当前位置:首页 » 语数英语 » 初二下册数学知识点

初二下册数学知识点

发布时间: 2020-11-20 08:51:28

❶ 八年级下册数学的知识点有哪些

第十六章 分式
1. 分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子 叫做分式。
分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零
2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
3.分式的通分和约分:关键先是分解因式
4.分式的运算:
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则: 分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减
混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。
5. 任何一个不等于零的数的零次幂等于1, 即 ;当n为正整数时,
6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数)
(1)同底数的幂的乘法: ;
(2)幂的乘方: ;
(3)积的乘方: ;
(4)同底数的幂的除法: ( a≠0);
(5)商的乘方: ();(b≠0)
7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
解分式方程的步骤 :
(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.
增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答.
应用题有几种类型;基本公式是什么?基本上有五种: (1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题. (2)数字问题 在数字问题中要掌握十进制数的表示法. (3)工程问题 基本公式:工作量=工时×工效. (4)顺水逆水问题 v顺水=v静水+v水. v逆水=v静水-v水.
8.科学记数法:把一个数表示成 的形式(其中 ,n是整数)的记数方法叫做科学记数法.
用科学记数法表示绝对值大于10的n位整数时,其中10的指数是
用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)


第十七章 反比例函数
1.定义:
2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和 y=-x。对称中心是:原点
3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;
当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
5.反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换。

1、反比例函数的概念
一般地,函数 (k是常数,k 0)叫做反比例函数。反比例函数的解析式也可以写成 的形式。自变量x的取值范围是x 0的一切实数,函数的取值范围也是一切非零实数。
2、反比例函数的图像
反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x 0,函数y 0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3、反比例函数的性质
反比例函数

k的符号 k>0 k<0
图像
y

O x

y

O x

性质 ①x的取值范围是x 0,
y的取值范围是y 0;
②当k>0时,函数图像的两个分支分别
在第一、三象限。在每个象限内,y
随x 的增大而减小。 ①x的取值范围是x 0,
y的取值范围是y 0;
②当k<0时,函数图像的两个分支分别
在第二、四象限。在每个象限内,y
随x 的增大而增大。

4、反比例函数解析式的确定
确定及诶是的方法仍是待定系数法。由于在反比例函数 中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。
5、反比例函数中反比例系数的几何意义
如下图,过反比例函数 图像上任一点P作x轴、y轴的垂线PM,PN,则所得的矩形PMON的面积S=PM PN= 。


第十七章 反比例函数
1.定义:形如y= (k为常数,k≠0)的函数称为反比例函数。其他形式xy=k

2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和 y=-x。对称中心是:原点
3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;
当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。

❷ 初二数学下册人教版知识点总结

全等三角形(很简单的,找到对应边或角就行了)函数绝对会考的,放点重心。轴对称这可以看一看,因为大多数出画图题和填空题。实数应该出在填空中,但要看清题目,通常出根号XXX,然后就说要求出什么的,这里要看清楚,先化简根号XXX再乘除加减。重点就在函数和整式的乘除与因式分解(要看熟公式,遇到因式分解时,先看,通常出得好BT的,一群不相干的多项式,但要先提出公因式,再看看属于哪个公式完全平方或平方差,因式分解就是这些公式反过来的说法。不知道谁发明的,一开始学时,我都吐血了。但看题时不要心浮气躁。)有时去看看书本中的“阅读与思考”(不知道看目录)我觉得有点用。

❸ 八年级下册数学考试有那些重要的知识点

一次函数比较重要,一般会结合初三所学的抛物线或是几何一起考;代版数方程部分要求一般,但权要打好基础,保证拿分,以后求函数解析式等等会融入考察;四边形部分是重点,中考会有一道证明题,虽然基本考相似,但是以四边形为背景的;另外向量和概率是基础,中考一般一道填空题

❹ 初二数学知识点归纳 谢谢!

初二数学知识点
第一章 一次函数
1 函数的定义,函数的定义域、值域、表达式,函数的图像
2 一次函数和正比例函数,包括他们的表达式、增减性、图像
3 从函数的观点看方程、方程组和不等式
第二章 数据的描述
1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点
条形图特点:
(1)能够显示出每组中的具体数据;
(2)易于比较数据间的差别
扇形图的特点:
(1)用扇形的面积来表示部分在总体中所占的百分比;
(2)易于显示每组数据相对与总数的大小
折线图的特点;
易于显示数据的变化趋势
直方图的特点:
(1)能够显示各组频数分布的情况;
(2)易于显示各组之间频数的差别
2 会用各种统计图表示出一些实际的问题
第三章 全等三角形
1 全等三角形的性质:
全等三角形的对应边、对应角相等
2 全等三角形的判定
边边边、边角边、角边角、角角边、直角三角形的HL定理
3 角平分线的性质
角平分线上的点到角的两边的距离相等;
到角的两边距离相等的点在角的平分线上。
第四章 轴对称
1 轴对称图形和关于直线对称的两个图形
2 轴对称的性质
轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;
线段垂直平分线上的点到线段两个端点的距离相等;
到线段两个端点距离相等的点在这条线段的垂直平分线上
3 用坐标表示轴对称
点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).
4 等腰三角形
等腰三角形的两个底角相等;(等边对等角)
等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)
一个三角形的两个相等的角所对的边也相等。(等角对等边)
5 等边三角形的性质和判定
等边三角形的三个内角都相等,都等于60度;
三个角都相等的三角形是等边三角形;
有一个角是60度的等腰三角形是等边三角形;
推论:
直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。
在三角形中,大角对大边,大边对大角。

第五章 整式
1 整式定义、同类项及其合并
2 整式的加减
3 整式的乘法
(1)同底数幂的乘法:
(2)幂的乘方
(3)积的乘方
(4)整式的乘法
4 乘法公式
(1)平方差公式
(2)完全平方公式
5 整式的除法
(1)同底数幂的除法
(2)整式的除法
6 因式分解
(1)提共因式法
(2)公式法
(3)十字相乘法

初二下册知识点
第一章 分式
1 分式及其基本性质
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2 分式的运算
(1)分式的乘除
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2) 分式的加减
加减法法则:同分母分式相加减,分母不变,把分子相加减;
异分母分式相加减,先通分,变为同分母的分式,再加减
3 整数指数幂的加减乘除法
4 分式方程及其解法
第二章 反比例函数
1 反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2 反比例函数在实际问题中的应用
第三章 勾股定理
1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章 四边形
1 平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2 特殊的平行四边形:矩形、菱形、正方形
(1) 矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定: 有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
推论: 直角三角形斜边的中线等于斜边的一半。
(2) 菱形
性质:菱形的四条边都相等;
菱形的对角线互相垂直,并且每一条对角线平分一组对角;
菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形。
(3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3 梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等;
同一个底上的两个角相等的梯形是等腰梯形。
第五章 数据的分析
加权平均数、中位数、众数、极差、方差

❺ 八年级下册数学学习重点是什么

我也是八年级的学生,现在正在预习当中,觉得函数是最难的,接下来是勾股版定理,二次根式相对简单些,平权行四边形我还没预习到,感觉比二次根式难,最简单的永远是最后一章啦。
如果你要预习的话,建议都预习一下,因为如果只专注于一个知识点,到时候就算好开始比别人学得好,接下来就会被别人反超的,抓紧时间,加油!

❻ 初二数学下册知识点

第一章 一次函数
1 函数的定义,函数的定义域、值域、表达式,函数的图像
2 一次函数和正比例函数,包括他们的表达式、增减性、图像
3 从函数的观点看方程、方程组和不等式
第二章 数据的描述
1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点
条形图特点:
(1)能够显示出每组中的具体数据;
(2)易于比较数据间的差别
扇形图的特点:
(1)用扇形的面积来表示部分在总体中所占的百分比;
(2)易于显示每组数据相对与总数的大小
折线图的特点;
易于显示数据的变化趋势
直方图的特点:
(1)能够显示各组频数分布的情况;
(2)易于显示各组之间频数的差别
2 会用各种统计图表示出一些实际的问题
第三章 全等三角形
1 全等三角形的性质:
全等三角形的对应边、对应角相等
2 全等三角形的判定
边边边、边角边、角边角、角角边、直角三角形的HL定理
3 角平分线的性质
角平分线上的点到角的两边的距离相等;
到角的两边距离相等的点在角的平分线上。
第四章 轴对称
1 轴对称图形和关于直线对称的两个图形
2 轴对称的性质
轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;
线段垂直平分线上的点到线段两个端点的距离相等;
到线段两个端点距离相等的点在这条线段的垂直平分线上
3 用坐标表示轴对称
点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).
4 等腰三角形
等腰三角形的两个底角相等;(等边对等角)
等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)
一个三角形的两个相等的角所对的边也相等。(等角对等边)
5 等边三角形的性质和判定
等边三角形的三个内角都相等,都等于60度;
三个角都相等的三角形是等边三角形;
有一个角是60度的等腰三角形是等边三角形;
推论:
直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。
在三角形中,大角对大边,大边对大角。

第五章 整式
1 整式定义、同类项及其合并
2 整式的加减
3 整式的乘法
(1)同底数幂的乘法:
(2)幂的乘方
(3)积的乘方
(4)整式的乘法
4 乘法公式
(1)平方差公式
(2)完全平方公式
5 整式的除法
(1)同底数幂的除法
(2)整式的除法
6 因式分解
(1)提共因式法
(2)公式法
(3)十字相乘法

初二下册知识点
第一章 分式
1 分式及其基本性质
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2 分式的运算
(1)分式的乘除
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2) 分式的加减
加减法法则:同分母分式相加减,分母不变,把分子相加减;
异分母分式相加减,先通分,变为同分母的分式,再加减
3 整数指数幂的加减乘除法
4 分式方程及其解法
第二章 反比例函数
1 反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2 反比例函数在实际问题中的应用
第三章 勾股定理
1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章 四边形
1 平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2 特殊的平行四边形:矩形、菱形、正方形
(1) 矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定: 有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
推论: 直角三角形斜边的中线等于斜边的一半。
(2) 菱形
性质:菱形的四条边都相等;
菱形的对角线互相垂直,并且每一条对角线平分一组对角;
菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形。
(3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3 梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等;
同一个底上的两个角相等的梯形是等腰梯形。
第五章 数据的分析
加权平均数、中位数、众数、极差、方差

❼ 八年级下册数学知识点归纳

第十六章 分式 1. 分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子BA叫做分式。 分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。 (0≠C) 3.分式的通分和约分:关键先是分解因式 4.分式的运算: 分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 分式乘方法则: 分式乘方要把分子、分母分别乘方。,ababacadbcadbccccbdbdbdbd±±±=±=±= 分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减 混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。 5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=aa;当n为正整数时,nnaa1=− ()0≠a 6.正整数指数幂运算性质正整数指数幂运算性质正整数指数幂运算性质正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数) (1)同底数的幂的乘法:nmnmaaa+=⋅; (2)幂的乘方:mnnmaa=)(; (3)积的乘方:nnnbaab=)(; (4)同底数的幂的除法:nmnmaaa−=÷( a≠0); (5)商的乘方:nnnbaba=)(();(b≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。 解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。 解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。 解分式方程的步骤 : (1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根. 增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。 分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。 列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答. 应用题有几种类型;基本公式是什么?基本上有五种: (1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题. (2)数字问题 在数字问题中要掌握十进制数的表示法. (3)工程问题 基本公式:工作量=工时×工效. (4)顺水逆水问题 v顺水=v静水+v水. v逆水=v静水-v水. 8.科学记数法:把一个数表示成na10×的形式(其中101<≤a,n是整数)的记数方法叫做科学记数法. 用科学记数法表示绝对值大于10的n位整数时,其中10的指数是1−n 用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0) 第十七章 反比例函数 1.定义:形如y=xk(k为常数,k≠0)的函数称为反比例函数。其他形式xy=k 1−=kxyxky1= 2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和 y=-x。对称中心是:原点3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。 4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。 第十八章 勾股定理 1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。 2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。 3.经过证明被确认正确的命题叫做定理。 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 第十九章 四边形 平行四边形定义: 有两组对边分别平行的四边形叫做平行四边形。 平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。 平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形; 3.两组对角分别相等的四边形是平行四边形; 4.一组对边平行且相等的四边形是平行四边形。 三角形的中位线平行于三角形的第三边三角形的中位线平行于三角形的第三边三角形的中位线平行于三角形的第三边三角形的中位线平行于三角形的第三边,,,,且等于第三边的一半且等于第三边的一半且等于第三边的一半且等于第三边的一半。。。。 直角三角形斜边上的中线等于斜边的一半直角三角形斜边上的中线等于斜边的一半直角三角形斜边上的中线等于斜边的一半直角三角形斜边上的中线等于斜边的一半。。。。 矩形的定义:有一个角是直角的平行四边形。 矩形的性质: 矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD 矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。 2.对角线相等的平行四边形是矩形。 3.有三个角是直角的四边形是矩形。 菱形的定义 :邻边相等的平行四边形。 菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。 菱形的判定定理: 1.一组邻边相等的平行四边形是菱形。 2.对角线互相垂直的平行四边形是菱形。 3.四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线) 正方形定义:一个角是直角的菱形或邻边相等的矩形。 正方形的性质:四条边都相等,四个角都是直角。 正方形既是矩形,又是菱形。 正方形判定定理: 1.邻边相等的矩形是正方形。 2.有一个角是直角的菱形是正方形。 梯形的定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。 直角梯形的定义:有一个角是直角的梯形 等腰梯形的定义:两腰相等的梯形。 等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。 等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。 解梯形问题常用的辅助线:如图 线段的重心就是线段的中点。 平行四边形的重心是它的两条对角线的交点。 三角形的三条中线交于疑点,这一点就是三角形的重心。 宽和长的比是21-5(约为0.618)的矩形叫做黄金矩形。 第二十章 数据的分析 1.加权平均数:加权平均数的计算公式。 权的理解:反映了某个数据在整个数据中的重要程度。 学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。 2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。 3.一组数据中出现次数最多的数据就是这组数据的众数(mode)。 4.一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。 5. 方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。 数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告 6.交流 6. 平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。

❽ 初二数学下册分式知识点

简介

分式
编辑本段
第一节 分式的基本概念

形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。
掌握分式的概念应注意:
判断一个式子是否是分式,不要看式子是否是A/B的形式,关键要满足。
(1)分式的分母中必须含有未知数。
(2)分母的值不能为零,如果分母的值为零,那么分式无意义。
由于字母可以表示不同的数,所以分式比分数更具有一般性。
整式和分式统称为有理式。
带有根号的式子叫做无理式
无理式和有理式统称代数式
法则
1.约分:
把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。
2.分式的乘法法则:
两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
3. 分式的加减法法则:
同分母的分式相加减,分母不变,把分子相加减。
4.通分:
异分母的分式可以化成同分母的分式,这一过程叫做通分。如:3/2和2/3可化为9/6和4/6.即:3*3/2*3,2*2/3*2!
5.异分母分式的加减法法则:
异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。
(1).定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子 A/B 叫做分式(fraction)。
注:A/B=A×1/B
(2).组成:在分式 中A称为分式的分子,B称为分式的分母。
(3).意义:对于任意一个分式,分母都不能为0,否则分式无意义。
(4)意义:对于任意一个分式,分母为零则是无意义。
(5).分式值为0的条件:在分母不等于0的前提下,分子等于0,则分式值为0。
注:分式的概念包括3个方面:①分式是两个整式相除的分式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式有意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。
编辑本段
第二节 分式的基本性质和变形应用

1.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C(A,B,C为整式,且B、C≠0)
2.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.
3.分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去.
注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
4.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式。约分时,一般将一个分式化为最简分式.
5.通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分。
6.分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母。同时各分式按照分母所扩大的倍数,相应扩大各自的分子.
注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积。
注:(1)约分和通分的依据都是分式的基本性质2.(2)分式的约分和通分都是互逆运算过程。
编辑本段
第三节 分式的四则运算

1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减。用字母表示为:a/c±b/c=a±b/c
2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。用字母表示为:a/b±c/d=ad±cb/bd
3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。用字母表示为:a/b * c/d=ac/bd
4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。a/b÷c/d=ad/bc
(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c
编辑本段
第四节 分式方程

1.分式方程的意义:分母中含有未知数的方程叫做分式方程。
2.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).
分式方程的解法
①去分母{方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂),将分式方程化为整式方程;若遇到互为相反数时。不要忘了改变符号};②按解整式方程的步骤(移项,若有括号应去括号,注意变号,合并同类项, 系数化为1)求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).
验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式方程的根。若解出的根是增根,则原方程无解。
如果分式本身约分了,也要带进去检验。
在列分式方程解应用题时,不仅要检验所的解是否满足方程式,还要检验是否符合题意。
一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解。
归纳:
解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。
例题:
(1)x/(x+1)=2x/(3x+3)+1
两边乘3(x+1)
3x=2x+(3x+3)
3x=5x+3
2x=-3
x=-3/2
分式方程要检验
经检验,x=-3/2是方程的解
(2)2/(x-1)=4/(x^2-1)
两边乘(x+1)(x-1)
2(x+1)=4
2x+2=4
2x=2
x=1
分式方程要检验
把x=1带入原方程,使分母为0,是增根。
所以原方程2/x-1=4/x^2-1
无解
必须要检验!!
检验格式:把x=a 带入最简公分母,若x=a使最简公分母为0,则a是原方程的增根.若x=a使最简公分母不为零,则a是原方程的根。
注意:可凭经验判断是否有解。若有解,带入所有分母计算:若无解,带入无解分母即可.
分式约分
如果分子和分母是多项式,要把多项式分解因式再约分
如:x^2-2x+1/x^2-1=(X-1)^2/(X+1)(X-1)=X-1/X+1
最简分式:分子分母没有公因式————如上!
分式的通分:将n个异分母的分式分别化为与原来分式相等的同分母分式
分式的分子和分母都同时乘以或除以一个不等于零的整式,分式的值不变。这个是分式的基本性质

❾ 初2数学下册全部知识点

初二数学下知识点总结
平移与旋转
旋转
旋转的定义:
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
旋转的性质:
旋转后得到的图形与原图形之间有:对应点到旋转中心的距离相等,旋转角相等。
中心对称
中心对称的定义:
如果一个图形绕某一点旋转180度后能与另一个图形重合,那么这两个图形叫做中心对称。
中心对称图形的定义:
如果一个图形绕一点旋转180度后能与自身重合,这个图形叫做中心对称图形。
中心对称的性质:
在中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分。
轴对称
轴对称的定义:
如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对
称图形,这条直线叫做对称轴。
轴对称图形的性质:
①角的平分线上的点到这个角的两边的距离相等。
②线段垂直平分线上的点到这条线段两个端点的距离相等。
③等腰三角形的“三线合一”。
3.轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。
图形变换
图形变换的定义:图形的平移、旋转、和轴对称统称为图形变换。
函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
正比例函数和一次函数
1、正比例函数和一次函数的概念
一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。
特别地,当一次函数中的b为0时,(k为常数,k0)。这时,y叫做x的正比例函数。
2、一次函数的图像
所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:
一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。(如下图)
4.
正比例函数的性质
一般地,正比例函数有下列性质:
(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;
(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质
一般地,一次函数有下列性质:
(1)当k>0时,y随x的增大而增大
(2)当k<0时,y随x的增大而减小
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。

热点内容
中国房价历史 发布:2025-07-05 16:22:07 浏览:309
2年级的英语 发布:2025-07-05 13:33:31 浏览:773
初中物理电动机 发布:2025-07-05 11:48:09 浏览:245
慈利教育网 发布:2025-07-05 11:15:09 浏览:622
奥特曼黑历史 发布:2025-07-05 05:13:59 浏览:8
2017全国二语文试卷 发布:2025-07-05 02:17:04 浏览:679
德阳是哪个省的 发布:2025-07-05 01:20:18 浏览:562
欧豪年彩墨教学视频 发布:2025-07-05 00:38:16 浏览:713
教学实践内容 发布:2025-07-04 21:32:22 浏览:431
云南教育论文 发布:2025-07-04 18:10:10 浏览:16