当前位置:首页 » 语数英语 » 八年级数学习题

八年级数学习题

发布时间: 2021-07-29 19:58:28

① 初二数学练习题

应该是6的“算术平方根”。
∵2<√6<3
∴M=2,N=√6-3
∴M-N+√6=2-√6+3+√6=5

② 初二数学试题

因为三角形两边之和大于第三边,两边之差小于第三边
所以AB-AC<BC<AB+BC
4<BC<16
2<BD<8
在三角形ABD中
10-8 <AD<10+2
得2<AD<12
在三角形ADC中
8-6<AD<6+2
得2<AD<8
所以 2<AD<8
所以AD的取值是2到8

③ 初二数学试题及答案

一. 选择题:(分×6=18分)

1. 如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为( )

2. 下图是小孔成像原理的示意图,根据图中所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是( )

A. 1/6cm B. 1/3cm C. 1/2cm D. 1cm

3. 下列命题为真命题的是( )

A. 若x,则-2x+3<-2y+3

B. 两条直线被第三条直线所截,同位角相等

D. 全等图形一定是相似图形,但相似图形不一定是全等图形

5. 下图是初二某班同学的一次体检中每分钟心跳次数的频数分布直方图(次数均为整数)。已知该班只有五位同学的心跳每分钟75次,请观察下图,指出下列说法中错误的是( )

A. 数据75落在第2小组

B. 第4小组的频率为0.1

D. 数据75一定是中位数

6. 甲、乙两人同时从A地出发,骑自行车到B地,已知AB两地的距离为30公里,甲每小时比乙多走3公里,并且比乙先到40分钟。设乙每小时走x公里,则可列方程为( )

二. 填空题:(3分×6=18分)

7. 分解因式:x3-16x=_____________。

8. 如图,已知AB//CD,∠B=68o,∠CFD=71o,则∠FDC=________度。

9. 人数相等的甲、乙两班学生参加了同一次数学测验,班级平均分和方差如下:

10. 点P是Rt△ABC的斜边AB上异于A、B的一点,过P点作直线PE截△ABC,使截得的三角形与△ABC相似,请你在下图中画出满足条件的直线,并在相应的图形下面简要说明直线PE与△ABC的边的垂直或平行位置关系。

位置关系:____________ ______________ __________

12. 在△ABC中,AB=10。

三. 作图题:(5分)

13. 用圆规、直尺作图,不写做法,但要保留作图痕迹。

小明为班级制作班级一角,须把原始图片上的图形放大,使新图形与原图形对应线段的比是2:1,请同学们帮助小明完成这一工作。

四. 解答题:(共79分)

14. (7分)请你先化简,再选取一个使原式有意义,而你又喜爱的数代入求值:

15. (8分)解下列不等式组,在数轴上表示解集,并写出它的整数解。

16. (8分)溪水食品厂生产一种果糖每千克成本为24元,其销售方案有以下两种:

方案一:若直接送给本厂设在本市的门市部销售,则每千克售价为32元,但门市部每月须上交有关费用2400元;

方案二:若直接批发给本地超市销售,则出厂价为每千克28元。

若每月只能按一种方案销售,且每种方案都能按月售完当月产品,设该厂每月的销售量为x千克。

(1)若你是厂长,应如何选择销售方案,可使工厂当月所获利润更大?

(2)厂长听取各部门总结时,销售部长表示每月都是采取了最佳方案进行销售的,所以取得了较好的工作业绩,但厂长看到会计送来的第一季度销售量与利润关系的报表(如下表)后,发现该表写的销售量与实际上交利润有不符之处,请找出不符之处,并计算第一季度的实际销售总量。

17. (8分)浩浩的妈妈在运力超市用12.50元买了若干瓶酸奶,但她在利群超市发现,同样的酸奶,这里要比运力超市每瓶便宜0.2元钱,因此,当第二天买酸奶时,便到利群超市去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多倍,问她第一次在运力超市买了几瓶酸奶?

18. (8分)未成年人思想道德建设越来越受到社会的关注。某青少年研究所随机调查了大连市内某校100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观。根据100个调查数据制成了频数分布表和频数分布直方图:

(1)补全频数分布表和频数分布直方图;表格中A=______,B=______,C=______

(2)在该问题中样本是________________________________________。

(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议,试估计应对该校1000名学生中约多少学生提出这项建议?

19. (8分)(1)一位同学想利用树影测出树高,他在某时刻测得直立的标杆高1米,影长是0.9米,但他去测树影时,发现树影的上半部分落在墙CD上,(如图所示)他测得BC=2.7米,CD=1.2米。你能帮他求出树高为多少米吗?

(2)在一天24小时内,你能帮助他找到其它测量方式吗(可供选择的有尺子、标杆、镜子)?请画出示意图并结合你的图形说明:

使用的实验器材:________________________________

需要测量长度的线段:________________________________

20. (8分)某社区筹集资金1600元,计划在一块上、下底分别为10米,20米的梯形空地上喷涂油漆进行装饰。如图,(1)他们在△AMD和△BMC地带上喷涂的油漆,单价为8元/m2,当△AMD地带涂满后(图中阴影部分)共花了160元,请计算涂满△BMC地带所需费用。(2)若其余地带喷涂的有屹立和意得两种品牌油漆可供选择,单价分别为12元/m2和10元/m2,应选择哪种油漆,刚好用完所筹集的资金?

21. (12分)探索与创新:

如图:已知平面内有两条平行的直线AB、CD,P是同一平面内直线AB、CD外一动点。(1)当P点移动到AB、CD之间,线段AC两点左侧时,如图(1),这时∠P、∠A、∠C之间有怎样的关系?

请证明你的结论:

(2)当P点移动到AB、CD之间,线段AC两点的右侧时,如图(2),这时∠P、∠A、∠C之间有怎样的关系?(不必证明。)答:

(3)随着点P的移动,你是否能再找出另外两类不同的位置关系,画出相应的图形,并写出此时∠P、∠A、∠C之间有怎样的关系?选择其中的一种加以证明。

实践与应用:

将一矩形纸片ABCD(如图)沿着EF折叠,使B点落在矩形内B1处,点C落在C1处,B1C1与DC交于G点,根据以上探索的结论填空:

22. (12分)利用几何图形进行分解因式,通过数形结合可以很好的帮助我们理解问题。

(1)例如:在下列横线上添上适当的数,使其成为完全平方式。

如上图,“x2+8x”就是在边长为x的正方形的基础上,再加上两个长为x,宽为4的小长方形。为使其成为完全平方式(即图形变成正方形),必须加上一个边长为4的小正方形。即x2+8x+42=(x+4)2。

请在下图横线上画图并用文字说明x2-4x+_______=(x-______)2的做法并填空。

说明:

(2)已知一边长为x的正方形和一长为x宽为8的长方形面积之和为9,看图求边长x:(在字母A、B、C、x处添上相应的数或代数式)

A=__________,B=__________

C=__________,x=__________

(3)完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数式也可以用这种形式进行分解因式,例如:利用面积分解因式:a2+4ab+3b2,

所以:a2+4ab+3b2=(a+b)(a+3b)。

结合本题和你学到的分解因式的知识写一个含有字母a、b的代数式,画出几何图形,利用几何图形写出分解因式的结果。提供以下三种图形:边长分别为a、b的正方形、长为a宽为b的长方形(每种至少使用一次)。

【试题答案】

一. 选择题:

1. A 2. D 3. D 4. B 5. D 6. B

提示:

1. 1

2.

5. 25+20+9+6=60人

A:69.5<75<79.5 ∴75落在第2小组

B:第四小组频数为6

D:中位数在69.5~79.5之间,但不一定是75

6. 解:乙的速度为x公里/小时,甲的速度为(x+3)公里/小时

二. 填空题:

7. 8. 41 9. 乙

10.

PE//BC或PE⊥AC PE⊥BC或PE//AC PE⊥AB

11. -1 12. 50

提示:

8. 解:

9.

11. 解:方程两边同乘以x—5得

12. 解:

三. 作图题:

13. 方法不唯一,合理即可

四. 解答题:

14. 解:

15. 解:

16. (1)解:设方案一获利为y1元,方案二获利为y2元

实际销售量应为2100千克

17. 解:设浩浩妈妈第一次在运力超市买了x瓶酸奶,根据题意得

经检验:x=5是所列方程的根

答:第一次在运力超市买了5瓶酸奶

18. (1)10,25,0.25

(2)大连市内某校100名学生寒假中花零花钱的数量

(3)1000×(0.3+0.1+0.05)=450人

19. (1)解:设树高AB为x米

(2)尺子、标杆;DE、CE、BC

20. 解:

选择意得牌油漆刚好用完所筹集的资金

21. (1)证明:过P作PE//AB

实践与应用:90 270

22. (1)22 2

说明:“x2—4x”看作从边长为x的正方形的面积上,减去两个长为x,宽为2的小长方形,为使其成为完全平方式,(即图形变为正方形),多减了一个边长为2的小正方形,必须加上一个边长为2的小正方形,即x2-4x+22=(x-2)2。

(2)x+4;4;25;1

(3)a2+2ab+b2=(a+b)2

④ 人教版初二上册数学练习题

几何部分
1. (湖北宜昌) 如图所示,BC=6,E、F分别是线段
AB和线段AC的中点,那么线段EF的长是( ).
(A)6 (B)5 (C)4.5 (D)3
2(2005年苏州)如图,已知等腰梯形ABCD的中位线
EF的长为6,腰AD的长为5,则该等腰梯形的周长为( )
A.11 B.16 C.17 D.22
3.(2004年河北)如图,在梯形ABCD中,AD//BC,对角线AC⊥BD,且AC=12,BD=9,则此梯形的 中位线长是( )
A. B.
C. D.
4.(玉溪市2005)如图,已知EF是梯形ABCD的中位线,
若AB=8,BC=6, CD=2,∠B的平分线交EF于G,
则FG的长是( )
A.1 B.1.5 C.2 D.2.5
5.(2005泰州)如图,梯形ABCD中,AD//BC,BD为对角线,
中位线EF交BD于O点,若FO-EO=3,则BC-AD等于 ( )
A.4 B.6 C.8 D.10

6.如图,梯形ABCD中,AD‖BC,E、F分别是AB、DC的中点,EF交BD与G,交AC与H,若AD=2,BC=5,则GH=___________

7.(广州)如图,在正方形ABCD中,AO⊥BD,OE、FG、HL
都垂直于AD,EF GH IJ都垂直于AO,
若已知S△AIJ=1,则S正方形ABCD= .
8.(上海05)在△ABC中,点D、E分别在边AB和AC上,
且DE‖BC,如果AD=2,DB=4,AE=3,那么EC= .
9.(黑龙江05)在相同时刻的物高与影长成比例,小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为( ).
A.60米 B.40米 C.30米 D.25米
10.(厦门2005)已知:如图,在△ABC中,∠ADE=∠C,则下列等式成立的是( )
A. ADAB=AEAC B. AEBC=ADBD
C. DEBC=AEAB D. DEBC=ADAB
11.(连云港市2005)如果三角形的每条边都扩大为原来的5倍,那么三角形的每个角( )
(A)都扩大为原来的5倍 (B)都扩大为原来的10倍
(C)都扩大为原来的25倍 (D)都与原来相等
12.(海淀05)如图,梯形ABCD中,AB‖DC,∠B=90°,
E为BC上一点,且AE⊥ED.若BC=12,DC=7,
BE:EC=1:2,求AB的长.

13. 在平面直角坐标系中,已知点A(-3,0),B(0,-4),C(0,1)过点C作直线 交 轴于点D,使得以点D、C、O为顶点的三角形与△AOB相似,这样的直线一共可以做出( )
A.一条 B.两条 C.四条 D.八条
14.如图,矩形ABCD的长AD = 9cm,宽AB = 4cm,AE = 2cm,线段MN = 3 cm,线段MN的两端在CB、CD上滑动,当⊿ADE与以M、N、C为顶点的三角形相似时,CM的长为 cm. 15(淄博市2004) 如图,∠1=∠2=∠3,
则图中相似三角形共有( )(A)1对(B)2对(C)3对 (D)4对

16.针孔成像问题)根据右图中尺寸
( ‖ )那么物像长 ( 的长)
与物长 ( 的长)之间函数关系的图象
大致是( )

17.(2005年北京)如图,在平行四边形ABCD中,E是AD上一点,连结CE并延长交BA的延长线于点F,则下列结论中错误的是( )
A. ∠AEF=∠DEC B. FA:CD=AE:BC C. FA:AB=FE:EC D. AB=DC
18.(2005年常德)如图,DE是ΔABC的中位线,
则ΔADE与ΔABC的面积之比是( ) A.1:1 B.1:2 C.1:3 D.1:4

19.(2004年龙岩)把一块周长为20cm的三角形铁片裁成四块形状、大小完全
相同的小三角形铁片(如图示),则每块小三角形铁片的周
长为 cm.

20..已知: 如图,AO是△ABC的∠A的平分线,BD⊥AO,
交AO的延长线于D,E是BC的中点,求证:DE= (AB-AC).

21. 已知:如图,E、F把四边形ABCD的对角线BD
三等分, CE,CF的延长线分别平分AB,AD.
求证: 四边形ABCD是平行四边形.

22.求证: 四边形的对角线的中点连线与对边中点的连线互相平分

23.如图,在四边形ABCD中,AB=CD,E、F、分别是AD、BC的中点,
延长BA、FE交于G,延长CD、FE交于H.,求证:∠1=∠2

24.已知:如图,梯形ABCD,AB‖DC,AB+CD=8,AB:CD=7:3,
E,F分别是AC、BD的中点, 求EF的长

25.如图, △ABC中,P为AB的中点,D为AP的中点,
E、Q为AC, CD的中点,F为PQ的中点,EF交AB于G,
求证:DG=BG.

26.(2005广东省)如图,等腰梯形ABCD中,AD‖BC,M、N分别
是AD、BC的中点,E、F分别是BM、CM的中点。
(1)求证:四边形MENF是菱形;
(2)若四边形MENF是正方形,请探索等腰梯形ABCD
的高和底边BC的数量关系,并证明你的结论。

27. (四川资阳) 如图5,已知点M、N分别是△ABC的边BC、
AC的中点,点P是点A关于点M的对称点,点Q是点B关于点N的对称点,
求证:P、C、Q三点在同一条直线上.

28.如图,四边形ABCD中,AC=6,BD=8且AC⊥BD顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1;再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2……如此进行下去得到四边形AnBnCnDn .
(1)证明:四边形A1B1C1D1是矩形;
(2)写出四边形A1B1C1D1和四边形A2B2C2D2的面积;
(3)写出四边形AnBnCnDn的面积;
(4)求四边形A5B5C5D5的周长.

29.已知:如图,AD平分∠BAC,DE‖CA,AB=15,
AC=12, 求DE的长.

30.已知:如图,D在△ABC的BC边上,DF‖BA,
DE‖CA, DE∶DF=1∶2,AB=6,AC=4,
求DE的长.

31.已知:如图,△ABC中,AD平分∠BAC,AB=5,
AC=3,BC=5.6, 求BD和DC的长.

32.已知:如图, ABCD,E是CD延长线上一点,BE
交AD于F,AB=12,DE=3,BE=30, 求BF和EF的长.

33. 已知:如图, ABCD, E为BC的中点,BF= AB,EF与
对角线BD相交于G,若BD=20, 求BG的长.

34.已知:如图,△ABC中,直线DE交AB、AC、BC于D、E、
F,AE=BF
求证:

35.已知:如图,AD为△ABC的中线,E为AD上一点,
CE延长线交AB于F,
求证:

36.已知:如图,AD为△ABC的中线,M为AD中点,
BM延长线交AC于N,
求证:AN∶CN=1∶2

37.已知:如图,M、N分别为AB、CD中点,
AD、BC分别交MN于E、F
求证:ED∶EA=FC∶FB

38.已知:如图,AD⊥BC于D,E是AC中点,连结DE交BA于F
求证:

39.已知:如图, ABCD,AC、BD交于O,OF交BC于E,
交AB延长线于F,
求证:BE(AB+2BF)=BC•BF

40.已知:如图,D,E是AB、AC边上的点,连结DE并延长交BC延长线于F, 且AD=AE,
求证:

41.(本题6分)如图,直角三角形ABC中,∠C = 90°,AC = 8,BC = 6,且AB2=AC2+BC2将AB
十等分,P1、P2、……、P9为等分点,连CP1、CP2、……、CP9,请你在图中找出一对相似三角形,
并说明它们相似的理由。

42.(2005年无锡)已知图1和图2中的每个小正方形的边长都是1个单位.
(1)将图1中的格点△ABC,先向右平移3个单位,再向上平移2个单位,得到△A1B1C1,请你在图1中画出△A1B1C1.
(2)在图2中画出一个与格点△DEF相似但相似比不等于1的格点三角形.

43.如图,在△ABC中,∠C=90°,AC=6,BC=8,M是BC的中点,P为AB上的一个动点,(可以与A、B重合),并作∠MPD=90°,PD交BC(或BC的延长线)于点D.
(1)记BP的长为x,△BPM的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(2)是否存在这样的点P,使得△MPD与△ABC相似?若存在,请求出x的值;若不存在,请说明理由.

还有http://www.jxjyzy.com/ResourceHtml/727934.html

⑤ 人教版八年级上册数学课本练习题答案

1.DA=EB
证明 由题意可知 ∠D=∠E AC=BC ∵DA⊥AC EB⊥CB ∴∠DAC=90° 在Rt△DAC和Rt△EBC中{CD=CE(已知) AC=BC(已知)} ∴Rt△DAC≌Rt△EBC(HL) ∴DA=EB(全等三角形对应边相等)
2.证明 ∵AE⊥BC DF⊥BC ∴∠DFC=90°=∠AEB 又∵CE=BF ∴CE-FE=BF-FE 即CF=BF 在Rt△DFC和Rt△AEB中{CD=AB CE=BE} ∴Rt△DFC≌Rt△BAD(HL) ∴AE=DF

⑥ 初二数学试题及答案/

初二下学期数学期末考试
(时间:90分钟;满分:120分)

一. 选择题:(3分×=18分)

1. 如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为( )

2. 下图是小孔成像原理的示意图,根据图中所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是( )

A. 1/6cm B. 1/3cm C. 1/2cm D. 1cm

3. 下列命题为真命题的是( )

A. 若x,则-2x+3<-2y+3

B. 两条直线被第三条直线所截,同位角相等

D. 全等图形一定是相似图形,但相似图形不一定是全等图形

5. 下图是初二某班同学的一次体检中每分钟心跳次数的频数分布直方图(次数均为整数)。已知该班只有五位同学的心跳每分钟75次,请观察下图,指出下列说法中错误的是( )

A. 数据75落在第2小组

B. 第4小组的频率为0.1

D. 数据75一定是中位数

6. 甲、乙两人同时从A地出发,骑自行车到B地,已知AB两地的距离为30公里,甲每小时比乙多走3公里,并且比乙先到40分钟。设乙每小时走x公里,则可列方程为( )

二. 填空题:(3分×6=18分)

7. 分解因式:x3-16x=_____________。

8. 如图,已知AB//CD,∠B=68o,∠CFD=71o,则∠FDC=________度。

9. 人数相等的甲、乙两班学生参加了同一次数学测验,班级平均分和方差如下:

10. 点P是Rt△ABC的斜边AB上异于A、B的一点,过P点作直线PE截△ABC,使截得的三角形与△ABC相似,请你在下图中画出满足条件的直线,并在相应的图形下面简要说明直线PE与△ABC的边的垂直或平行位置关系。

位置关系:____________ ______________ __________

12. 在△ABC中,AB=10。

三. 作图题:(5分)

13. 用圆规、直尺作图,不写做法,但要保留作图痕迹。

小明为班级制作班级一角,须把原始图片上的图形放大,使新图形与原图形对应线段的比是2:1,请同学们帮助小明完成这一工作。

四. 解答题:(共79分)

14. (7分)请你先化简,再选取一个使原式有意义,而你又喜爱的数代入求值:

15. (8分)解下列不等式组,在数轴上表示解集,并写出它的整数解。

16. (8分)溪水食品厂生产一种果糖每千克成本为24元,其销售方案有以下两种:

方案一:若直接送给本厂设在本市的门市部销售,则每千克售价为32元,但门市部每月须上交有关费用2400元;

方案二:若直接批发给本地超市销售,则出厂价为每千克28元。

若每月只能按一种方案销售,且每种方案都能按月售完当月产品,设该厂每月的销售量为x千克。

(1)若你是厂长,应如何选择销售方案,可使工厂当月所获利润更大?

(2)厂长听取各部门总结时,销售部长表示每月都是采取了最佳方案进行销售的,所以取得了较好的工作业绩,但厂长看到会计送来的第一季度销售量与利润关系的报表(如下表)后,发现该表写的销售量与实际上交利润有不符之处,请找出不符之处,并计算第一季度的实际销售总量。

17. (8分)浩浩的妈妈在运力超市用12.50元买了若干瓶酸奶,但她在利群超市发现,同样的酸奶,这里要比运力超市每瓶便宜0.2元钱,因此,当第二天买酸奶时,便到利群超市去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多倍,问她第一次在运力超市买了几瓶酸奶?

18. (8分)未成年人思想道德建设越来越受到社会的关注。某青少年研究所随机调查了大连市内某校100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观。根据100个调查数据制成了频数分布表和频数分布直方图:

(1)补全频数分布表和频数分布直方图;表格中A=______,B=______,C=______

(2)在该问题中样本是________________________________________。

(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议,试估计应对该校1000名学生中约多少学生提出这项建议?

19. (8分)(1)一位同学想利用树影测出树高,他在某时刻测得直立的标杆高1米,影长是0.9米,但他去测树影时,发现树影的上半部分落在墙CD上,(如图所示)他测得BC=2.7米,CD=1.2米。你能帮他求出树高为多少米吗?

(2)在一天24小时内,你能帮助他找到其它测量方式吗(可供选择的有尺子、标杆、镜子)?请画出示意图并结合你的图形说明:

使用的实验器材:________________________________

需要测量长度的线段:________________________________

20. (8分)某社区筹集资金1600元,计划在一块上、下底分别为10米,20米的梯形空地上喷涂油漆进行装饰。如图,(1)他们在△AMD和△BMC地带上喷涂的油漆,单价为8元/m2,当△AMD地带涂满后(图中阴影部分)共花了160元,请计算涂满△BMC地带所需费用。(2)若其余地带喷涂的有屹立和意得两种品牌油漆可供选择,单价分别为12元/m2和10元/m2,应选择哪种油漆,刚好用完所筹集的资金?

21. (12分)探索与创新:

如图:已知平面内有两条平行的直线AB、CD,P是同一平面内直线AB、CD外一动点。(1)当P点移动到AB、CD之间,线段AC两点左侧时,如图(1),这时∠P、∠A、∠C之间有怎样的关系?

请证明你的结论:

(2)当P点移动到AB、CD之间,线段AC两点的右侧时,如图(2),这时∠P、∠A、∠C之间有怎样的关系?(不必证明。)答:

(3)随着点P的移动,你是否能再找出另外两类不同的位置关系,画出相应的图形,并写出此时∠P、∠A、∠C之间有怎样的关系?选择其中的一种加以证明。

实践与应用:

将一矩形纸片ABCD(如图)沿着EF折叠,使B点落在矩形内B1处,点C落在C1处,B1C1与DC交于G点,根据以上探索的结论填空:

22. (12分)利用几何图形进行分解因式,通过数形结合可以很好的帮助我们理解问题。

(1)例如:在下列横线上添上适当的数,使其成为完全平方式。

如上图,“x2+8x”就是在边长为x的正方形的基础上,再加上两个长为x,宽为4的小长方形。为使其成为完全平方式(即图形变成正方形),必须加上一个边长为4的小正方形。即x2+8x+42=(x+4)2。

请在下图横线上画图并用文字说明x2-4x+_______=(x-______)2的做法并填空。

说明:

(2)已知一边长为x的正方形和一长为x宽为8的长方形面积之和为9,看图求边长x:(在字母A、B、C、x处添上相应的数或代数式)

A=__________,B=__________

C=__________,x=__________

(3)完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数式也可以用这种形式进行分解因式,例如:利用面积分解因式:a2+4ab+3b2,

所以:a2+4ab+3b2=(a+b)(a+3b)。

结合本题和你学到的分解因式的知识写一个含有字母a、b的代数式,画出几何图形,利用几何图形写出分解因式的结果。提供以下三种图形:边长分别为a、b的正方形、长为a宽为b的长方形(每种至少使用一次)。

【试题答案】

一. 选择题:

1. A 2. D 3. D 4. B 5. D 6. B

提示:

1. 1

2.

5. 25+20+9+6=60人

A:69.5<75<79.5 ∴75落在第2小组

B:第四小组频数为6

D:中位数在69.5~79.5之间,但不一定是75

6. 解:乙的速度为x公里/小时,甲的速度为(x+3)公里/小时

二. 填空题:

7. 8. 41 9. 乙

10.

PE//BC或PE⊥AC PE⊥BC或PE//AC PE⊥AB

11. -1 12. 50

提示:

8. 解:

9.

11. 解:方程两边同乘以x—5得

12. 解:

三. 作图题:

13. 方法不唯一,合理即可

四. 解答题:

14. 解:

15. 解:

16. (1)解:设方案一获利为y1元,方案二获利为y2元

实际销售量应为2100千克

17. 解:设浩浩妈妈第一次在运力超市买了x瓶酸奶,根据题意得

经检验:x=5是所列方程的根

答:第一次在运力超市买了5瓶酸奶

18. (1)10,25,0.25

(2)大连市内某校100名学生寒假中花零花钱的数量

(3)1000×(0.3+0.1+0.05)=450人

19. (1)解:设树高AB为x米

(2)尺子、标杆;DE、CE、BC

20. 解:

选择意得牌油漆刚好用完所筹集的资金

21. (1)证明:过P作PE//AB

实践与应用:90 270

22. (1)22 2

说明:“x2—4x”看作从边长为x的正方形的面积上,减去两个长为x,宽为2的小长方形,为使其成为完全平方式,(即图形变为正方形),多减了一个边长为2的小正方形,必须加上一个边长为2的小正方形,即x2-4x+22=(x-2)2。

(2)x+4;4;25;1

(3)a2+2ab+b2=(a+b)2

⑦ 初二上册数学练习题

像这种问题不太好发啊。
我也在上初二,帮你找了几题:
1.下列关系中的两个量成正比例的是( )
A.从甲地到乙地,所用的时间和速度; B.正方形的面积与边长
C.买同样的作业本所要的钱数和作业本的数量;D.人的体重与身高
2.下列函数中,y是x的正比例函数的是( )
A.y=4x+1 B.y=2x2 C.y=- x D.y=
3.下列说法中不成立的是( )
A.在y=3x-1中y+1与x成正比例; B.在y=- 中y与x成正比例
C.在y=2(x+1)中y与x+1成正比例; D.在y=x+3中y与x成正比例
4.若函数y=(2m+6)x2+(1-m)x是正比例函数,则m的值是( )
A.m=-3 B.m=1 C.m=3 D.m>-3
5.已知(x1,y1)和(x2,y2)是直线y=-3x上的两点,且x1>x2,则y1与y2的大小关系是( )
A.y1>y2 B.y1<y2 C.y1=y2 D.以上都有可能
☆我能填
6.形如___________的函数是正比例函数.
7.若x、y是变量,且函数y=(k+1)xk2是正比例函数,则k=_________.
8.正比例函数y=kx(k为常数,k<0)的图象依次经过第________象限,函数值随自变量的增大而_________.
9.已知y与x成正比例,且x=2时y=-6,则y=9时x=________.
☆我能答
10.写出下列各题中x与y的关系式,并判断y是否是x的正比例函数?
(1)电报收费标准是每个字0.1元,电报费y(元)与字数x(个)之间的函数关系;
(2)地面气温是28℃,如果每升高1km,气温下降5℃,则气温x(℃)与高度y(km)的关系;
(3)圆面积y(cm2)与半径x(cm)的关系.

探究园
11.在函数y=-3x的图象上取一点P,过P点作PA⊥x轴,已知P点的横坐标为-2,求△POA的面积(O为坐标原点).

答案:
1.C 2.C 3.D 4.A 5.B 6.y=kx(k是常数,k≠0)
7.+1 8.三、一;增大 9.-3
10.①y=0.1x,y是x的正比例函数;
②y=28-5x,y不是x的正比例函数;
③y= x2,y不是x的正比例函数.
11.6.

⑧ 初二上册人教版数学练习题(50道)

几何部分
1. (湖北宜昌) 如图所示,BC=6,E、F分别是线段
AB和线段AC的中点,那么线段EF的长是( ).
(A)6 (B)5 (C)4.5 (D)3
2(2005年苏州)如图,已知等腰梯形ABCD的中位线
EF的长为6,腰AD的长为5,则该等腰梯形的周长为( )
A.11 B.16 C.17 D.22
3.(2004年河北)如图,在梯形ABCD中,AD//BC,对角线AC⊥BD,且AC=12,BD=9,则此梯形的 中位线长是( )
A. B.
C. D.
4.(玉溪市2005)如图,已知EF是梯形ABCD的中位线,
若AB=8,BC=6, CD=2,∠B的平分线交EF于G,
则FG的长是( )
A.1 B.1.5 C.2 D.2.5
5.(2005泰州)如图,梯形ABCD中,AD//BC,BD为对角线,
中位线EF交BD于O点,若FO-EO=3,则BC-AD等于 ( )
A.4 B.6 C.8 D.10

6.如图,梯形ABCD中,AD‖BC,E、F分别是AB、DC的中点,EF交BD与G,交AC与H,若AD=2,BC=5,则GH=___________

7.(广州)如图,在正方形ABCD中,AO⊥BD,OE、FG、HL
都垂直于AD,EF GH IJ都垂直于AO,
若已知S△AIJ=1,则S正方形ABCD= .
8.(上海05)在△ABC中,点D、E分别在边AB和AC上,
且DE‖BC,如果AD=2,DB=4,AE=3,那么EC= .
9.(黑龙江05)在相同时刻的物高与影长成比例,小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为( ).
A.60米 B.40米 C.30米 D.25米
10.(厦门2005)已知:如图,在△ABC中,∠ADE=∠C,则下列等式成立的是( )
A. ADAB=AEAC B. AEBC=ADBD
C. DEBC=AEAB D. DEBC=ADAB
11.(连云港市2005)如果三角形的每条边都扩大为原来的5倍,那么三角形的每个角( )
(A)都扩大为原来的5倍 (B)都扩大为原来的10倍
(C)都扩大为原来的25倍 (D)都与原来相等
12.(海淀05)如图,梯形ABCD中,AB‖DC,∠B=90°,
E为BC上一点,且AE⊥ED.若BC=12,DC=7,
BE:EC=1:2,求AB的长.

13. 在平面直角坐标系中,已知点A(-3,0),B(0,-4),C(0,1)过点C作直线 交 轴于点D,使得以点D、C、O为顶点的三角形与△AOB相似,这样的直线一共可以做出( )
A.一条 B.两条 C.四条 D.八条
14.如图,矩形ABCD的长AD = 9cm,宽AB = 4cm,AE = 2cm,线段MN = 3 cm,线段MN的两端在CB、CD上滑动,当⊿ADE与以M、N、C为顶点的三角形相似时,CM的长为 cm. 15(淄博市2004) 如图,∠1=∠2=∠3,
则图中相似三角形共有( )(A)1对(B)2对(C)3对 (D)4对

16.针孔成像问题)根据右图中尺寸
( ‖ )那么物像长 ( 的长)
与物长 ( 的长)之间函数关系的图象
大致是( )

17.(2005年北京)如图,在平行四边形ABCD中,E是AD上一点,连结CE并延长交BA的延长线于点F,则下列结论中错误的是( )
A. ∠AEF=∠DEC B. FA:CD=AE:BC C. FA:AB=FE:EC D. AB=DC
18.(2005年常德)如图,DE是ΔABC的中位线,
则ΔADE与ΔABC的面积之比是( ) A.1:1 B.1:2 C.1:3 D.1:4

19.(2004年龙岩)把一块周长为20cm的三角形铁片裁成四块形状、大小完全
相同的小三角形铁片(如图示),则每块小三角形铁片的周
长为 cm.

20..已知: 如图,AO是△ABC的∠A的平分线,BD⊥AO,
交AO的延长线于D,E是BC的中点,求证:DE= (AB-AC).

21. 已知:如图,E、F把四边形ABCD的对角线BD
三等分, CE,CF的延长线分别平分AB,AD.
求证: 四边形ABCD是平行四边形.

22.求证: 四边形的对角线的中点连线与对边中点的连线互相平分

23.如图,在四边形ABCD中,AB=CD,E、F、分别是AD、BC的中点,
延长BA、FE交于G,延长CD、FE交于H.,求证:∠1=∠2

24.已知:如图,梯形ABCD,AB‖DC,AB+CD=8,AB:CD=7:3,
E,F分别是AC、BD的中点, 求EF的长

25.如图, △ABC中,P为AB的中点,D为AP的中点,
E、Q为AC, CD的中点,F为PQ的中点,EF交AB于G,
求证:DG=BG.

26.(2005广东省)如图,等腰梯形ABCD中,AD‖BC,M、N分别
是AD、BC的中点,E、F分别是BM、CM的中点。
(1)求证:四边形MENF是菱形;
(2)若四边形MENF是正方形,请探索等腰梯形ABCD
的高和底边BC的数量关系,并证明你的结论。

27. (四川资阳) 如图5,已知点M、N分别是△ABC的边BC、
AC的中点,点P是点A关于点M的对称点,点Q是点B关于点N的对称点,
求证:P、C、Q三点在同一条直线上.

28.如图,四边形ABCD中,AC=6,BD=8且AC⊥BD顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1;再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2……如此进行下去得到四边形AnBnCnDn .
(1)证明:四边形A1B1C1D1是矩形;
(2)写出四边形A1B1C1D1和四边形A2B2C2D2的面积;
(3)写出四边形AnBnCnDn的面积;
(4)求四边形A5B5C5D5的周长.

29.已知:如图,AD平分∠BAC,DE‖CA,AB=15,
AC=12, 求DE的长.

30.已知:如图,D在△ABC的BC边上,DF‖BA,
DE‖CA, DE∶DF=1∶2,AB=6,AC=4,
求DE的长.

31.已知:如图,△ABC中,AD平分∠BAC,AB=5,
AC=3,BC=5.6, 求BD和DC的长.

32.已知:如图, ABCD,E是CD延长线上一点,BE
交AD于F,AB=12,DE=3,BE=30, 求BF和EF的长.

33. 已知:如图, ABCD, E为BC的中点,BF= AB,EF与
对角线BD相交于G,若BD=20, 求BG的长.

34.已知:如图,△ABC中,直线DE交AB、AC、BC于D、E、
F,AE=BF
求证:

35.已知:如图,AD为△ABC的中线,E为AD上一点,
CE延长线交AB于F,
求证:

36.已知:如图,AD为△ABC的中线,M为AD中点,
BM延长线交AC于N,
求证:AN∶CN=1∶2

37.已知:如图,M、N分别为AB、CD中点,
AD、BC分别交MN于E、F
求证:ED∶EA=FC∶FB

38.已知:如图,AD⊥BC于D,E是AC中点,连结DE交BA于F
求证:

39.已知:如图, ABCD,AC、BD交于O,OF交BC于E,
交AB延长线于F,
求证:BE(AB+2BF)=BC•BF

40.已知:如图,D,E是AB、AC边上的点,连结DE并延长交BC延长线于F, 且AD=AE,
求证:

41.(本题6分)如图,直角三角形ABC中,∠C = 90°,AC = 8,BC = 6,且AB2=AC2+BC2将AB
十等分,P1、P2、……、P9为等分点,连CP1、CP2、……、CP9,请你在图中找出一对相似三角形,
并说明它们相似的理由。

42.(2005年无锡)已知图1和图2中的每个小正方形的边长都是1个单位.
(1)将图1中的格点△ABC,先向右平移3个单位,再向上平移2个单位,得到△A1B1C1,请你在图1中画出△A1B1C1.
(2)在图2中画出一个与格点△DEF相似但相似比不等于1的格点三角形.

43.如图,在△ABC中,∠C=90°,AC=6,BC=8,M是BC的中点,P为AB上的一个动点,(可以与A、B重合),并作∠MPD=90°,PD交BC(或BC的延长线)于点D.
(1)记BP的长为x,△BPM的面积为y,求y关于x的函数关系式,并写出自变量x的取值范围;
(2)是否存在这样的点P,使得△MPD与△ABC相似?若存在,请求出x的值;若不存在,请说明理由.

⑨ 新人教版数学八年级上册 习题14.3 复习题14 全部答案

14.3
1、⑴X=-17/5,⑵X=-24/5,⑶X=3/5
2、⑴X=5/4,⑵X=-12/5
3、X=-4 X>-4 X<-4 X<-8/3
5、X=-6.4Y=-15
6、⑴X=1,Y=1,⑵X=16/5,Y=2/5
7、0.5t≥6,t≥12,0.5t≤8.5,t≤17
8、Y=2.4(0<X≤3),Y=X-0.6(X>3,且X为整数)
9、在A商场花0.8元,B商场花X元(0≤X≤200)或200+0.7(X-200)=0.7X+60(X>200)
然后比较
10、⑴Y=5X(0≤X≤4)
⑵Y=5/4X+15(4<X≤12)
⑶由Y=5X知,每分钟进水5升,由5-(5/4×5+15-20)=15/4,每分钟出水15/4升。
11、设X秒为匀速跑的时间。
小明路程:L=ax+1600,小刚路程l=bx+1450
可得方程组:
100a+1600=100b+1450
300a+1600=200b+1450
这次越野跑的全程为2050。

热点内容
数学六年级上册小状元答案 发布:2025-08-05 06:31:13 浏览:281
火锅鸡的历史 发布:2025-08-05 06:06:24 浏览:605
教育咨询经营范围 发布:2025-08-05 03:05:28 浏览:580
教师言行 发布:2025-08-05 01:31:21 浏览:436
男主班主任 发布:2025-08-05 00:21:52 浏览:17
很帅老师 发布:2025-08-04 22:43:17 浏览:523
生物必修一知识点填空 发布:2025-08-04 21:25:07 浏览:603
山东教师资格证考点 发布:2025-08-04 20:05:03 浏览:155
星球大战生物 发布:2025-08-04 19:59:40 浏览:60
2015年幼儿园师风师德心得体会 发布:2025-08-04 19:22:32 浏览:813