 D、
4.下列说法中正确的是 ( )
A.最小的整数是0 B. 互为相反数的两个数的绝对值相等
C. 有理数分为正数和负数 D. 如果两个数的绝对值相等,那么这两个数相等
5.绝对值大于2且小于5的所有整数的和是 ( )
A.7 B.-7 C.0 D.5
6.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在 ( )
A. 在家 B. 在学校 C. 在书店 D. 不在上述地方
7.计算: 的结果是 ( )
A、2 B、10 C、 D、
8.若 、 互为相反数, 、 互为倒数, 的绝对值为2,
则代数式 的值为 ( )
A、 B、3 C、 D、3或
9.下列式子中,正确的是( )
A.∣-5∣ =5 B.-∣-5∣ = 5 C.∣-0.5∣ = D.-∣- ∣ =
*10.如图,把一条绳子折成3折,用剪刀从中剪断,得到几条绳子? ( )
A.3 B.4 C.5 D.6
三、 判断题(每题1分,共10分)
1.- 一定大于- 。 ( )
2.数a的倒数是 。 ( )
3.整数分为正整数和负整数。 ( )
4.有理数的绝对值一定比0大。 ( )
5. 3a-2的相反数是-3a-2 。 ( )
6.若 ,则 等于-2a。 ( )
7.绝对值大于它本身的数是负数。 ( )
8.若a<0,b<0,则a+b=- 。 ( )
9.绝对值小于2的整数有3个。 ( )
10.绝对值不等的异号两数相加,取绝对值较大的加数的符号,并把绝对值较大的加数减去绝对值较小的加数。 ( )
三、画出数轴,在数轴上表示下列各数,并用"<"连接:(4分)
, , , , , ,

三、计算题(每题5分,共30分)
1.计算:25.3+(-7.3)+(-13.7)+7.3 2.计算:

3.计算:-4.27+3.8-0.73+1.2 4.计算:(1-1 - + )×(-24)

5. + -4.8 6.33.1-10.7-(-22.9)-

四.应用题
1.(8分)为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师。如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,-4,+13,―10,―12,+3,―13,―17.
(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(4分)
(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?(4分)

以下为附加题,可选做,所得分作为附加分,不计入总分.
五.探索规律
将连续的偶2,4,6,8,…,排成如下表:
2 4 6 8 10
12 14 16 18 20
22 24 26 28 30
32 34 36 38 40
… …
(1) 十字框中的五个数的和与中间的数和16有什么关系?(2分)
(2) 设中间的数为x ,用代数式表示十字框中的五个数的和,(2)
(3) 若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由。(2分)

六、将-15、-12、-9、-6、-3、0、3、6、9,填入下列小方格里,使大方格的横、竖、斜对角的三个数字之和都相等。(4分)
1.判断题
(1)3-4×(-3.5)=0
(2)如果a与-2互为倒数,那么a2-2a=1.
(3)-( )2=-
(4)-(-1)3×(-0.2)3=0.008.
(5)0.25×1 +0.75÷ = .
(6)(-4)+(-7)-(-21)=-4-7+21.
(7)|-1.3|+0÷(5.7×|- |+ )=1.3.
(8)(a-2)2+|b-4|=0,则a=2,b=4.
2.填空题
(1)-32×5-(-4)2×2=_________.
(2)(-1)4-5×(- )3=________.
(3)-(-3)2-33=_________.
(4)-32÷(-3)2+(-2)4÷(-24)=_________.
(5)|(-1)7-(-2)3|=__________.
(6)若|a-3|+|b+ |=0,则ba=__________.
(7)用“>”或“<”号连接下列各组数.
①-32____________ (-2)2; ②- ____________-|- |;
③(-1)53____________­­­­­­­(-2)37;
[-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3)
5+21*8/2-6-59
68/21-8-11*8+61
-2/9-7/9-56
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
[2/3-4-1/4*(-0.4)]/1/3+2
22+(-4)+(-2)+4*3
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1)
2/(-2)+0/7-(-8)*(-2)
(1/4-5/6+1/3+2/3)/1/2
18-6/(-3)*(-2)
(5+3/8*8/30/(-2)-3
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3
-3x+2y-5x-7y
有理数的加减混合运算

【【同步达纲练习】

1.选择题:

(1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号和的形式,正确的是( )

A.-2-3-5-4+3 B.-2+3+5-4+3

C.-2-3+5-4+3 D.-2-3-5+4+3

(2)计算(-5)-(+3)+(-9)-(-7)+ 所得结果正确的是( )

A.-10 B.-9 C.8 D.-23
(3)-7,-12,+2的代数和比它们的绝对值的和小( )

A.-38 B.-4 C.4 D.38

(4)若 +(b+3)2=0,则b-a- 的值是( )

A.-4 B.-2 C.-1 D.1
(5)下列说法正确的是( )

A.两个负数相减,等于绝对值相减

B.两个负数的差一定大于零

C.正数减去负数,实际是两个正数的代数和

D.负数减去正数,等于负数加上正数的绝对值

(6)算式-3-5不能读作( )

A.-3与5的差 B.-3与-5的和

C.-3与-5的差 D.-3减去5

2.填空题:(4′×4=16′)

(1)-4+7-9=- - + ;

(2)6-11+4+2=- + - + ;

(3)(-5)+(+8)-(+2)-(-3)= + - + ;

(4)5-(-3 )-(+7)-2 =5+ - - + - .

3.把下列各式写成省略括号的和的形式,并说出它们的两种读法:(8′×2=16′)

(1)(-21)+(+16)-(-13)-(+7)+(-6);

(2)-2 -(- )+(-0.5)+(+2)-(+ )-2.

4.计算题(6′×4=24′)

(1)-1+2-3+4-5+6-7;

(2)-50-28+(-24)-(-22);

(3)-19.8-(-20.3)-(+20.2)-10.8;

(4)0.25- +(-1 )-(+3 ).

5.当x=-3.7,y=-1.8,z=-1.5时,求下列代数式的值(5′×4=20′)

(1)x+y-z; (2)-x-y+z; (3)-x+y+z; (4)x-y-z.

【素质优化训练】

(1) (-7)-(+5)+(+3)-(-9)=-7 5 3 9;

(2)-(+2 )-(-1 )-(+3 )+(- )

=( 2 )+( 1 )+( 3 )+( );

(3)-14 5 (-3)=-12;

(4)-12 (-7) (-5) (-6)=-16;

(5)b-a-(+c)+(-d)= a b c d;

2.当x= ,y=- ,z=- 时,分别求出下列代数式的值;

(1)x-(-y)+(-z); (2)x+(-y)-(+z);

(3)-(-x)-y+z; (4)-x-(-y)+z.

3.就下列给的三组数,验证等式:

a-(b-c+d)=a-b+c-d是否成立.

(1)a=-2,b=-1,c=3,d=5;

(2)a=23 ,b=-8,c=-1 ,d=1 .

4.计算题

(1)-1-23.33-(+76.76);

(2)1-2*2*2*2;

(3)(-6-24.3)-(-12+9.1)+(0-2.1);

(4)-1+8-7

【生活实际运用】

某水利勘察队,第一天向上游走5 千米,第二天又向上游走5 ,第三天向下游走4 千米,第四天又向下游走4.5千米,这时勘察队在出发点的哪里?相距多少千米?
(0.75+0.2)/0.25*25% 12/0.75+7.2/2.4
605*8+3.5-44 10.9-(6.6+0.125/12.5%)
980-9.8)*0.6-2.12 (0.125*8-0.5)*4
1+0.45/0.9-0.75 168.1/(4.3*2-0.4)
1.21*42-(4.46+0.14) 1375+450/18*25
18/1.5-0.5*0.3
1.9-1.9*(1.9-1.9)

② 人教版 50道七年级数学题 带答案

^5.
x^(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2
=[x(y+z)-y(x-z)]^2
=(xz+yz)^2
=z^2(x+y)^2

6.
3(a+2)^2+28(a+2)-20
=[3(a+2)-2][(a+2)+10]
=(3a+4)(a+12)

7.
(a+b)^2-(b-c)^2+a^2-c^2
=(a+b)^2-c^2+a^2-(b-c)^2
=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)
=(a+b-c)(a+b+c+a-b+c)
=2(a+b-c)(a+c)

8.
x(x+1)(x^2+x-1)-2
=(x^2+x)(x^2+x-1)-2
=(x^2+x)^2-(x^2+x)-2
=(x^2+x-2)(x^2+x+1)
=(x+2)(x-1)(x^2+x+1)

9.
9x^2(x-1)^2-3(x^2-x)-56
=9x^2(x-1)^2-3x(x-1)-56
=[3x(x-1)-8][3x(x-1)+7]
=(3x^2-3x-8)(3x^2-3x+7)
有理数练习
练习一(B级)
(一)计算题:
(1)23+(-73) (2)(-84)+(-49) (3)7+(-2.04) (4)4.23+(-7.57) (5)(-7/3)+(-7/6) (6)9/4+(-3/2) (7)3.75+(2.25)+5/4 (8)-3.75+(+5/4)+(-1.5)
5.
x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2
=[x(y+z)-y(x-z)]^2
=(xz+yz)^2

=z^2(x+y)^2

6.
3(a+2)^2+28(a+2)-20
=[3(a+2)-2][(a+2)+10]
=(3a+4)(a+12)

7.
(a+b)^2-(b-c)^2+a^2-c^2
=(a+b)^2-c^2+a^2-(b-c)^2
=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)
=(a+b-c)(a+b+c+a-b+c)
=2(a+b-c)(a+c)

8.
x(x+1)(x^2+x-1)-2
=(x^2+x)(x^2+x-1)-2
=(x^2+x)^2-(x^2+x)-2
=(x^2+x-2)(x^2+x+1)
=(x+2)(x-1)(x^2+x+1)

9.
9x^2(x-1)^2-3(x^2-x)-56
=9x^2(x-1)^2-3x(x-1)-56
=[3x(x-1)-8][3x(x-1)+7]
=(3x^2-3x-8)(3x^2-3x+7)
(二)用简便方法计算:
(1)(-17/4)+(-10/3)+(+13/3)+(11/3) (2)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)
(三)已知:X=+17(3/4),Y=-9(5/11),Z=-2.25,
求:(-X)+(-Y)+Z的值
(四)用">","0,则a-ba (C)若ba (D)若a<0,ba
-38)+52+118+(-62)=
(-32)+68+(-29)+(-68)=
(-21)+251+21+(-151)=
12+35+(-23)+0=
利用有理数的加法解下面2题

(1)王老伯上街时带有现金550元,购物用去260元,又去银行取款150元,现在王老伯身上还有多少现金?

(2)潜水艇原停在海面下800米处,先浮上150米,又下潜200米,这时潜水艇在海面下多少米处?

(-6)+8+(-4)+12
3又1/4+(-2又3/5)+5又3/4+(-8又2/5)
9+(-7)+10+(-3)+(-9)
27+(-26)+33+(-27)
(+4又5/8)+(-3.257)+(-4.625)

23+(-17)+6+(-22)
-2+3+1+(-3)+2+(-4)
23+(-73)
(-84)+(-49)
7+(-2.04)
4.23+(-7.57)
7/3)+(-7/6)
9/4+(-3/2)
3.75+(2.25)+5/4
-3.75+(+5/4)+(-1.5)
(-17/4)+(-10/3)+(+13/3)+(11/3)
(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)
(+1.3)-(+17/7)
(-2)-(+2/3)
|(-7.2)-(-6.3)+(1.1)|
|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)
(-4)(+6)(-7)
(-27)(-25)(-3)(-4)
0.001*(-0.1)*(1.1)
24*(-5/4)*(-12/15)*(-0.12)
(-3/2)(-4/3)(-5/4)(-6/5)(-7/6)(-8/7)
(-24/7)(11/8+7/3-3.75)*24
(-71/8)*(-23)-23*(-73/8)
(-7/15)*(-18)*(-45/14)
(-2.2)*(+1.5)*(-7/11)*(-2/7)

[-|98|+76+(-87)]*23[56+(-75)-(7)]-(8+4+3)
5+21*8/2-6-59
68/21-8-11*8+61
-2/9-7/9-56
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
[2/3-4-1/4*(-0.4)]/1/3+2
22+(-4)+(-2)+4*3
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1)
2/(-2)+0/7-(-8)*(-2)
(1/4-5/6+1/3+2/3)/1/2
18-6/(-3)*(-2)
(5+3/8*8/30/(-2)-3
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3
-3x+2y-5x-7y
有理数的加减混合运算

【【同步达纲练习】

1.选择题:

(1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号和的形式,正确的是( )

A.-2-3-5-4+3 B.-2+3+5-4+3

C.-2-3+5-4+3 D.-2-3-5+4+3

(2)计算(-5)-(+3)+(-9)-(-7)+ 所得结果正确的是( )

A.-10 B.-9 C.8 D.-23
(3)-7,-12,+2的代数和比它们的绝对值的和小( )

A.-38 B.-4 C.4 D.38

(4)若 +(b+3)2=0,则b-a- 的值是( )

A.-4 B.-2 C.-1 D.1
(5)下列说法正确的是( )

A.两个负数相减,等于绝对值相减

B.两个负数的差一定大于零

C.正数减去负数,实际是两个正数的代数和

D.负数减去正数,等于负数加上正数的绝对值

(6)算式-3-5不能读作( )

A.-3与5的差 B.-3与-5的和

C.-3与-5的差 D.-3减去5

2.填空题:(4′×4=16′)

(1)-4+7-9=- - + ;

(2)6-11+4+2=- + - + ;

(3)(-5)+(+8)-(+2)-(-3)= + - + ;

(4)5-(-3 )-(+7)-2 =5+ - - + - .

3.把下列各式写成省略括号的和的形式,并说出它们的两种读法:(8′×2=16′)

(1)(-21)+(+16)-(-13)-(+7)+(-6);

(2)-2 -(- )+(-0.5)+(+2)-(+ )-2.

4.计算题(6′×4=24′)

(1)-1+2-3+4-5+6-7;

(2)-50-28+(-24)-(-22);

(3)-19.8-(-20.3)-(+20.2)-10.8;

(4)0.25- +(-1 )-(+3 ).

5.当x=-3.7,y=-1.8,z=-1.5时,求下列代数式的值(5′×4=20′)

(1)x+y-z; (2)-x-y+z; (3)-x+y+z; (4)x-y-z.

【素质优化训练】

(1) (-7)-(+5)+(+3)-(-9)=-7 5 3 9;

(2)-(+2 )-(-1 )-(+3 )+(- )

=( 2 )+( 1 )+( 3 )+( );

(3)-14 5 (-3)=-12;

(4)-12 (-7) (-5) (-6)=-16;

(5)b-a-(+c)+(-d)= a b c d;

2.当x= ,y=- ,z=- 时,分别求出下列代数式的值;

(1)x-(-y)+(-z); (2)x+(-y)-(+z);

(3)-(-x)-y+z; (4)-x-(-y)+z.

3.就下列给的三组数,验证等式:

a-(b-c+d)=a-b+c-d是否成立.

(1)a=-2,b=-1,c=3,d=5;

(2)a=23 ,b=-8,c=-1 ,d=1 .

4.计算题

(1)-1-23.33-(+76.76);

(2)1-2*2*2*2;

(3)(-6-24.3)-(-12+9.1)+(0-2.1);

(4)-1+8-7

【生活实际运用】

某水利勘察队,第一天向上游走5 千米,第二天又向上游走5 ,第三天向下游走4 千米,第四天又向下游走4.5千米,这时勘察队在出发点的哪里?相距多少千米?

参考答案:

【同步达纲练习】

1.(1)C;(2)B;(3)D;(4)A;(5)C;(6)C 2.(1)4,(-7),(-9) (2)(-6),(-11),(-4),2; (3)-5,8,2,3; (4)3,7,2;

3.略4.(1)-4; (2)-80; (3)-30.5 (4)-5
5.(1)-4; (2)4; (3)0.4; (4)-0.4.

【素质优化训练】

1.(1)-,+,+; (2)-,+,-,-; (3)+,+; (4)-,+,+; (5)-,+,-,-.

2.(1) (2) (3) (4)-

3.(1) (2)都成立.

4.(1)-
(2)
(3)-29.5

(4)-1 第(4)题注意同号的数、互为相反数先分别结合。

【生活实际运用】

1.上游1 千米
1.125*3+125*5+25*3+25
2.9999*3+101*11*(101-92)
3.(23/4-3/4)*(3*6+2)
4. 3/7 × 49/9 - 4/3
5. 8/9 × 15/36 + 1/27
6. 12× 5/6 – 2/9 ×3
7. 8× 5/4 + 1/4
8. 6÷ 3/8 – 3/8 ÷6
9. 4/7 × 5/9 + 3/7 × 5/9
10. 5/2 -( 3/2 + 4/5 )
11. 7/8 + ( 1/8 + 1/9 )
12. 9 × 5/6 + 5/6
13. 3/4 × 8/9 - 1/3
14. 7 × 5/49 + 3/14
15. 6 ×( 1/2 + 2/3 )
16. 8 × 4/5 + 8 × 11/5
17. 31 × 5/6 – 5/6
18. 9/7 - ( 2/7 – 10/21 )
19. 5/9 × 18 – 14 × 2/7
20. 4/5 × 25/16 + 2/3 × 3/4
21. 14 × 8/7 – 5/6 × 12/15
22. 17/32 – 3/4 × 9/24
23. 3 × 2/9 + 1/3
24. 5/7 × 3/25 + 3/7
25. 3/14 ×× 2/3 + 1/6
26. 1/5 × 2/3 + 5/6
27. 9/22 + 1/11 ÷ 1/2
28. 5/3 × 11/5 + 4/3
29. 45 × 2/3 + 1/3 × 15
30. 7/19 + 12/19 × 5/6
31. 1/4 + 3/4 ÷ 2/3
32. 8/7 × 21/16 + 1/2
33. 101 × 1/5 – 1/5 × 21
34.50+160÷40
35.120-144÷18+35
36.347+45×2-4160÷52
37(58+37)÷(64-9×5)
38.95÷(64-45)
39.178-145÷5×6+42
40.812-700÷(9+31×11)
41.85+14×(14+208÷26)

43.120-36×4÷18+35
44.(58+37)÷(64-9×5)
45.(6.8-6.8×0.55)÷8.5
46.0.12× 4.8÷0.12×4.8
47.(3.2×1.5+2.5)÷1.6
48.6-1.6÷4= 5.38+7.85-5.37=
49.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
50.6.5×(4.8-1.2×4)=
51.5.8×(3.87-0.13)+4.2×3.74
52.32.52-(6+9.728÷3.2)×2.5
53.[(7.1-5.6)×0.9-1.15] ÷2.5
54.5.4÷[2.6×(3.7-2.9)+0.62]
55.12×6÷(12-7.2)-6
56.12×6÷7.2-6
57.0.68×1.9+0.32×1.9
58.58+370)÷(64-45)
59.420+580-64×21÷28
60.136+6×(65-345÷23)
15-10.75×0.4-5.7
62.18.1+(3-0.299÷0.23)×1
63.(6.8-6.8×0.55)÷8.5
64.0.12× 4.8÷0.12×4.8
65.(3.2×1.5+2.5)÷1.6
66.3.2×6+(1.5+2.5)÷1.6
67.0.68×1.9+0.32×1.9
68.10.15-10.75×0.4-5.7
69.5.8×(3.87-0.13)+4.2×3.74
70.32.52-(6+9.728÷3.2)×2.5
71.[(7.1-5.6)×0.9-1.15] ÷2.5
72.5.4÷[2.6×(3.7-2.9)+0.62]
73.12×6÷(12-7.2)-6
74.12×6÷7.2-6
75.33.02-(148.4-90.85)÷2.5
1) 76.(25%-695%-12%)*36
77./4*3/5+3/4*2/5
78.1-1/4+8/9/7/9
79.+1/6/3/24+2/21
80./15*3/5
81.3/4/9/10-1/6
82./3+1/2)/5/6-1/3]/1/7
83./5+3/5/2+3/4
84.(2-2/3/1/2)]*2/5
85.+5268.32-2569
86.3+456-52*8
87.5%+6325
88./2+1/3+1/4
2) 89+456-78
3) 5%+. 3/7 × 49/9 - 4/3
4) 9 × 15/36 + 1/27
5) 2× 5/6 – 2/9 ×3
6) 3× 5/4 + 1/4
7) 94÷ 3/8 – 3/8 ÷6
8) 95/7 × 5/9 + 3/7 × 5/9
9) 6/2 -( 3/2 + 4/5 )
10) 8 + ( 1/8 + 1/9 )
11) 8 × 5/6 + 5/6
12) 1/4 × 8/9 - 1/3
13) 10 × 5/49 + 3/14
14) 1.5 ×( 1/2 + 2/3 )
15) 2/9 × 4/5 + 8 × 11/5
16) 3.1 × 5/6 – 5/6
17) 4/7 - ( 2/7 – 10/21 )
18) 19 × 18 – 14 × 2/7
19) 5 × 25/16 + 2/3 × 3/4
20) 4 × 8/7 – 5/6 × 12/15
21) 7/32 – 3/4 × 9/24
22) 1、 2/3÷1/2-1/4×2/5
2、 2-6/13÷9/26-2/3
3、 2/9+1/2÷4/5+3/8
4、 10÷5/9+1/6×4
5、 1/2×2/5+9/10÷9/20
6、 5/9×3/10+2/7÷2/5
7、 1/2+1/4×4/5-1/8
8、 3/4×5/7×4/3-1/2
9、 23-8/9×1/27÷1/27
10、 8×5/6+2/5÷4
11、 1/2+3/4×5/12×4/5
12、 8/9×3/4-3/8÷3/4
13、 5/8÷5/4+3/23÷9/11
23) 1.2×2.5+0.8×2.5
24) 8.9×1.25-0.9×1.25
25) 12.5×7.4×0.8
26) 9.9×6.4-(2.5+0.24)(27) 6.5×9.5+6.5×0.5
0.35×1.6+0.35×3.4
0.25×8.6×4
6.72-3.28-1.72
0.45+6.37+4.55
5.4+6.9×3-(25-2.5)2×41846-620-380
4.8×46+4.8×54
0.8+0.8×2.5
1.25×3.6×8×2.5-12.5×2.4
28×12.5-12.5×20
23.65-(3.07+3.65)
(4+0.4×0.25)8×7×1.25
1.65×99+1.65
27.85-(7.85+3.4)
48×1.25+50×1.25×0.2×8
7.8×9.9+0.78
(1010+309+4+681+6)×12
3×9146×782×6×854
5.15×7/8+6.1-0.60625
1. 3/7 × 49/9 - 4/3
2. 8/9 × 15/36 + 1/27
3. 12× 5/6 – 2/9 ×3
4. 8× 5/4 + 1/4
5. 6÷ 3/8 – 3/8 ÷6
6. 4/7 × 5/9 + 3/7 × 5/9
7. 5/2 -( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
10. 3/4 × 8/9 - 1/3
11. 7 × 5/49 + 3/14
12. 6 ×( 1/2 + 2/3 )
13. 8 × 4/5 + 8 × 11/5
14. 31 × 5/6 – 5/6
15. 9/7 - ( 2/7 – 10/21 )
16. 5/9 × 18 – 14 × 2/7
17. 4/5 × 25/16 + 2/3 × 3/4
18. 14 × 8/7 – 5/6 × 12/15
19. 17/32 – 3/4 × 9/24
20. 3 × 2/9 + 1/3
21. 5/7 × 3/25 + 3/7
22. 3/14 ×× 2/3 + 1/6
23. 1/5 × 2/3 + 5/6
24. 9/22 + 1/11 ÷ 1/2
25. 5/3 × 11/5 + 4/3
26. 45 × 2/3 + 1/3 × 15
27. 7/19 + 12/19 × 5/6
28. 1/4 + 3/4 ÷ 2/3
29. 8/7 × 21/16 + 1/2
30. 101 × 1/5 – 1/5 × 21
31.50+160÷40 (58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42 420+580-64×21÷28
37.812-700÷(9+31×11) (136+64)×(65-345÷23)
38.85+14×(14+208÷26)
39.(284+16)×(512-8208÷18)
40.120-36×4÷18+35
41.(58+37)÷(64-9×5)
42.(6.8-6.8×0.55)÷8.5
43.0.12× 4.8÷0.12×4.8
44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
45.6-1.6÷4= 5.38+7.85-5.37=
46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
48.10.15-10.75×0.4-5.7
49.5.8×(3.87-0.13)+4.2×3.74
50.32.52-(6+9.728÷3.2)×2.5
51.[(7.1-5.6)×0.9-1.15] ÷2.5
52.5.4÷[2.6×(3.7-2.9)+0.62]
53.12×6÷(12-7.2)-6 (4)12×6÷7.2-6

102×4.5
7.8×6.9+2.2×6.9
5.6×0.25
8×(20-1.25)
1)127+352+73+44 (2)89+276+135+33
(1)25+71+75+29 +88 (2)243+89+111+57
9405-2940÷28×21
920-1680÷40÷7
690+47×52-398
148+3328÷64-75
360×24÷32+730
2100-94+48×54
51+(2304-2042)×23
4215+(4361-716)÷81
(247+18)×27÷25
36-720÷(360÷18)
1080÷(63-54)×80
(528+912)×5-6178
8528÷41×38-904
264+318-8280÷69
(174+209)×26- 9000
814-(278+322)÷15
1406+735×9÷45
3168-7828÷38+504
796-5040÷(630÷7)
285+(3000-372)÷36
1+5/6-19/12
3x(-9)+7x(-9
(-54)x1/6x(-1/3)
1.18.1+(3-0.299÷0.23)×1
2.(6.8-6.8×0.55)÷8.5
3.0.12× 4.8÷0.12×4.8
4.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
5.6-1.6÷4= 5.38+7.85-5.37=
6.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
7.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
8.10.15-10.75×0.4-5.7
9.5.8×(3.87-0.13)+4.2×3.74
10.32.52-(6+9.728÷3.2)×2.5
11.[(7.1-5.6)×0.9-1.15] ÷2.5
12.5.4÷[2.6×(3.7-2.9)+0.62]
13.12×6÷(12-7.2)-6
14.12×6÷7.2-6
15.33.02-(148.4-90.85)÷2.5
7×(5/21+9/714)

1. 81÷9÷9=
2. 54÷6÷3=
3. 38-9=
4. 41÷5=
5. 52-7=
6. 77-70=
7. 54+20=
8. 9×3=
9. 700+1000=
10. 5080-80=

430+300
580-90
220+80
8×5-20
50-26
1000-700
63+42
35+5×6
720-650
670+300
260+150
63÷(86-79)
540+400
1000-560
360-5×8
45-15÷5
100-(25+75)
839-152+67
9×8
27+123-250
1000-425-137
615-353-187
81÷9
20÷8
45÷6
35÷7
60÷7

11. 1500-800=
12. 4800-900=
13. 610-30=
14. 83-27=
15. 80+720=
16. 1400-1200=
17. 578+76=
18. 567+432=
19. 90-15=
20. 45+36=
21. 75+23=
22. 35+17=
23. 280-30=
24. 8×6-9=
25. 40+600=
26. 4+7×9=
27. 530+70=
28. (24-16)×8=
29. (9-3)÷3=
30. 4500-600=
31. 17+69=
32. 45-7=
33. 5005+150=
34. 2310+1270=
35. 40+600=
36. 37+26=
37. 82-49=
38. 5×9+7=
39. 37+26=
40. 8×4+28=
41. 100-86+34=
42. 32+25+41=
43. 26+28=
44. 73+37=
45. 97-88=
46. 7×8+4=
36+48-25
(34-27)×5
96-6×8
29+42÷7
43+26-17
48÷8×5
37-27÷9
(26-19)×6
64÷(24-16)
36+48-25
96-6×8
(34-27)×6
29+42÷7
5×(100-99)
345-300÷9
63÷(34-25)
(83-83)÷9
43-42÷6
36÷9×8
48÷(16÷2)
736+3287+1797
9010-3875-2358

357+98-398
5×(4007-3998)
(345-396)÷7
4570-(2390+47)
280+400○280+40 3200-200○3200+200
360+90○90+360 880-90○800-90
420-300○420-30 387+595○299+399
(19-10)+(-1235)
10-10÷5×78
(36÷9-78)×4556
40-20÷4×89
6×(18-9)÷6

4×7+1 ×45
(4×8+1)×56+(-46)÷2
825-387+659×(-568)
249+367×78+9
1010-398
396+217×56
839-152+67
1000-425-137
327+495+123
615-353-187
937-(37+16)
801-187+245
72÷(300-292)
240-8×5
45÷(47-38)

③ 七年级上数学应用题及答案70道

1.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?

设总用电x度:[(x-140)*0.57+140*0.43]/x=0.5
0.57x-79.8+60.2=0.5x
0.07x=19.6
x=280
再分步算: 140*0.43=60.2
(280-140)*0.57=79.8
79.8+60.2=140

2.某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员?

设送货人员有X人,则销售人员为8X人。

(X+22)/(8X-22)=2/5
5*(X+22)=2*(8X-22)
5X+110=16X-44
11X=154

X=14

8X=8*14=112
这个商场家电部原来有14名送货人员,112名销售人员

3.现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?

设:增加x%
90%*(1+x%)=1
解得: x=1/9
所以,销售量要比按原价销售时增加11.11%

4.甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/

设甲商品原单价为X元,那么乙为100-X
(1-10%)X+(1+5%)(100-X)=100(1+2%)
结果X=20元 甲
100-20=80 乙

5.甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间的人数。

设乙车间有X人,根据总人数相等,列出方程:
X+4/5X-30=X-10+3/4(X-10)
X=250
所以甲车间人数为250*4/5-30=170.
说明:
等式左边是调前的,等式右边是调后的

6.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)

设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288

7.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X

180*2=60[X-(30-X)]

X=18

即甲车的速度是18米/秒,乙车的速度是:12米/秒

8.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]

X=2。4
即停电了2。4小时。

9.某工厂今年共生产某种机器2300台,与去年相比,上半年增加25%,下半年减少15%,问今年下半年生产了多少台?
解:设下半年X生产台,则上半年生产[2300-X]台。

根据题意得:【1-15%】X+【1+25%】【2300-X】=2300
解之得:931
答:下半年生产931台。
10.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?]
设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288m

11.跑得快的马每天走240里,跑得慢的马每天走150里。慢马先走12天,快马几天可以追上慢马?
慢马每天走150里,快马每天走240里,慢马先走十二天也就说明慢马与快马出发前的距离为150×12=1800里,然后快马出发,快马每天走240里,但是当快马追赶慢马的时候,慢马也在行走所以用快马的速度减去慢马的速度240-150=90里,这就是快马一天的追赶速度,快马与慢马之间相差1800里,而快马一天追赶90里,所以1800÷90=20天就是慢马追上快马的天数

12.已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱有多少个产品。

【解】设每箱有x个产品

5台A型机器装:8x+4
7台B型机器装:11x+1

因为(8x+4)/5=(11x+1)/7+1

所以:x=12

所以每箱有12个产品

13.父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?

设总长是单位“1”,则父亲的速度是:1/30,儿子的速度是:1/20
设追上的时间是X
父亲早走5分即走了:1/30*5=1/6
X[1/20-1/30]=1/6
X=10
即儿子追上的时间是:10分

14.要加工200个零件。甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件?
解:设乙每小时加工(x-2)个,则甲每小时加工x个 。

根据工作效率和乘时间等一工作总量:

[(X-2)+X]*4+5X=200
[2X-2]*4+5X=200
8X-8+5X=200
13X=200+8
13X=208
X=208/13
X=16 …… 甲

16-2=14 (个)…… 乙

答:则甲每小时加工16个,乙加工14个 。

15.一大桥总长1000米,一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上时间为40秒,求火车速度和长度.
1分钟=60秒
设火车长度为x米,则根据题意可以得到
火车的速度为(1000+x)/60
因此[(1000+x)/60]*40=1000-2x
解得x=125
(1000+x)/60=(1000+125)/60=1125/60=18.75
所以火车速度为18.75米每秒,长度为125米

16.某车间每个工人能生产12个螺栓或18个螺母,每个螺栓要有两个螺母配套,现有共人28人,怎样分配工人数,才能使每天产量刚好配套?

解: 设分配x人去生产螺栓,则(28-x)人生产螺母
因为每个螺栓要有两个螺母配套,所以螺栓数的二倍等于螺母数

2×12x=18(28-x)
解得 x=12 所以28-x=28-12=16
即应分配12人生产螺栓,16人生产螺母

17.在若干个小方格中放糖,第1格1粒,第2格2粒,第3格4粒,第4格8粒……如此类推,从几格开始的连续三个中共有448粒?

由已知,糖相当于一个公比为2的等比数列An,并且有An=2^(N-1)
要求从几格开始的连续三个中共有448粒,设这一格糖数为An,由等比数列求和公式
[An(1-2^3)]/(1-2)=448,解得An=64=2^(N-1),得N=7
故从第7格开始的连续三个中共有448粒

18.要加工200个零件。甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务。已知甲每小时比乙多加工2个零件,求甲、乙每小时各加工多少个零件?

解:设乙每小时加工(x-2)个,则甲每小时加工x个 。

根据工作效率和乘时间等一工作总量:

[(X-2)+X]*4+5X=200
[2X-2]*4+5X=200
8X-8+5X=200
13X=200+8
13X=208
X=208/13
X=16 …… 甲

16-2=14 (个)…… 乙

答:则甲每小时加工16个,乙加工14个 。

19.有30位游客,其中10人既不懂汉语又不懂英语,懂英语得比懂汉语的3倍多3人,问懂英语的而不懂汉语的有几人?

设懂汉语的X人,则英语的为3X+3人
懂英语的,加懂汉语的肯定大于等于30-10
3X+3+X >= 30-10 (大于等于)
懂英语的肯定不超过30-10,即小于等于
3X+3 <= 30-10
17/4 <= X <=17/3
得X=5人 (X必须得是整数)
则3X+3=18人
即懂英又懂汉的则为 18+5-20=3人

20.商店出售两套衣服,每套售价135元,按成本算,其中一套盈利25%,一套亏25%,两套合计盈还是亏

商店出售两套衣服,每套售价135元,按成本算,其中一套盈利25%,一套亏25%,两套合计盈还是亏

设第一套的成本是X
X*[1+25%]=135
X=108

盈利:135-108=27元

设第二套的成本是Y

Y[1-25%]=135
Y=180

亏损:180-135=45元

所以,总的是亏了,亏:45-27=18元

21.一种饮用水的圆柱形水桶的内直径为25厘米,内壁高为35厘米,有一种内径为6厘米,内壁高为10厘米的玻璃杯,若把一桶饮用水分盛于这种玻璃杯,需要几个玻璃杯?

一种饮用水的圆柱形水桶的内直径为25厘米,内壁高为35厘米,有一种内径为6厘米,内壁高为10厘米的玻璃杯,若把一桶饮用水分盛于这种玻璃杯,需要几个玻璃杯?
设:需要X只玻璃杯
3*3*3.14*10*X = 5*5*3.14*35
X = 5*5*35/3*3*10
X = 9.7
答:需要10只玻璃杯

22.请两名工人制作广告牌,一只师傅单独做需4天完成,徒弟单独做需6天完成,现在徒弟先做1天,再两人合作,完成后共的报酬450元,如果按各人完成工作量计算报酬,那么该如何分配?

设总工作量是x,师傅的效率是x/4,徒弟的效率是x/6,总效率是5x/12,徒弟一天干了x/6剩下5x/6,那么他们共同完成的时间是5x/6除以5x/12得2天,说明总共用了3 天每天是150元师傅和徒弟的效率比试3:2那么共同2天的钱应该3:2分师傅得得钱是180元,徒弟的钱是120+150=270元

23.某食堂第二季度一共节约煤3700kg,其中五月份比四月份多节约20%,六月份比五月份多节约25%,该食堂六月份节约煤多少千克?

解:设四月份节约x千克。
x+(1+20%)x+(1+20%)x+25%*(1+20%)x=3700
x+1.2x+1.2x+0.25*1.2x=3700
3.7x=3700
x=1000
6月份=四月份*(1+20%)(1+25%)
那么就等于:
1000*(1+20%)*(1+25%)=3700(千克)
经检验,符合题意。
答:该食堂六月份节约煤3700千克。

24.父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?

父子二人在同一工厂工作,父亲从家走到工厂要用30分钟,儿子走这段路只需20分钟,父亲比儿子早5分钟动身,问过多少分钟而字能追上父亲?

设总长是单位“1”,则父亲的速度是:1/30,儿子的速度是:1/20
设追上的时间是X
父亲早走5分即走了:1/30*5=1/6
X[1/20-1/30]=1/6
X=10
即儿子追上的时间是:10分

25.一支队伍长450m,以90/分的速度前进,一人从排头到排尾取东西,立即返回,他的速度是队伍的2倍,此人往返共用多长时间?

90/分 是每分钟90米吗?下面就是以90米每分的速度计算的 90米/分=1.5米/秒
从排头到排尾的时间为t,
1.5t+2X1.5t=450 t=100秒
在从排尾到排头的时间为t1
1.5t+450=2 X 1.5t t=300秒
所以总共需要400秒

26.上周,妈妈在超市用36元买了若干盒牛奶。今天,她又来到这家超市,发现上次买的牛奶每盒让利0.3元销售。于是妈妈便又花了36元买了这种牛奶,结果发现比原来多买4盒。原来这种牛奶的销售价是多少元?

解 设原价为X元,则现价为(X-0.3)元
36除X=36除(X-0.3)-4
这样解麻烦死了,一般楼上的解不出来才让你解
我的方法:解 设原价为X元,则现价为(X-0.3)元
36/X乘0.3=4乘(X-0.3)
10.8=4X的平方-1.2X
2.7=X(X-0.3)
X=1.8

27.甲,乙两人在一条长400米的环形跑道上跑步,甲的速度是360米/分,乙的速度是240米/分.
(1)两人同时同地同向跑,问第一次相遇时,两人一共跑了几圈?
(2)两人同时同地同向跑,问几秒后两人第一次相遇时?

1、设:两人x分钟后相遇
(360-240)x=400
120x=400
x=400/120
x=10/3
两人一共跑了(360+240)*10/3/400=5圈

2、
应该是:“两人同时同地反向跑”吧

设:两人x分钟后相遇
(360+240)x=400
600x=400
x=400/600
x=2/3
2/3分钟=40秒

28.甲、乙两列火车相向而行,甲列车每小时行驶60千米,车长150米;乙列车每小时行驶75千米,车长120米。两车从车头相遇到车尾相离需多少时间?

可以假定甲列车不动,则乙列车相对甲列车的速度就为60+75=135千米/小时;两车从车头相遇到车尾相离一共走了150+120=270米=0.27千米
则所求时间t=0.27/135=0.002小时

29.高速公路上,一两长4米速度为110千米/小时的轿车准备超越一辆12米,速度为100千米/小时的卡车,则轿车从开始追悼卡车,需要花费的时间是多少秒?(精确到1秒)

设需要t秒,设那段时间小车行走的距离为s1=30.56t(110km/h=30.56m/s) 卡车 s2=27.78t(100km/h=27.78m/s) 而小车要超过卡车需要比卡车多走12+4*2=20米。即s1=s2+20代入后得t=7.2秒。

30.汽车以每小时72千米的速度在公路上行驶,开向寂静的山谷,驾驶员按一声喇叭,4秒钟后听到回声,这时汽车离山谷多远?(声音的传播速度为每秒340米)

=(340+20)*4/2-20*4=640(米)

式中20是汽车的速度 20m/s=72km/h

声波的速度为340m/s
车速为72km/h=20m/s
声波4秒走340*4=1360m
车4秒走 20*4=80m
设听到声音时汽车距山谷x米
则2x=1360-80
x=640

31.一次数学测验,试卷由25道选择题组成,评分标准规定:选对一道得4分,不选或错选扣一道一分,小蓝最后得了85分,问他答对了多少到题?

设答对了x题
4x-(25-x)=85
5x=110
x=22
答对了22题

32.在一个底面直径5cm、高18cm的圆柱形瓶内装满水。再将瓶内的水倒入一个底面直径6cm、高10cm的圆柱形玻璃瓶内装满水,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。

1.解:在一个底面直径5cm、高18cm的圆柱形瓶内装满水,水的容积为:V1=18*π (5/2)^2=(225/2)π=112.5π (注:^2是平方的意思,这是电脑上面的写法)
一个底面直径6cm、高10cm的圆柱形玻璃瓶,能装下的水的容积是:V2=10*π(6/2)^2=90π;
显然V1>V2,所以不能完全装下,第一个圆柱形瓶内还剩22.5π的水;
设第一个瓶内水面还高Xcm,建立方程如下:
X*π(5/2)^2=22.5π
解得X=3.6
所以第一个瓶内水面还有3.6cm的高度

33.某班有45人,会下象棋的人数是会下围棋的3.5倍,2种都会或都不会的都是5人,求只会下围棋的人数。

解:设只会下围棋的人有X个。
根据题意有如下方程:
(45-5-5-X)+5=3.5(X+5)
40-X=3.5X+17.5
X=5
所以只会下围棋的人有5个
答:只会下围棋的人有5个

34.一份试卷共有25道题,每道题都给出了4个答案,每道题选对得4分,不选或选错扣1分,甲同学说他得了71分,乙同学说他得了62分,丙同学说他得了95分,你认为哪个同学说得对?请说明理由。
丙同学说得对,理由如下:

解:设某同学得了N分,选对了X题,那么不选或选错的就是25-X;
那么得分N=4X-1*(25-X)=5X-25=5(X-5)
所以显然,不管选对了多少题,那么得分永远是5的倍数;
所以3个同学中,只有丙同学说得对。

35.某水果批发市场香蕉的价格如下
购买香蕉数 不超过20kg 20kg以上但不超过40kg 40kg以上
每千克价格 6RMB 5RMB 4RMB
张强两次购买香蕉50kg(第二次多于第一次),共付出264元,请问张强第一次,第二次分别买香蕉多少千克?
设买香蕉数分别为 x 和 y
则有方程
6x+5y=264
x + y=50
得x= 14 y=36

平均是264/50大于5元。所以只能是单价6和5或者6和4的组合。两种方程解出来。结果一看就知

我先写这么多,希望楼主采纳,我还会快快更新的。

④ 七年级数学问题

解:由题可知,
小王往东行驶了32KM,又调头回去,也就是往西行驶,然后他行驶了一半的路程,
也就是32KM×2分之1=16(KM)
所以小王现在在火车站的东边16KM处。
而该汽车100KM耗油15L,
小王一共行驶了32+16=48(KM)所以应该是48×100分之15=7.2(L)所以小王的车里还有70-7.2=62.8(L)汽油

⑤ 七年级数学练习题(附答案)

七年级数学参考答案及评分标准
一、CDABB DBCCA CD

1、垂线段最短;2、60°;3、(3,-4);4、5;5、减去2、加上3;6直角三角形;
7、250°;8、75°;9、如果两条直线都与同一条直线平行,那么这两条直线平行;
10、左,5、上,2(或上,2、左5)
三、
1、因为∠1=∠2所以AB‖CD所以∠3+∠4=180所以∠4=72°
2、因为∠A+∠B+∠ACB=180°
所以∠A=180°-67°-74°=39°
所以∠BDF=∠A+∠AED=39°+48°=87°
说明:以上两题要求学生写明过程,运用公理或定理要表现出来,如第2题中
“因为∠A+∠B+∠ACB=180°所以∠A=180°-67°-74°=39°”也可直接写成“∠A=180°-∠B -∠ACB=39°”,不要求注明理由。不能表现出运用公理或定理且计算正确给3分。
3、略(写对一个给点1分)
四、略
说明:第1小题中过程与理由必须统一1、2两题每步3分(第1小题中过程与理由必须统一);第3小题过程要求同第三大题1、2,但要注明理由。
五、略
说明:画出图形即可,不要求写出结论
六、
1、(五,6)或(八,5) (只需写出其中一个) 4分
2、答案有多种,例 (四,6)→(二,5)→(三,3)→(四,5)→(六,4)等

⑥ 求25道七年级上册数学应用题 带答案的

1.某商店有一套运动服,按标价的8折出售仍可获利20元,已知这套运动服的成本价为100元,问这套运动服的标价是多少元?考点:一元一次方程的应用.专题:销售问题.分析:设这套运动服的标价是x元.
此题中的等量关系:按标价的8折出售仍可获利20元,即标价的8折-成本价=20元.解答:解:设这套运动服的标价是x元.
根据题意得:0.8x-100=20,
解得:x=150.
答:这套运动服的标价为150元.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.

2.从甲地到乙地的路有一段平路与一段上坡路.如果骑自行车保持平路每小时行15km,上坡路每小时行10km,下坡路每小时行18km,那么从甲地到乙地需29min,从乙地到甲地需25min.从甲地到乙地的路程是多少?考点:一元一次方程的应用.专题:行程问题.分析:本题首先依据题意得出等量关系即甲地到乙地的路程是不变的,进而列出方程为10( 2960-x)=18( 2560-x),从而解出方程并作答.解答:解:设平路所用时间为x小时,
29分= 2960小时,25分= 2560,
则依据题意得:10( 2960-x)=18( 2560-x),
解得:x= 13,
则甲地到乙地的路程是15× 13+10×( 2960-13)=6.5km,
答:从甲地到乙地的路程是6.5km.点评:本题主要考查一元一次方程的应用,解题的关键是熟练掌握列方程解应用题的一般步骤,即①根据题意找出等量关系②列出方程③解出方程

3.2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?考点:一元一次方程的应用.专题:应用题.分析:等量关系为:居民家庭用水=生产运营用水的3倍+0.6.解答:解:设生产运营用水x亿立方米,则居民家庭用水(5.8-x)亿立方米.
依题意,得5.8-x=3x+0.6,
解得:x=1.3,
∴5.8-x=5.8-1.3=4.5.
答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.点评:解题关键是弄清题意,找到合适的等量关系.本题也可根据“生产运营用水和居民家庭用水的总和为5.8亿立方米”来列等量关系.

4.小华将勤工俭学挣得的100元钱按一年定期存入银行,到期后取出50元来购买学习用品,剩下的50元和应得的利息又全部按一年定期存入银行,若存款的年利率又下调到原来的一半,这样到期后可得本息和63元,求第一次存款的年利率(不计利息税).考点:一元一次方程的应用.专题:应用题;增长率问题.分析:要求存款的年利率先设出未知数,再通过等量关系就是两年的本金加上利息减去够买学习用品的钱等于最后的本息之和.解答:解:设第一次存款的年利率为x,则第二次存款的年利率为 x2,第一次的本息和为(100+100×x)元.
由题意,得(100+100×x-50)× x2+50+100x=63,
解得x=0.1或x= -135(舍去).
答:第一次存款的年利率为10%.点评:解题的关键要理解题的大意,特别是第二次到期的本息为50+100x,很多同学都会忽略100x,根据题目给出的条件

5.2008年北京奥运会,中国运动员获得金、银、铜牌共100枚,金牌数位列世界第一.其中金牌比银牌与铜牌之和多2枚,银牌比铜牌少7枚.问金、银、铜牌各多少枚?考点:一元一次方程的应用.分析:可设银牌数为x枚,则铜牌为(x+7)枚.金牌数为x+(x+7)+2,根据获得金、银、铜牌共100枚列出方程求解即可.解答:解:设银牌数为x枚,则铜牌为(x+7)枚.金牌数为x+(x+7)+2,(1分)
依题意得x+(x+7)+x+(x+7)+2=100(3分)
解得x=21,(5分)
所以x+7=21+7=28;21+28+2=51
答:金、银、铜牌分别为51枚、21枚、28枚.(6分)点评:考查一元一次方程的应用;得到各个奖牌数的等量关系是解决本题的易错点.

6.天骄超市和金帝超市以同样的价格出售同样的商品,为了吸引顾客,两家超市都实行会员卡制度,在天骄超市累计购买500元商品后,发给天骄会员卡,再购买的商品按原价85%收费;在金帝超市购买300元的商品后,发给金帝会员卡,再购买的商品按原价90%收费,讨论顾客怎样选择商店购物能获得更大优惠?考点:一元一次方程的应用;一元一次不等式的应用.分析:根据题意可以分别对两家超市列出花费和购物金额x的关系式,然后比较两者大小,即可得出结论.解答:解:设顾客所花购物款为x元.
①当0≤x≤300时,顾客在两家超市购物都一样.
②当300<x≤500时,顾客在金帝超市购物能得更大优惠.
当x>500时,假设顾客在金帝超市购物能得更大优惠则300+0.9(x-300)<500+0.85(x-500)解得x<900.
③所以当500<x<900时,顾客在金帝超市购物能得更大优惠.同样可得:
④当x=900时,顾客在两家超市购物都一样.
⑤当x>900时,顾客在天骄超市购物能得更大优惠.点评:本题主要考查对于一元一次方程的应用以及一元一次不等式的掌握.

7.小王去新华书店买书,书店规定花20元办优惠卡后购书可享受8.5折优惠.小王办卡后购买了一些书,购书优惠后的价格加上办卡费用比这些书的原价还少了10元钱,问小王购买这些书的原价是多少?考点:一元一次方程的应用.专题:应用题;经济问题.分析:办卡费用加上打折后的书款应该等于书的原价加上节省下来的10元,由此数量关系可列方程进行解答.解答:解:设书的原价为x元,
由题可得:20+0.85x=x-10,
解得:x=200.
答:小王购买这些书的原价是200元.点评:解题关键是要读懂题目的意思,把实际问题转化成数学问题,然后根据题目给出的条件,找出合适的等量关系,列出方程组,再求解

8.A、B两城铁路长240千米,为使行驶时间减少20分,需要提速10千米/时,但在现有条件下安全行驶限速100千米/时,问能否实现提速目标.考点:一元一次方程的应用.专题:行程问题.分析:在提速前和提速后,行走的路程并没有发生变化,由此可列方程解答.解答:解法一
解:设提速前速度为每小时x千米,则需时间为 240x小时,
依题意得:(x+10)( 240x- 2060)=240,
解得:x1=-90(舍去),x2=80,
因为80<100,所以能实现提速目标.
解法二
解:设提提速后行驶为x千米/时,根据题意,得 240x-10- 240x= 2060去分母.
整理得x2-10x-7200=0.
解之得:x1=90,x2=-80
经检验,x1=90,x2=-80都是原方程的根.
但速度为负数不合题意,所以只取x=90.
由于x=90<100.所以能实现提速目标.

9.水源透支令人担忧,节约用水迫在眉睫,针对居民用水浪费现象,某城市制定了居民每月每户用水标准8m3,超标部分加价收费,某户居民连续两个月的用水和水费分别是12m3,22元;10m3,16.2元,试求该市居民标准内用水每立方米收费是多少?超标部分每立方米收费是多少?考点:一元一次方程的应用.专题:应用题;经济问题.分析:标准内用水收费加上超标部分收费就是本月总费用,由此可列方程组进行求解.解答:解:设标准内用水每立方米收费是x元,超标部分每立方米收费是y元.
由题可得:8x+(12-8)y=22;8x+(10-8)y=16.2,
解得:x=1.3,y=2.9.
故该城市居民标准内用水每立方米收费1.3元,超标部分每立方米收费2.9元.

10.据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?考点:一元一次方程的应用.专题:应用题;工程问题.分析:本题的等量关系为:暂不缺水城市+一般缺水城市+严重缺水城市=664,据此列出方程,解可得答案.解答:解:设严重缺水城市有x座,
依题意得:(4x-50)+x+2x=664.
解得:x=102.
答:严重缺水城市有102座.

11.目前广州市小学和初中在任校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人(数据来源:2005学年度广州市教育统计手册).
(1)求目前广州市在校的小学生人数和初中生人数;
(2)假设今年小学生每人需交杂费500元,初中生每人需交杂费1000元,而这些费用全部由广州市政府拨款解决,则广州市政府要为此拨款多少?考点:一元一次方程的应用.专题:工程问题.分析:(1)本题可设目前广州市在校的初中生人数为x万,因广州市小学和初中在任校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人,那么小学生人数为:(2x+14)万,所以可列方程x+2x+14=128,解方程即可;
(2)在(1)的基础上利用“广州市政府的拨款=小学生人数×500+中学生人数×1000”即可求出答案.解答:解:(1)设初中生人数为x万,那么小学生人数为(2x+14)万,
则x+2x+14=128
解得x=38
答:初中生人数为38万人,小学生人数为90万人.
(2)500×900 000+1000×380 000=830 000 000元,即8.3亿元.
答:广州市政府要为此拨款8.3亿元.

12.小明去文具店购买2B铅笔,店主说:“如果多买一些,给你打8折“,小明测算了一下.如果买50支,比按原价购买可以便宜6元,那么每支铅笔的原价是多少元?考点:一元一次方程的应用.专题:应用题;经济问题.分析:等量关系为:原价×50×(1-80%)=6.由此可列出方程.解答:解:设每支铅笔的原价为x元,
依题意得:50x(1-0.8)=6,
解得:x=0.6.
答:故每支铅笔的原价是0.6元.

13.初三某班的一个综合实验活动小组去A,B两个车站调查前年和去年“春运”期间的客流量情况,如图是调查后小明与其它两位同学进行交流的情景,根据他们的对话,请你分别求出A,B两个车站去年“春运”期间的客流量.
考点:一元一次方程的应用.专题:阅读型.分析:所增加的百分比乘以基数即为增加的实际人数,由此可列方程进行解答.解答:解:设A站前年“春运”期间的客流量为x,则B站为(20-x),
由题意知:0.2x+0.1(20-x)=22.5-20,
解得:x=5
∴A站去年客流量为:1.2×5=6(万人)
∴B站人数为:22.5-6=16.5(万人)
答:A站去年“春运”期间的客流量为6万人,B站为16.5万人.

14.阅读下面对话:
小红妈:“售货员,请帮我买些梨.”
售货员:“小红妈,您上次买的那种梨都卖完了,我们还没来得及进货,我建议这次您买些新进的苹果,价格比梨贵一点,不过苹果的营养价值更高.”
小红妈:“好,你们很讲信用,这次我照上次一样,也花30元钱.”
对照前后两次的电脑小票,小红妈发现:每千克苹果的价是梨的1.5倍,苹果的重量比梨轻2.5千克.
试根据上面对话和小红妈的发现,分别求出梨和苹果的单价.考点:一元一次方程的应用.专题:阅读型.分析:设每千克梨的价格是x元,则每千克苹果的价格是1.5x元.根据苹果的重量比梨轻2.5千克这个等量关系列方程求解.解答:解:设每千克梨的价格是x元,则每千克苹果的价格是1.5x元.
则有: 30x=301.5x+2.5,
解得:x=4,
1.5x=6.
答:梨和苹果的单价分别为4元/千克和6元/千克.

15.我校“春之声”广播室小记者谭艳同学为了及时报道学校参加全市中学生篮球比赛情况,她从领队韦老师那里了解到校队共参加了16场比赛,积分28分.按规定赢一场得2分,输一场得1分.可是小谭忘记了输赢各多少场了,请你根据上面提供的信息分别求出输、赢各多少场?考点:一元一次方程的应用.专题:应用题;比赛问题.分析:球队赢球后得分加上输球得分应该等于总得分,即可列方程解应用题.解答:解:设球队赢了x场,则输了(16-x)场,
由题可得:2x+(16-x)×1=28
解得:x=12,
答:球队赢了12场,输了4场.

16.联想中学本学期前三周每周都组织初三年级学生进行一次体育活动,全年级400名学生每人每次都只参加球类或田径类中一个项目的活动.假设每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动.
(1)如果第一次与第二次参加球类活动的学生人数相等,那么第一次参加球类活动的学生应有多少名?
(2)如果第三次参加球类活动的学生不少于200名,那么第一次参加球类活动的学生最少有多少名?考点:一元一次方程的应用.专题:应用题.分析:(1)设第一次参加球类活动的学生为x名,则第一次参加田径类活动的学生为(400-x)名.根据每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动表示出第二次参加球类运到的人数,再根据题意列方程求解.
(2)在第二次参加球类运到的基础上,根据每次参加球类活动的学生中,下次将有20%改为参加田径类活动;同时每次参加田径类活动的学生中,下次将有30%改为参加球类活动表示出第三次参加球类运到的人数,根据题意列不等式求解.解答:解:(1)设第一次参加球类活动的学生为x名,则第一次参加田径类活动的学生为(400-x)名.
第二次参加球类活动的学生为x•(1-20%)+(400-x)•30%
由题意得:x=x•(1-20%)+(400-x)•30%
解之得:x=240
(2)∵第二次参加球类活动的学生为x•(1-20%)+(400-x)•30%= x2+120,
∴第三次参加球类活动的学生为:( x2+120)•(1-20%)+[400-( x2+120)]•30%= x4+180,
∴由 x4+180≥200得x≥80,
又当x=80时,第二次、第三次参加球类活动与田径类活动的人数均为整数.
答:(1)第一次参加球类活动的学生应有240名;(2)第一次参加球类活动的学生最少有80名.

17.学校综合实践活动小组的同学们乘车到天池山农科所进行社会调查,可供租用的车辆有两种:第一种可乘8人,第二种可乘4人.若只租用第一种车若干辆,则空4个座位;若只租用第二种车,则比租用第一种车多3辆,且刚好坐满.
(1)参加本次社会调查的学生共多少名?
(2)已知:第一种车租金为300元/天,第二种车租金为200元/天.要使每个同学都有座位,并且租车费最少,应该怎样租车.考点:一元一次方程的应用.专题:应用题.分析:(1)要注意关键语“只租用第一种车若干辆,则空4个座位;若只租用第二种车,则比租用第一种车多3辆,且刚好坐满”,根据两种坐法的不同来列出方程求解;
(2)要考虑到不同的租车方案,然后逐个比较,找出最佳方案.解答:解:(1)设参加本次社会调查的同学共x人,则4( x+48+3)=x,
解之得:x=28
答:参加本次社会调查的学生共28人.
(2)其租车方案为
①第一种车4辆,第二种车0辆;
②第一种车3辆,第二种车1辆;
③第一种车2辆,第二种车3辆;
④第一种车1辆,第二种车5辆;
⑤第一张车0辆,第二种车7辆.
比较后知:租第一种车3辆,第二种车1辆时费用最少,
其费用为1100元.

18.某小店老板从面包厂购进面包的价格是每个0.6元,按每个面包1.0元的价格出售,卖不完的以每个0.2元于当天返还厂家,在一个月(30天)里,小店有20天平均每天卖出面包80个,其余10天平均每天卖出面包50个,这样小店老板获纯利600元,如果小店老板每天从面包厂购进相同数量的面包,求这个数量是多少?考点:一元一次方程的应用.专题:经济问题.分析:由题意得,他进的包子数量应在50-80之间;等量关系为:(20×进货量+10×50)×每个的利润-(进货量-50)×10×每个赔的钱=600;据此列出方程解可得答案.解答:解:设这个数量是x个.
由题意得:(20x+500)×(1-0.6)-(x-50)×10×(0.6-0.2)=600,
解得:x=50.
故这个数量是50个.

19.小刚在商场发现他喜欢的随身听和书包单价之和是452元,并且随身听的单价比书包单价的4倍少8元.求小刚喜欢的随身听和书包的单价.考点:一元一次方程的应用.专题:应用题;经济问题.分析:本题的关键语“随身听和书包单价之和是452元,并且随身听的单价比书包单价的4倍少8元”,即随身听的单价=书包单价×4-8.依此等量关系列方程求解.解答:解:设随身听单价为x元,则书包的单价为(452-x)元,
列方程得:x=4(452-x)-8,
解得:x=360.
当x=360时,452-x=92.

20.(1)一种商品的进价是400元,标价为600元,打折销售时的利润率为5%,那么,此商品是按几折销售的?
(2)某化肥厂去年四月份生产化肥500吨,因管理不善,五月份的产量减少了10%.从六月起强化管理,产量逐月上升,七月份产量达到648吨.那么该厂六、七两月产量平均增长的百分率是多少?考点:一元一次方程的应用;一元二次方程的应用.专题:增长率问题;经济问题.分析:(1)设此商品按x折销售,根据商品进价和标价及利润间关系可得方程;
(2)设该厂六,七两月产量平均增长的百分率为x,根据产量的减少和增加可列方程求解.解答:解:(1)设此商品按x折销售.
600x=400(1+5%),
可求得x=0.7.
(2)设该厂六,七两月产量平均增长的百分率为x.
5月产量为500(1-10%)=450,则6月是450(1+x),7月为450(1+x)(1+x)=648.则:
(1+x)2= 648450=1.44,
1+x=1.2,
x=20%.

21.某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原售价的7折出售给一山区学校,结果每件盈利0.2元(盈利=售价-进货价).问该文具每件的进货价是多少元?考点:一元一次方程的应用.专题:销售问题.分析:等量关系为:售价的7折-进价=利润0.2,细化为:(进价+2)×7折-进价=利润0.2,依此等量关系列方程求解即可.解答:解:设该文具每件的进货价是x元,
依题意得:70%•(x+2)-x=0.2
解得:x=4
答:该文具每件的进货价为4元.
近年来,宜宾市教育技术装备水平迅速提高,特别是以计算机为核心的现代化装备取得了突破性发展,中小学每百人计算机拥有量在全省处于领先位置,全市中小学装备领先的总台数由1996年的1040台直线上升到2000年的11600台,若1997到2000年每年比上一年增加的计算机台数都相同,按此速度继续增加,到2003年宜宾市中小学装备计算机的总台数是多少?考点:一元一次方程的应用.专题:增长率问题.分析:应先根据96年的台数+4年一共增加的台数=2000年的台数,求得每年的增长量,进而让11600加3年增加的台数即为2003年宜宾市中小学装备计算机的总台数.解答:解:设每年增加的计算机台数为x台,
则:1040+(2000-1996)x=11600,
解得x=2640,
∴2003年宜宾市中小学装备计算机的总台数为:11600+(2003-2000)×2640=19520(台).
答:2003年宜宾市中小学装备计算机的总台数是19520台.

23.某企业生产一种产品,每件成本为400元,销售价为510元,本季度销售了m件,为进一步扩大市场,该企业决定在降低销售价的同时降低成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售将提高10%,要使销售利润(销售利润=销售价-成本价)保持不变,该产品每件的成本价应降低多少元?考点:一元一次方程的应用.专题:应用题;经济问题.分析:此题文字叙述量大,要审清题目,找到等量关系:销售利润(销售利润=销售价-成本价)保持不变,设该产品每件的成本价应降低x元,则每件产品销售价为510(1-4%)元,销售了(1+10%)m件,新销售利润为[510(1-4%)-(400-x)]×(1+10%)m元,原销售利润为(510-400)m元,列方程即可解得.解答:解:设该产品每件的成本价应降低x元,则根据题意得
[510(1-4%)-(400-x)]×m(1+10%)=m(510-400),
解这个方程得x=10.4.
答:该产品每件的成本价应降低10.4元.

24.为了鼓舞中国国奥队在2008年奥运会上取得好成绩,曙光体育器材厂赠送给中国国奥队一批足球.若足球队每人领一个则少6个球,每二人领一个则余6个球,问这批足球共有多少个?
某队员领到足球后十分高兴,就仔细研究起足球上的黑白块(如图),结果发现,黑块呈五边形,白块呈六边形,黑白相间在球体上,黑块共12块,问白块有多少块?考点:一元一次方程的应用.专题:应用题.分析:(1)根据题意可知本题中有两个不变的量,足球总数和总人数,要求的是足球数,所以第一问用总人数作为相等关系列方程即可;
(2)第二问可利用黑块与白块的数量比是3:5的关系列方程可求解.解答:解:(1)设有x个足球,
则有:x+6=2(x-6),
∴x=18;
所以这批足球共有18个;
(2)设白块有y块,
则3y=5×12,
∴y=20,
所以白块有20块.

25.3月12日是植树节,七年级170名学生参加义务植树活动,如果男生平均一天能挖树坑3个,女生平均一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女生各多少人?考点:一元一次方程的应用.专题:工程问题.分析:设该年级的男生有x人,那么女生有(170-x)人,所以男生平均一天能挖树坑3x个,女生女生平均一天能种树7(170-x)棵,然后根据每个树坑种上一棵树即可列出方程解决问题.解答:解:设该年级的男生有x人,那么女生有(170-x)人,
依题意得:3x=7(170-x),
解得:x=119,
170-x=51.
答:该年级的男生有119人,那么女生有51人.

望采纳谢谢。

⑦ 60道7年级数学题以及答案

http://..com/question/37733124.html?si=1

看看吧

⑧ 7年级数学题

去括号得3x-3=y+5
移项得3x-y=8
第二项应去分母:x+y=4
最终形式为3x-y=8①
x+y=4②
把②变形得x=4-y③
把③代入①得3(4-y)-y=8(自己解)
得数求出后,把得数代入③式里
第二题也一样

⑨ 七年级上册数学难题100题,要有答案的

1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?

2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?

3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).

4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.

5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?

6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.

7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?应交电费是多少元?

8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?

答案
1.解:设甲、乙一起做还需x小时才能完成工作.
根据题意,得 × +( + )x=1
解这个方程,得x=
=2小时12分
答:甲、乙一起做还需2小时12分才能完成工作.
2.解:设x年后,兄的年龄是弟的年龄的2倍,
则x年后兄的年龄是15+x,弟的年龄是9+x.
由题意,得2×(9+x)=15+x
18+2x=15+x,2x-x=15-18
∴x=-3
答:3年前兄的年龄是弟的年龄的2倍.
(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3年后具有相反意义的量)
3.解:设圆柱形水桶的高为x毫米,依题意,得
·( )2x=300×300×80
x≈229.3
答:圆柱形水桶的高约为229.3毫米.
4.解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,过完第一铁桥所需的时间为 分.
过完第二铁桥所需的时间为 分.
依题意,可列出方程
+ =
解方程x+50=2x-50
得x=100
∴2x-50=2×100-50=150
答:第一铁桥长100米,第二铁桥长150米.
5.解:设这种三色冰淇淋中咖啡色配料为2x克,
那么红色和白色配料分别为3x克和5x克.
根据题意,得2x+3x+5x=50
解这个方程,得x=5
于是2x=10,3x=15,5x=25
答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.
6.解:设这一天有x名工人加工甲种零件,
则这天加工甲种零件有5x个,乙种零件有4(16-x)个.
根据题意,得16×5x+24×4(16-x)=1440
解得x=6
答:这一天有6名工人加工甲种零件.
7.解:(1)由题意,得
0.4a+(84-a)×0.40×70%=30.72
解得a=60
(2)设九月份共用电x千瓦时,则
0.40×60+(x-60)×0.40×70%=0.36x
解得x=90
所以0.36×90=32.40(元)
答:九月份共用电90千瓦时,应交电费32.40元.
8.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,
设购A种电视机x台,则B种电视机y台.
(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程
1500x+2100(50-x)=90000
即5x+7(50-x)=300
2x=50
x=25
50-x=25
②当选购A,C两种电视机时,C种电视机购(50-x)台,
可得方程1500x+2500(50-x)=90000
3x+5(50-x)=1800
x=35
50-x=15
③当购B,C两种电视机时,C种电视机为(50-y)台.
可得方程2100y+2500(50-y)=90000
21y+25(50-y)=900,4y=350,不合题意
由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.
(2)若选择(1)中的方案①,可获利
150×25+250×15=8750(元)
若选择(1)中的方案②,可获利
150×35+250×15=9000(元)
9000>8750 故为了获利最多,选择第二种方案.

⑩ 七年级数学题

(1)60km/h=1km/分,(15*3)/1=45分钟,45>42,不能到达
(2)小汽车送四人到考场的同时,剩下4人步版行,5km/h=1/12km/分,则权(15*3)/(1+1/12)=540/13,而42=556/13>540/13,则此方法能够在截止进考场的时刻前到达考场

热点内容
药物化学习题 发布:2025-05-14 04:23:45 浏览:642
教育培训章程 发布:2025-05-14 04:13:05 浏览:634
教师资格证考试真题库 发布:2025-05-14 03:21:37 浏览:461
小学语文拍手歌 发布:2025-05-14 02:17:21 浏览:531
魔兽有哪些 发布:2025-05-14 01:45:05 浏览:911
微生物标本采集原则 发布:2025-05-14 01:41:26 浏览:769
泰益欣生物科技 发布:2025-05-13 23:45:47 浏览:206
好未来语文 发布:2025-05-13 23:30:47 浏览:798
胃有哪些 发布:2025-05-13 21:28:01 浏览:31
教学用琴 发布:2025-05-12 15:51:55 浏览:241