初二数学期末考试题
『壹』 初二数学(期末测试题)
例1.选择题
(1)若不等式(a+1)x>(a+1)的解集是x<1,那么必须满足 [ ]
(A)a<0 (B)a≤1
(C)a>-1 (D)a<-1
(2)若不等式(3a-2)x+2<3的解集是x<2,那么必须满足 [ ]
[ ]
例2.解答题
在数轴上表示下列不等式的解集
例3 填空题
在括号中标明以上(甲)(乙)(丙)(丁)四图中分别表示(A)(B)(C)(D)哪种意义?
(A)小于-2或大于2的所有有理数
(B)大于-2且小于2的所有有理数
(C)不小于2的所有有理数
(D)小于-2的所有有理数
(甲)( );(乙)( );(丙)( );(丁)( ).
例1. 分析:解答(1)、(2)两个小题的依据是不等式解的定义及不等式的性质.思维过程是:将一元一次不等式化为Ax>B(或Ax<B)形式后,再与已知的解的形式(如(1)中的x<1,(2)中的x<2)进行对照.重点注意的是不等号方向上的变化情况,从而依据不等式性质便可决定出x的系数A应为正数还是负数.还需注意计算数值,以便确定不等式两边同除以何值,由此再进一步确定出a应满足的条件.第(3)小题可用特殊值法来选择答案,因为结论是唯一正确的,所以只要在0<x<1中任意选择一个较易计算x2、1/x的值,分别求出1/x,x2与x再进行比较,便一目了然了.这种特殊值法在确定几个字母表示的数值之间大小关系时,常常起着简单、快捷的作用.
解:(1)∵x<1是不等式(a+1)x>a+1的解,依不等式性质3有a+1<0.
∴a<-1,选(D).
(2)∵(3a-2)x+2<3
例2.分析:首先画出数轴;其次在数轴上找准相应数字的位置:如本例中4个小题的-3,0,2,-1/2;第三确定好画实心圆点还是空心圆点,如(2)(3)应画实心圆点,而(1)(4)应画空心圆点.
解:如图
例3
解:(甲)(C);(乙)(B);(丙)(D);(丁)(A).
说明:(甲)中表示的是大于或等于2的所有有理数,也就是不小于2的所有有理数,选(C);
(乙)中表示的是在-2和+2之间的所有有理数,也就是大于-2且小于2的所有有理数,选(B);
(丙)中表示的小于-2的所有有理数,选(D);
(丁)中表示数轴上在-2左边和+2右边部分,也就是小于-2或大于2的所有有理数,选(A).
『贰』 初二数学上册期末试题及答案 人教版
一、填空题(每小题3分,共36分)
1.单项式2πa2 b的次数是 .
2.函数y=x+√2x+4中自变量x的取值范围是 .
3.点P(m,1)与点Q(2,n)关于x轴对称,则m2+n2=_______.
4.写出一个与 图象平行的一次函数: __________.
5.分解因式ax2-ay2 =
6.直线 与 的交点坐标为_____________.
7.若4x2 -kxy+y2 是一个完全平方式,则k= . B D
8.若 与 是同类项,则 = .
9.( )÷ C (第11题) A
10.如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm, BD=7cm,则点D到AB的距离为_____________cm.
11.如图在直角ΔABC中,∠ACB=90°∠A=30°,CD是斜边AB边上的高,若AB=4,则BD= .
12.观察下列各个算式:1×3+1=4=2 ;2×4+1=9=3 ;3×5+1=16=4 ;4×6+1=25=5 ;--------根据上面的规律,请你用一个含n(n>0的整数)的等式将上面的规律表示出来 。
二、选择题(每小题4分,共20分)
13、下列运算不正确的是 ( )
A、 x2·x3=x5 B、 (x2)3=x6 C、 x3+x3=2x6 D、 (-2x)3=-8x3
14、下列属于因式分解,并且正确的是( ).
A、x2-3x+2=x(x-3)+2 B、x4-16=(x2+4)(x2-4)
C、(a+2b)2=a2+4ab+4b2 D、x2-2x-3=(x-3)(x-1)
15、等腰三角形的一个内角是50°,则另外两个角的度数分别是( )
A、65°,65° B、58°,80° C、65°,65°或50°,80° D、50°,50°
16、下面是某同学在一次测验中的计算摘 ① ②
③ ④ ⑤ ⑥
其中正确的个数是( ) A、1个 B、2个 C、3个 D、4个
17.如图,正方形纸片ABCD,M,N分别是AD,BC的中点,把BC
向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,
则∠PBQ为 ( )(A)15°(B)20°(C)30°(D)45°
三、解答下列各题(共94分)。
18.因式分解: (7分) 19.因式分解:(7分)2(x-y)(x+y)-(x+y)2
20.用乘法公式计算:(本小题10分)
(1) ; (2)(x+5)2-(x-3)2
21、先化简,再求值: 其中 .(8分)
22、为了了解某校七年级男生的体能情况,从该校七年级抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出频数分布直方图(如图).已知图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2.(1)求第二小组的频数和频率;(2)求所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比(8分)
23、已知:(8分) ∠AOB, 点M、N.
『叁』 初二数学期末考试压轴题
①6②当PQ=AB=BQ时 为菱形 AB=DE/sin45=√2 所以t=√2 /0.5=2√2③S=0.5t (0≤t≤8)S=4+0.5(t-8)(1-0.25(t-8))+(0.25(t-8))²(8<t≤12)
『肆』 初二数学期末测试题
一、选择题(本大题共6小题,每小题4分,共分)
1. 下列计算正确的是( )
A、-24=-8 B、(-2)3=-8
C、-(-2)2= 4 D、
2. 平行四边形不具有的性质是( )
A、对角线互相垂直 B、对边平行且相等
C、对角线互相平分 D、对角相等
3. “早穿皮袄午穿纱”是对一天中温度的最佳写照,它反映了( )
A、平均气温 B、最低气温 C、最高气温 D、温度极差
4. 化简-{-【-(-a)-a】-a}-a( )
A、0 B、-2a C、-4a D、2a
5. 下列命题是假命题的是( )
A、有两个角分别是70°和40°的三角形是等腰三角形
B、有一个外角的平分线平行于一边的三角形是等腰三角形
C、在等腰三角形中,两腰上的中线相等
D、一个角是36°的等腰三角形中,必有一个角是72°
6. 已知反比例函数的图像经过点(a,b),则它的图像也经过( )
A、(-a,-b) B、(a,-b) C、(-a,b) D、(0,0)
二、填空题(本大题共8小题,每小题3分,共24分)
7. 要使分式 有意义,x应满足的条件是 。
8. 在△ABC 中,∠C=90°,
⑴ 若BC=7,AC=24,则AB= ;
⑵ 若BC=5,AB=13,则AC= ;
⑶ 若AC=15,AB=25,则BC= 。
9. 利用平方差公式计算 。
10. △ABC沿AC翻折成△ACD,则∠ACB= , AB= 。
11. 菱形的两邻角的比为1∶5,高为1.5cm,则它的周长是 。
12. 关于下面一组数据:7,9,6,8,10,11中,中位数为 , 平均数为 。
13. 如图1,∠ABC与∠ACE的平分线交于点D,则∠A与∠D的关系是 ,如图2,∠ABC与∠ACB的平分线交于点D,则∠A与∠D的关系是 。
图1 图2
14. 把直线y=-3x沿y轴向上平移2个单位长度后得直线 ,再沿x轴向左平移2个单位长度得直线 。
三、解答题(共4小题, 每题8分,共32分)
15. 因式分解4a2b2-(a2+ b2)2 ;
16. 解分式方程:
17. △ABC中,a∶b∶c=9∶15∶12,试判定△ABC是不是直角三角形。
18. 如图,梯形ABCD,AB‖DC,AD=DC=CB,AD、BC的延长线交与G。CE⊥AG于E, CF⊥AB于F。
⑴请写出图中4组相等的线段(已知的相等线段除外);
⑵选择⑴中一组你所写出的相等线段,说明它们相等的理由。
四、综合题(2×10=20分)
19. 如图,在△ABC中,点O是AB上的一个动点,过O点的直线MN‖BC,设MN交∠BCA的平分线CE于点E,交∠BCA的外角平分线CF于点F。
⑴求证:OE=OF;
⑵当点O运动到何处时,四边形AECF是矩形?并证明你的结论。
20.已知关于x的一次函数y=mx+n与反比例函数 的图像都经过点(3,-4),且一次函数的图像与x轴交点到原点的距离为5。求:⑴一次函数与反比例函数的解析式;⑵两个函数的另一个交点坐标。
答案: 一、 B A D A B A;
二、x≠3且x≠-1;25, 12, 20 ; (12+1/3)(12-1/3)=143 ; ∠ACD, AD ;12 ;8.5,8.5;∠A=2∠D,∠A=180°+2∠D ;y=-3x+2,y=-3x-6 ;
三、⑴-(a+b) (a-b) ; ⑵x=0
⑶ 设较短边为9k,12k,较长边为15k,(k≠0);
⑷GC=GD,GA=GB,CE=CF,DE=BF ;
四、①
②
『伍』 关于初二数学期末考试压轴题,
压轴题一般来说几何的概率大,别一口吞胖娃娃,先偿试做不出来也写步骤,先得一些步骤分,再多练习题,慢慢地从步骤分到得分,不过,提醒一下,还是先把前面的题抓牢了,要不然,可是捡芝麻丢西瓜哦
『陆』 数学初二期末考试题
2010年八年级下数学期末检测试题1
一、选择题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)
1.若使分式 的值为0,则 的取值为( ).
A.1或 B. 或1 C. D. 或
2.反比例函数 与正比例函数 在同一坐标系中的图象不可能是( ).
A B C D
3.体育课上,八年级(1)班两个组各10人参加立定跳远,要判断哪一组成绩比较整齐,通常需要知道这两个组立定跳远成绩的( ). A. 频率分布 B.平均数 C.方差 D.众数
4.某校10名学生四月份参加西部环境保护实践活动的时间(小时)分别为:3,3,6,4,3,7,5,7,4,9,这组数据的众数和中位数分别为( ).
A.3和4.5 B.9和7 C.3和3 D.3和5
5.某乡镇改造农村电网,需重新架设4000米长的电线.为了减少施工对农户用电造成的影响,施工时每天的工作效率比原计划提高 ,结果提前2天完成任务,问实际施工中每天架设多长电线?如果设原计划每天架设x米电线,那么列出的方程是( ).
A. ― =2 B. ― =2 C. ― =2 D. ― =2
6. 如图1,等腰梯形ABCD中,AD‖BC,AE‖DC,∠B=60o,BC=3,
△ABE的周长为6,则等腰梯形的周长是( ).
A.8 B.10 C.12 D. 16
图1
7.以下列各组数为边长,能构成直角三角形的是( ).
A. , , B. ,2, C.32,42,52 D.1,2,3
8.对角线互相垂直平分且相等的四边形一定是( ).
A. 正方形 B.菱形 C. 矩形 D. 等腰梯形
9. 已知:如图2,菱形ABCD中,对角线AC与BD相交于点O,OE‖DC交BC于点E,AD=6cm,则OE的长为( ).
A.6 cm B.4 cm C.3 cm D.2 cm
图2
10.某学校有500名九年级学生,要知道他们在学业水平考试中成绩为A等、B等、C等、D等的人数是多少,需要做的工作是( ).
A.求平均成绩 B.进行频数分布 C.求极差 D.计算方差
二、填空题(每小题4分,共40分)
11.方程 的解是 .
12.化简: .
13.若反比例函数 的图象经过点 ,则 .
14.在珠穆朗玛峰周围2千米的范围内,还有较著名的洛子峰(海拔8516米)、卓穷峰(海拔7589米)、马卡鲁峰(海拔8463米)、章子峰(海拔7543米)、努子峰(海拔7855米)、和普莫里峰(海拔7145米)六座山峰,则这六座山峰海拔高度的极差为 _______米.
15.如图3,点P是反比例函数 图象上的一点,PD垂直于x轴于点D,则△POD的面积为 .
图3
16.在四边形ABCD中,对角线AC、BD交于点O,从(1)AB=CD;(2)AB‖CD;(3)OA=OC;(4)OB=OD;(5)AC⊥BD;(6)AC平分∠BAD这六个条件中,选取三个推出四边形ABCD是菱形.如(1)(2)(5) ABCD是菱形,再写出符合要求的两个:________ ABCD是菱形;________ ABCD是菱形.
17.把图4的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处如图5),已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为_________.
图4
图5
18.下列命题:①对顶角相等;②等腰三角形的两个底角相等;③两直线平行,同位角相等.其中逆命题为真命题的有: (请填上所有符合题意的序号).
19. 如图6,若将四根木条钉成的矩形木框变成平行四边形 的形状,并使其面积为矩形面积的一半,则这个平行四边形的最小内角等于 .
图6
20.10位学生分别购买如下尺码的鞋子:
20,20,21,22,22,22,22,23,23,24(单位:cm)这组数据的平均数、中位数、众数三个指标中鞋店老板最不喜欢的是_______,最喜欢的是________.
三、解答题(共50分)
21.(6分)先将分式 进行化简,然后请你给x选择一个合适的值,求原式的值
22.(6分) 已知正比例函数 与反比例函数 的图象都经过点(2,1).求这两个函数关系式.
23.(6分)在4×4的正方形网格中,每个小方形的边长都是1.线段AB、EA分别是图7中1×3的两个长方形的对角线,请你证明AB⊥EA.
图7
24. 如图8,△ABC中,∠ACB=90°,点D、E分别是AC、AB的中点,点F在BC的堰延长线上,且∠CDF=∠A,求证:四边形DECF是平行四边形.
图8
25.如图9,在∠ABC中,AB = BC,D、E、F分别是BC、AC、AB边上的中点;
(1)求证:四边形BDEF是菱形;
(2)若AB = ,求菱形BDEF的周长.
图9
26.小明和小兵参加某体育项目训练,近期的8次测试成绩(分)如下表:
测试 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次
小明 10 10 11 10 16 14 16 17
小兵 11 13 13 12 14 13 15 13
(1)根据上表中提供的数据填写下表:
平均数(分) 众数(分) 中位数(分) 方差
小明 10 8.25
小兵 13 13
(2)若从中选一人参加市中学生运动会,你认为选谁去合适呢?请说明理由.
27.如图10所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图11所示.已知展开图中每个正方形的边长为1.
(1)求在该展开图中可画出最长线段的长度?这样的线段可画几条?
(2)试比较立体图中∠BAC与平面展开图中∠B′A′C′的大小关系?
图10 图11
28.如图12,设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去…….
(1)记正方形ABCD的边长为a1=1,依上述方法所作的正方形的边长依次为a2,a3,a4,……,an,求出a2,a3,a4的值.
(2)根据以上规律写出第n个正方形的边长an的表达式.
图12
参考答案:
一、1.C 2.D 3.C 4.A 5.B 6.A 7.A 8.A 9.C 10.B
二、11.x=5; 12. ; 13.-6; 14.1371; 15.1 ;16. (1)(2)(6);(3)(4)(5)或(3)(4)(6)符合条件; 17. ; 18.②③; 19.30°; 20.平均数,众数.
三、
21. 解:原式= ,当x=0,原式=1.
22. 将x=2,y=1代入两个关系式,得k1= ,k2=2.
所以正比例函数关系式为y= x,反比例函数关系式y= .
23. 证明: 连接BE,根据网格的特征,EF=AG=3,得∠F=∠G=∠BCE=90°,
则在Rt△EFA中,由勾股定理,得AE2=EF2+AF2=10;在Rt△ABG中,由勾股定理,得AB2=AG2+GB2=10;在Rt△EBC中,BE2=BC2+EC2=20,
所以AE2+AB2=10+10=20=BE2,由勾股定理逆定理,得∠BAE=90°,所以AB⊥EA.
24. 证明:因为点D、E分别是AC、AB的中点,所以DE//BC,
因为∠ACB=90°,
所以CE= AB=AE,所以∠A=∠ECA,
因为∠CDF=∠A,
所以∠CDF=∠ECA,所以DF//CE,所以四边形DECF是平行四边形.
25. (1)因为D、E、F分别是BC、AC、AB的中点,
所以DE‖AB,EF‖BC,
所以四边形BDEF是平行四边形.
又因为DE = AB,EF = BC,且AB = BC
所以DE = EF
所以四边形BDEF是菱形;
(2)因为AB = ,F为AB中点,所以BF = ,所以菱形BDEF的周长为
26. 解:(1)
平均数(分) 众数(分) 中位数(分) 方差
小明 13 10 12.5 8.25
小兵 13 13 13 1.25
(2)两人的平均数相同,小兵成绩的众数和中位数都比小明高,且方差小,说明小兵的成绩较稳,但小明的成绩虽然波动很大,到从后几次的成绩来看,成绩都比小兵好,所以从发展的趋势来看应选小明参加.
27. 解析:(1)如图①中的A′C′,
在Rt△A′C′D′中,C′D′=1,A′D′=3,
由勾股定理得:
即在平面展开图中可画出最长的线段长为 .这样的线段可画4条(另三条用虚线标出).
① ②
(2)因为立体图中∠B′A′C′为平面等腰直角三角形的一锐角,
以∠B′A′C′=45°,
在平面展开图中,连接线段B′C′,如图②,
由勾股定理可得:A′B′= ,B′C′= .
又因为A′B′2+B′C′2=A′C′2,
由勾股定理的逆定理可得△A′B′C′为直角三角形.
又因为A′B′=B′C′,△A′B′C′为等腰直角三角形.
所以∠BAC=45°,所以∠B′A′C′=∠BAC.
28. 解:(1)在Rt△ABC中,因为∠B=90°,所以AC2=AB2+BC2=1+1=2,所以AC= ,同理AE=2,EH=2 所以a2=AC= ,a3=AE=2,a4=EH=2 .
(2)因为a1=1=( )0,a2=( )1,a3=2=( )2,a4=(2 )=( )3,所以an=( )n-1
(n≥1,n为整数).