现代数学方法
⑴ 现代数学方法概论论文
现代数学方法概论论文
经济数学问题例说自1993年5月高考命题组提请注意数学的应用以后,1995年全国高考文理科试题中又出现了一道关于淡水鱼养殖的市场预测的应用题,这是一道数学应用方面的好题,由于它是经济数学方面的问题,从而在建立社会主义市场经济新体制的今天,格外地引起大家的注目。
所谓经济数学问题,就是用数学方法来研究经济学的一些问题,如经济增长率、人口增长率等方面的国民经济问题,银行业务问题,证券市场问题,保险计算问题,消费与市场预测问题,投入产出问题,等等。上述问题中,能用中学生可以接受的初等数学方法解决的一些基础问题都应当引起我们的重视。
下面举几个例子。
例1:某商品的市场需求量P(万件)?、市场供应量Q与市场价格x(元/件)分别近似地满足下列关系: P=-x+70; Q=2x-20当P=Q时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量。
(1)求平衡价格和平衡需求量;
(2)若每件商品征税3元,求新的平衡价格;
(3)若要使平衡需求量增加4万件,政府对每件商品应给予多少元补贴?
解:(1)求得平衡价格为30元/件,平衡需求量为40万件。
(2)设新的市场平衡价格为x元/件,此即为消费者支付价格,而提供者得到的价格则为(x一3)元/件,依题意得-x+70=2(x-3)-20,从而解得新的平衡价格为32元/件。
(3)设政府给予t元/件补贴,此时的市场平衡价格亦即消费者支付价格为x元/件,则提供者收到的价格为(x+t)元/件,依题意得方程组-x+70=44
2(x+t)-20=44解之得 x=26 t=6
例2:某产品日产量为20台,每台价90元,若日产量每增加1台,则单价就要降低3元,问如何设计生产,使日总收入最大?
解:设每日多生产x台,总收入为y元,依题意得 y=(90-3x)(20+x)易得当日产量为25台时,总收入最大。
例3:某厂今年初贷款100万元,复利计息,年利率为10%(即本年的利息计入次年的本金生息),计算从今年末开始每年偿还固定的金额,恰在第12年末还清,问每年偿还的金额是多少万元?
解:设每年偿还的金额为X万元,依题意得: x+x(1+10%)+x(1+10%)2+…+x(1+10%)11=100(1+10%)12解之得x=15(万元)
09-12-18 | 添加评论 | 打赏
0
hellomydram11
例如:
极限的求法
1. 直接代入法
适用于分子,分母的极限不同时为零或不同时为
例 1. 求 .
分析 由于 ,
所以采用直接代入法.
解 原式=
2.利用极限的四则运算法则来求极限
为叙述方便,我们把自变量的某个变化过程略去不写,用记号表示在某个极限过程中的极限,因此极限的四则运算法则可确切地叙述如下:
定理 在同一变化过程中,设都存在,则
(1)
(2)
(3)当分母时,有
总的说来,就是函数的和,差,积,商的极限等于函数极限的和,差,积,商.
求.
解
3.无穷小量分出法
适用于分子,分母同时趋于 ,即 型未定式
例3.
分析 所给函数中,分子,分母当 时的极限都不存在,所以不能直接应用法则.注意到当 时,分子,分母同时趋于 ,首先将函数进行初等变形,即分子,分母同除 的最高次幂,可将无穷小量分出来,然后再根据运算法则即可求出极限.
为什么所给函数中,当 时,分子,分母同时趋于 呢 以当 说明:因为 ,但是 趋于 的速度要比 趋于 的速度快,所以 .不要认为 仍是 (因为 有正负之分).
解 原式 (分子,分母同除 )
(运算法则)
(当 时, 都趋于 .无穷大的倒数是无穷小.)
4. 消去零因子法
适用于分子,分母的极限同时为0,即 型未定式
例4.
分析 所给两个函数中,分子,分母的极限均是0,不能直接使用法则四,故采用消去零因子法.
解 原式= (因式分解)
= (约分消去零因子 )
= (应用法则)
=
5. 利用无穷小量的性质
例5. 求极限
分析 因为 不存在,不能直接使用运算法则, 故必须先将函数进行恒等变形.
解 原式= (恒等变形)
因为 当 时, , 即 是当 时的无穷小,而 ≤1, 即 是有界函数,由无穷小的性质:有界函数乘无穷小仍是无穷小,
得 =0.
6. 利用拆项法技巧
例6:
分析:由于=
原式=
7. 变量替换
例7 求极限 .
分析 当 时,分子,分母都趋于 ,不能直接应用法则,注意到 ,故可作变量替换.
解 原式 =
= (令 ,引进新的变量,将原来的关于 的极限转化为 的极限.)
= . ( 型,最高次幂在分母上)
8. 分段函数的极限
例8 设 讨论 在点 处的极限是否存在.
分析 所给函数是分段函数, 是分段点, 要知 是否存在,必须从极限存在的充要条件入手.
解 因为
所以 不存在.
注1 因为 从 的左边趋于 ,则 ,故 .
注2 因为 从 的右边趋于 ,则 ,故 .
宏志网校 俊杰
1、利用定义求极限。
2、利用柯西准则来求。 柯西准则:要使{xn**有极限的充要条件使任给ε>0,存在自然数N,使得当n>N时,对于 任意的自然数m有|xn-xm|<ε.
3、利用极限的运算性质及已知的极限来求。 如:lim(x+x^0.5)^0.5/(x+1)^0.5 =lim(x^0.5)(1+1/x^0.5)^0.5/(x^0.5)(1+1/x)^0.5 =1.
4、利用不等式即:夹挤定理。
5、利用变量替换求极限。 例如lim (x^1/m-1)/(x^1/n-1) 可令x=y^mn 得:=n/m.
6、利用两个重要极限来求极限。 (1)lim sinx/x=1 牐爔->0 (2)lim (1+1/n)^n=e 牐爊->∞ 7、利用单调有界必有极限来求。
8、利用函数连续得性质求极限。
9、用洛必达法则求,这是用得最多的。
10、用泰勒公式来求,这用得也很经常。
按一定次序排列的一列数称为数列(sequence of number)。数列中的每一个数都叫做这个数列的项。排在第一位的数列称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项。所以,数列的一般形式可以写成
a1,a2,a3,…,an,…
简记为{an},项数有限的数列为“有穷数列”(finite sequence),项数无限的数列为“无穷数列”(infinite sequence)。
从第2项起,每一项都大于它的前一项的数列叫做递增数列;
从第2项起,每一项都小于它的前一项的数列叫做递减数列;
从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列;
各项呈周期性变化的数列叫做周期数列(如三角函数);
各项相等的数列叫做常数列。
通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式表示,这个公式就叫做这个数列的通项公式。
数列中数的总数为数列的项数。特别地,数列可以看成以正整数集N*(或它的有限子集{1,2,…,n})为定义域的函数an=f(n)。
如果可以用一个公式来表示,则它的通项公式是a(n)=f(n).
[编辑本段]表示方法
如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。如an=(-1)^(n+1)+1
如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。如an=2a(n-1)+1 (n>1)
[编辑本段]等差数列
【定义】
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列(arithmetic sequence),这个常数叫做等差数列的公差(common difference),公差通常用字母d表示。
【缩写】
等差数列可以缩写为A.P.(Arithmetic Progression)。
【等差中项】
由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmetic mean)。
有关系:A=(a+b)/2
【通项公式】
an=a1+(n-1)d
an=Sn-S(n-1) (n>=2)
【前n项和】
Sn=n(a1+an)/2=n*a1+n(n-1)d/2
【性质】
且任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式。
从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,则有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
设a1,a2,a3为等差数列。则a2为等差中项,则2倍的a2等于a1+a3,即2a2=a1+a3。
【应用】
日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别
时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。
若为等差数列,且有an=m,am=n.则a(m+n)=0。
[编辑本段]等比数列
【定义】
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列(geometric sequence)。这个常数叫做等比数列的公比(common ratio),公比通常用字母q表示。
【缩写】
等比数列可以缩写为G.P.(Geometric Progression)。
【等比中项】
如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。
有关系:G^2=ab;G=±(ab)^(1/2)
注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G^2=ab是a,G,b三数成等比数列的必要不充分条件。
【通项公式】
an=a1q^(n-1)
an=Sn-S(n-1) (n≥2)
【前n项和】
当q≠1时,等比数列的前n项和的公式为
Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q) (q≠1)
【性质】
任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:aq·ap=ar*2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
性质:
①若 m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;
②在等比数列中,依次每 k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
(5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)
在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方。
【应用】
等比数列在生活中也是常常运用的。
如:银行有一种支付利息的方式---复利。
即把前一期的利息赫本金价在一起算作本金,
在计算下一期的利息,也就是人们通常说的利滚利。
按照复利计算本利和的公式:本利和=本金*(1+利率)^存期
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。
(1)等比数列的通项公式是:An=A1*q^(n-1)
若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
(2)求和公式:Sn=nA1(q=1)
Sn=A1(1-q^n)/(1-q)
=(a1-a1q^n)/(1-q)
=a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n)
(前提:q不等于 1)
任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
[编辑本段]一般数列的通项求法
一般有:
an=Sn-Sn-1 (n≥2)
累和法(an-an-1=... an-1 - an-2=... a2-a1=...将以上各项相加可得an)。
逐商全乘法(对于后一项与前一项商中含有未知数的数列)。
化归法(将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列)。
特别的:
在等差数列中,总有Sn S2n-Sn S3n-S2n
2(S2n-Sn)=(S3n-S2n)+Sn
即三者是等差数列,同样在等比数列中。三者成等比数列
不动点法(常用于分式的通项递推关系)
[编辑本段]特殊数列的通项的写法
1,2,3,4,5,6,7,8....... ---------an=n
1,1/2,1/3,1/4,1/5,1/6,1/7,1/8......-------an=1/n
2,4,6,8,10,12,14.......-------an=2n
1,3,5,7,9,11,13,15.....-------an=2n-1
-1,1,-1,1,-1,1,-1,1......--------an=(-1)^n
1,-1,1,-1,1,-1,1,-1,1......--------an=(-1)^(n+1)
1,0,1,0,1,0,1,01,0,1,0,1....------an=[(-1)^(n+1)+1]/2
1,0,-1,0,1,0,-1,0,1,0,-1,0......-------an=cos(n-1)π/2=sinnπ/2
9,99,999,9999,99999,......... ------an=(10^n)-1
1,11,111,1111,11111.......--------an=[(10^n)-1]/9
1,4,9,16,25,36,49,.......------an=n^2
1,2,4,8,16,32......--------an=2^(n-1)
[编辑本段]数列前N项和公式的求法
(一)1.等差数列:
通项公式an=a1+(n-1)d 首项a1,公差d, an第n项数
an=ak+(n-k)d ak为第k项数
若a,A,b构成等差数列 则 A=(a+b)/2
2.等差数列前n项和:
设等差数列的前n项和为Sn
即 Sn=a1+a2+...+an;
那么 Sn=na1+n(n-1)d/2
=dn^2(即n的2次方) /2+(a1-d/2)n
还有以下的求和方法: 1,不完全归纳法 2 累加法 3 倒序相加法
(二)1.等比数列:
通项公式 an=a1*q^(n-1)(即q的n-1次方) a1为首项,an为第n项
an=a1*q^(n-1),am=a1*q^(m-1)
则an/am=q^(n-m)
(1)an=am*q^(n-m)
(2)a,G,b 若构成等比中项,则G^2=ab (a,b,G不等于0)
(3)若m+n=p+q 则 am×an=ap×aq
2.等比数列前n项和
⑵ 数学物理方法与现代数学物理方法有什么区别要具体的,谢谢!
数学物理方法是物理类专业的必修课,也供一些工科类学科选修,一般在学完高数之后,开始学四大力学之前,为后续专业课程提供数学知识;
你说的现代数学物理方法应该是你们学校自己开的课,请咨询你们学校的师兄师姐,网上的回答不具有参考意义.
⑶ 数学方法包括哪些
所谓方法,是指人们为了达到某种目的而采取的手段、途径和行为方式中所包含的可操作的规则或模式.人们通过长期的实践,发现了许多运用数学思想的手段、门路或程序.同一手段、门路或程序被重复运用了多次,并且都达到了预期的目的,就成为数学方法.数学方法是以数学为工具进行科学研究的方法,即用数学语言表达事物的状态、关系和过程,经过推导、运算与分析,以形成解释、判断和预言的方法.
数学方法具有以下三个基本特征:一是高度的抽象性和概括性;二是精确性,即逻辑的严密性及结论的确定性;三是应用的普遍性和可操作性.
数学方法在科学技术研究中具有举足轻重的地位和作用:一是提供简洁精确的形式化语言,二是提供数量分析及计算的方法,三是提供逻辑推理的工具.现代科学技术特别是电子计算机的发展,与数学方法的地位和作用的强化正好是相辅相成.
在中学数学中经常用到的基本数学方法,大致可以分为以下三类:
(1)逻辑学中的方法.例如分析法(包括逆证法)、综合法、反证法、归纳法、穷举法(要求分类讨论)等.这些方法既要遵从逻辑学中的基本规律和法则,又因为运用于数学之中而具有数学的特色.
(2)数学中的一般方法.例如建模法、消元法、降次法、代入法、图象法(也称坐标法,在代数中常称图象法,在我们今后要学习的解析几何中常称坐标法)、比较法(数学中主要是指比较大小,这与逻辑学中的多方位比较不同)、放缩法,以及将来要学习的向量法、数学归纳法(这与逻辑学中的不完全归纳法不同)等.这些方法极为重要,应用也很广泛.
(3)数学中的特殊方法.例如配方法、待定系数法、加减(消元)法、公式法、换元法(也称之为中间变量法)、拆项补项法(含有添加辅助元素实现化归的数学思想)、因式分解诸方法,以及平行移动法、翻折法等.这些方法在解决某些数学问题时也起着重要作用,我们不可等闲视之.
⑷ 现代数学方法是考研数学的内容吗
不是,数一、二、三还有数农都不考的。
⑸ 现代小学数学教学方法的发展呈现有哪些新的特点
进入20世纪80年代以来,伴随着整个教学领域的深入改革,小学数学教学方法也呈现出蓬勃发展的势头。广大的小学数学教师和教学研究人员,一方面对我国传统的小学数学教学方法进行大胆的完善与改造,一方面积极地引进国外先进的教学方法,使我国新的教学方法,如雨后春笋,竞相涌现。
一、小学数学新教学方法介绍
(一)发现法
发现法是由美国当代著名教育家、认知心理学家布鲁纳50年代至60年代初所倡导的一种教学方法。
1、发现法的基本含义及特点
发现法是指教师不直接把现成的知识传授给学生,而是引导学生根据教师和教科书提供的课题与材料,积极主动地思考,独立地发现相应的问题和法则的一种教学方法。
发现法与其他教学方法相比较,有以下几个特点:
(1)发现法强调学生是发现者,让学生自己去独立发现、去认识,自己求出问题的答案,而不是教师把现成的结论提供给学生,使学生成为被动的吸收者。
(2)发现法强调学生内在学习动机的作用。学生最好的学习动机莫过于他们对所学课程具有内在的兴趣。发现法符合儿童好玩、好动、好问和喜欢追根求源的心理特点,遇到新奇、复杂的问题,他们就会积极地去探索。教师在教学中充分利用这一特点,利用新奇、疑难和矛盾等引发学生的思维冲突,促使他们产生强烈的求知欲望,主动地去探究和解决问题,改变了以往传统教学法仅利用外来刺激促发学生学习的做法。
(3)发现法使教师的主导作用表现为潜在的、间接的。由于该法是让学生运用已有的知识和教师提供的各种学习材料、直观教具等,自己去观察,用头脑去分析、综合、判断、推理,亲自去发现事物的本质规律,所以在这个过程中教师的主导作用是潜在的、间接的。
2、发现法的主要优点及其局限性
发现法有如下几个主要优点。
(1)可以使学生学习的外部动机转化为内部动机,增强学习的信心。
(2)有助于培养学生解决问题的能力。由于发现法经常练习怎样解决问题,所以能使学生学会探究的方法,培养学生提出问题和解决问题的能力,以及乐于创造发明的态度。
(3)运用发现法,有助于提高学生的智慧,发挥学生的潜力,培养学生优良的思维品质。
(4)有利于学生对知识的记忆和巩固。在发现学习的过程中,学生可就已有的知识结构进行内部改组,这种改组,可以使已有的知识结构与要学习的新知识更好的联系起来,这种系统化和结构化的知识,就更加有助于学生的理解、巩固和应用。
发现法也有一定的局限性。
(1)就教学效率而言,使用发现法需要花费的时间比较多。因为学生获得知识的过程是再发现的过程,一切真理都要学生自己去获得,或者重新发现,而不是由教师简单地告诉学生,因此,教学过程必然经历一个较长时间的摸索过程。
(2)就教学内容而言,它的适应是有一定范围的。发现法比较适用于具有严格逻辑的数、理、化等学科,对于人文学科是不太适用的。就适用的学科而言,也是只适用于概念和前后有联系的概括性知识的教学,如求平均数、运算定律等。而概念的名称、符号、表示法等,仍需要由教师来讲解。
(3)就教学的对象而言,它更适用于中、高年级的学生。因为发现学习必须以一定的基础知识和经验为发现的前提条件,因此,年级越高的学生,独立探索的能力也就会越强。所以,并非所有的教学内容和教学对象都有必要和可能采用发现法教学。
3、发现法教学举例(一位数除两位数的教学)
给出一道题如39÷3。学生可先拿39个物品,每3个一份,把它们分成13份。做几个这样的题目后,可以让他们把物品10个组成一组。例如,给出这样一道题:“哈利买了4条糖果,每条有10块。他吃了1块,把剩下的每3块包成一包,分给同学们,分给了几个同学?”
学生可能有以下几种解法:
(1)每3个分成一堆,然后数出分得的堆数。
(2)从3个10中各先拿出1个,剩下的每9个分给3个同学,再把其余的也每3个分成一堆。
9+9+9+3+3+3+3=39(块)
↓↓↓↓↓↓↓
3+3+3+1+1+1+1=13(人)
(3)与(2)相似,但他们看出有4个9。
9+9+9+9+3=39(块)
↓↓↓↓↓
3+3+3+3+1=13(人)
(4)他们看出3个10正好分给10个人,剩下的每3个分成一组。
30+3+3+3=39(块)
↓ ↓↓↓
10+1+1+1=13(人)
(5)与(4)相似,但他们看出剩下的9正好分给3个人。
30+9=39(块)
↓ ↓
10+3=13(人)
在学生得出解法之后,全班进行讨论。教师对不同的算法不给出评价。再出一道题,许多学生会选用比他第一次用的更为简便的方法。教师进一步提出引导性问题,促使学生找出更为有效的计算方法,形成一般的竖式计算。
(二)尝试教学法
尝试教学法是小学数学教学方法中一种影响比较大的教学方法。它是一种具有中国特色的教学方法。尝试教学法是由常州市教育科学研究所的邱学华老师最早设计和提出的,经过在一些地区和全国逐步推广,到现在已有十多年的时间,取得了很好的教学效果,甚至在国际上也有一定的影响。
1、尝试教学法的基本内容
什么是尝试教学法?尝试教学法的基本思路就是:教学过程中,不是先由教师讲,而是让学生在上知识的基础上先来尝试练习,在尝试的过程中指导学生自学课本,引导学生讨论,在学生尝试练习的基础上,教师再进行有针对性的讲解。尝试教学法的基本程序分为五个步骤:出示尝试题;自学课本;尝试练习;学生讨论;教师讲解。
尝试教学法与普通的教学方法的根本区别就在于,改变教学过程中“先讲后练”的方式,以“先练后讲”的方式作为教学的主要形式。
尝试教学法产生的背景是:在20世纪80年代初,我国教学改革已经走上了正轨,国内有许多教学改革的实验研究。同时,也有许多国外的教学改革的经验大量地介绍进来。在这种情况下,人们开始思考如何根据我国的教学改革的实验,研究和创造具有中国特色的,既符合现代教育改革的需要,又具有较强的操作性的教学方法。邱学华老师多年来进行小学数学教学的研究,在“文革”前后进行了多项小学数学教学改革方面的调查与实验,深感研究一种新的小学数学教学法的必要性。因此,他在分析和对比国内外教学改革的经验的基础上,提出了尝试教学法的设想。他借鉴了中国古代的“启发式教学”原理、发现法和自学辅导法教学的思路,综合地分析和研究这些教学法的长处与不足,试图形成一种独特的,具有操作性和可行性的教学方法。
2、尝试教学法的教学程序和课堂教学结构
尝试教学法基本的教学程序可分为五个步骤。
(1)出示尝试题
尝试题一般是与课本上的例题相仿的题目,是课本上问题的变形。
如书上例题:1/2+1/3
尝试题:1/4+5/6
出示尝试题的目的在于激发学生的学习兴趣,使学生明确这节课所学习的内容。
(2)自学课本
在学生尝试练习,对这个问题产生了一定的兴趣之后,教师引导学生看一看书上对这个题目是怎样讲的。教师提出一些与解题思路有关的问题:如上题,“分母不同怎么办?”“为什么要通分?”
通过自学课本,学生可以知道自己对个问题认识的情况,教师也可以了解学生在学习中遇到的困难是什么。
(3)尝试练习
学生通过自学课本,对所学的内容有了一个基本了解,并且大部分学生对解答尝试题有了办法,这时,就再出尝试题让学生试一试。一般采取让好、中、差三类同学板演,其他同学同时在练习本上做的办法。
(4)学生讨论
在尝试练习时,可能有的同学做得不对,也可能出现不同的做法。可以让学生结合自己的解题方法,进行讨论。
(5)教师讲解
学生会做题,并不等于掌握了知识。教师这时可按照一定逻辑系统向学生讲解所学的内容。这种讲解是有针对性的,是在学生对所学的内容有了初步认识的基础上,在学生已经通过某种方式学会了或部分学会了解题方法时进行的讲解,更能够突出重点。
以上五个步骤是尝试教学法在进行新课时所用的,作为一节完整的课,尝试教学法的课堂教学结构包括以下六个环节:
(1)基本训练(5分钟);
(2)导入新课(2分钟);
(3)进行新课(15分钟);
(4)巩固练习(6分钟);
(5)课堂作业(10分钟);
(6)课堂小结(2分钟)。
这一教学结构的优点在于:突出了教学重点;增加了练习时间;改变了满堂灌的做法。
3、尝试教学法的优越性和局限性
其优越性表现在如下几方面。
(1)有利于培养学生的探索精神和自学能力。学生在学习的过程中,都想自己试一试,用自己的方法来解决问题。
(2)有利于提高课堂教学效率。它可以充分利用教学中的最佳时间,使学生尽快地进入新内容的学习,并以较多的时间进行尝试性和巩固性的练习。
(3)有利于大面积提高教学质量。这种教学方法具有很强的操作性,教师一般都可以掌握,并且更有利于差等生的学习。因此它可以适用于更广泛的场合,从而大面积地提高教学质量。
其局限性表现在如下几方面。
(1)需要学生具备一定的数学基础和自学能力,对年龄较小的学生不适合用这种教学方法。
(2)适合于后继课的教学,对于新的概念原理的教学不宜使用。
(3)对于操作性较强的内容不适用于运用。
4、尝试教学法应用举例
尝试教学法在数学教学中应用比较广泛。适用于许多内容的教学。下面是:“商中间有零的除法”的教学实例。(梗概)
(1)基本训练(略)
口算:
板演:645÷3
(2)导入新课
把练习题中的645改成615,来继续学习。
(3)进行新课
①出示尝试题:615÷3
②尝试练习
试试看,这道题和以前的题有些不同,能做出这道题吗?
③自学课本
④学生讨论
针对学生的三种算法进行讨论(明确其中只有第二种算法是正确的):
2 5
25
3
⑤教师讲解
(4)巩固练习
(5)课堂作业
(6)课堂小结
(三)自学辅导法
1、自学辅导法的基本含义
自学辅导法是由中国科学院心理研究所卢仲衡教授主持的“中学数学自学辅导实验”中所采用的教学方法。在中学数学教学中,它取得了很大的成功。这种方法的基本思想,对于小学数学教学也有一定影响。有人也在小学进行相似的实验研究。特别是运用自学辅导教学的基本原理进行小学数学教学的改革。
自学辅导的实验研究最早是在1958年提出并且进行实验的,开始是借鉴了西方的程序教学的原理,实行小步子、多反馈的教学原则,后来进行了改造,并命名为自学辅导法。
自学辅导法是一种在教师的指导和辅导下,以学生的自学为主的教学方法。在小学数学教学中运用自学辅导法一般是指在教师的指导下,学生通过阅读课本,获得知识与技能的教学方法。
2、自学辅导法的教学程序
自学辅导法运用心理学的原理,采取适当步子、及时反馈的原则重新编写教材,实行三个本子综合运用,即课本、练习本、答案本。运用自学辅导法,在教学中以学生的自学为主,规定了一节课中学生用于自学的时间在30~35分钟,这包括自学、自练、自检。教师用于讲解的时间一般不超过15分钟。
自学辅导法在教学中的基本步骤分为五步。
(1)提出课题。教师可以直接导入新课,也可以复习有关知识后提出课题,后一种方法更加适合小学生的学习特点。对高年级学生提出课题的同时,还应提供自学提纲,使其带着问题自学,围绕课题的中心问题边读边想,求得问题的解决。
(2)学生自学。这一步主要让学生独立阅读课本,与此同时教师进行必要的指导。教师要从实际出发,根据不同年级、不同认知水平和教材难易选用相应的方式指导自学,考题指导要提纲挈领、简明扼要。
(3)答疑解难。针对学生在自学中出现的问题,教师有针对性地进行解答,也可以启发学生进行讨论互相解答。为进一步提高学生自学能力,在答疑之后,还要以再让学生阅读课本以巩固所学的内容。
(4)整理和小结。由教师出题对学生学习效果进行检查,如发现有理解方面的问题要及时补救,还要对所学的内容进行归纳小结。小结时尽量让学生运用准确的数学语言进行概括,得出结论,逐步培养学生运用数学语言进行表达的能力。
(5)巩固和应用。根据教学内容布置课堂独立作业,目的是使学生进一步理解和巩固知识,初步形成技能。
3、对自学辅导法的评价
此法的主要优点在于:能充分调动学生学习的主动性,使学生有更多的机会独立思考,通过自学掌握知识,有利于自学能力的培养。这种教法,能在课堂上基本解决问题,大大减轻了学生课业负担。由于学生在课堂上能够及时改正作业中的错误,使得教师从作业中解放出来,将更多的时间用来备课和研究学生问题,有利于提高教学质量。此外,学生可以在课外多看其他参考书,扩大知识面,有利于学生全面发展。
自学辅导法不仅是一种教学方法,而且是教学思想、教学内容、教学方法的综合。特别是它是基于教材内容的选择与编排的一种教学方法。因此,它可以看作是一种综合的教学方法。
4、自学辅导法教学实例(比例的意义和基本性质)
具体教学过程:
(1)教师谈话
(2)准备练习
(3)进行新课
①出示例题和自学思考题
例题:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。
时间(时)
2
5
路程(千米)
80
200
从表中可以看到,这辆汽车:
第一次所行驶的路程和时间的比是 ;
第二次所行驶的路程和时间的比是 。
这两个比的比值是多少?它们有什么关系?
思考:什么是比例?组成比例需要什么条件?由这几个条件可以得到比例吗?如果把比例写成分数的形式是怎样的?比例的基本性质是什么?
②引导自学,总结法则
引导学生观察两个比例,说出比例的意义。
引导学生集体讨论:组成比例的条件。
让学生将比例转化为分数的形式。
引导学生练习,思考:比和比例的区别。
让学生认识比例各部分的名称。
引导学生通过运用加、减、乘、除不同的方法,探索比例的基本性质。
③质疑问难、精讲点拨
教师根据学生提出的问题,在解释疑惑的基础上,指出比例的基本性质:在比例里,两外项之积等于两内项之积,这叫做比例的基本性质。
(4)课堂练习
(四)“探究—研讨”法
“探究—研讨”法是美国的一位教学法专家兰·本达(Lan Benda)教授提出来的。在美国有一定的影响。80年代初介绍到我国。在理科教学和数学教学中都有广泛的应用。
1、“探究—研讨”法的基本内容
“探究—研讨”法的基本思路是把教学分为两个大的环节,即“探究”和“研讨”。
第一个环节“探究”是指在教师的指导下,学生自己去探索。教师为学生提供一定的问题情景和必要的操作材料,让学生自己通过操作、摆弄,研究问题中各种因素或数量的关系。教师在教学活动的过程中,给予适当的指导。
在探究过程中,为学生提供有结构的材料是一个重要的因素。教师应当结合教学的内容,为学生选择充分的学习和研究的材料。如,彩色木条、几何拼板等。
第二环节“研讨”是给学生充分发表自己意见的机会。学生在前一个阶段,对所研究的问题都有一定的认识。在这个阶段,教师组织学生,对自己所看到的、想到的发表意见,充分利用语言的交流,使学生了解更多的信息。并且在研讨的过程中,可以互相启发,对所研究的问题有更全面和深刻的认识。最后由师生共同找出所学习问题的规律或结论。
在具体的教学过程中,可以不受这两个环节的限制,灵活地组织和运用。
2、“探究—研讨”法的主要特点
“探究—研讨”法有以下几个主要特点。
一是能充分发挥学生的主动性和创造性。
二是教师的主导作用体现在选择恰当的材料和设计有利于学生探究的问题情境中。
三是形成一种多向交流的课堂教学气氛。
3、“探究—研讨”法的应用举例(求平均数问题)
先把全班学生分成若干个小组,每组四个人。
量出每个学生的身高,并根据测量的身高剪下一张纸条。教师提出,“怎样知道四个人连起来一共有多高?”“四个人平均有多高?”
然后教师说明什么是平均数。并提出“如何求出全班同学的平均身高?”“怎样表示出这个平均身高?”学生说出可以把全班的身高加起来,然后再用总人数去除。接着学生把表示每一个人身高的纸条贴在墙上钉的一张纸上,在平均数的地方画一条线。发现有些在线的下方,有些在线的上方。并分别用“-”和“+”来表示。学生把高出来的部分剪下来,恰好可以补上低下去的那一部分。学生感到非常兴奋。
接下来又有同学提出了计算平均数的简便方法。找出最矮的同学的身高。把全班同学高出这个数字的值加起来,再除以全班总人数,再加上最矮的同学的身高,就是全班的平均身高。
还有的同学提出了随便找一个标准线,与这个标准线进行比较计算平均身高的简便方法。
二、小学数学教学方法改革的特点分析
过去,多数人认为学生课堂上学习的数学知识主要是指数学事实(如概念、公式、法则、算理等等),但随着主体性教育理论的发展,随着数学教育研究的不断深入,随着人们对学校数学教育本质的深入反思,数学理论与实践工作者逐渐认识到:学样数学主要是“活动的、操作的”数学,而不是形式化的数学。“学生应经历数学化,而非数学;抽象化,而非抽象;步骤化,而非步骤;形式化,而非形式;算法化,而非算法;语言表述,而非语言”的数学学习过程。因此,课堂里学习的数学认识不仅包括数学事实,而且包括数学活动经验。新授课的教学不应再是以往以教师系统传授教材内容为主的单向教学模式,而是“师生之间、学生之间交往互动与共同发展的过程。数学教学应紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动,使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,以及学好数学的愿望。教师是学生数学活动的组织者、引导者与合作者;要根据学生的具体情况,对教材进行再加工,有创造地设计教学过程;要正确认识学生个体差异,因材施教,使每个学生都在原有的基础上得到发展;要让学生获得成功的体验,树立学好数学的自信心。”伴随着新的数学课程改革的理念,以及哲学、政治、科技、文化等方面的发展。现代教学方法的发展呈现了新的特点。
第一,以充分调动学生的学习主动性与发挥教师的主导作用相结合为基本特征,力求教与学的最佳结合。以赫尔巴特(J.F.Herbert)为代表的传统的“三中心”,强调教师的绝对权威和严格的纪律,把学生当作盛装知识的容器;而以杜威(J.Dewey)为代表的“新三中心”,将学生比作太阳,把教师视为行星,把儿童独立学习的可能绝对化,否定了教师的主导作用。我们的教学方法避免了这两种极端,将学生主体作用与教师主导作用有机结合起来,把这一教学的主要矛盾视为具有动态性、转换性、发展性和层次性的对立统一体。在教学过程中,教师能够引导学生独立思考与合作交流。对于情景问题,教师和学生有不同的认知准备,他们的想法也会彼此不同。通过生生之间、师生之间的交流能够起到相互促进的作用。因此教师能够将全班上课与小组合作学习有效地结合起来,鼓励学生在小组内提出并解释他们自己的想法,通过小组交流或全班交流,学会数学地交流和交流地学习数学,以发展学生的数学思考力、语言对思维的表达能力和对自己学习的责任感。
第二,通过生动、有趣的学习情境,激发学生的学习动机,启发学生动脑、动口、动手,引导学生探索发现。教师充分利用学生的生活经验、知识背景,设计生动的、学生感兴趣的学习情境,让学生通过观察、操作、猜测、交流、反思等活动,逐步体会数学知识的产生、形成与发展的过程,感受数学的力量,体会数学的美妙,同时掌握必要的基础知识与基本技能。即在“做数学”的过程中学习数学。
第三,注重照顾学生的个别差异,鼓励学习方法和解题策略多样化。鼓励解决问题策略的多样化,是因材施教的有效途径。如计算教学,可以鼓励学生运用已有的知识背景,探求计算结果,而不宜教师首先示范,讲解笔算法则和算理,限制学生思维。教师通过先出示带有一定现实意义的问题情境,让学生先估算,然后独立计算?在此基础上进行小组交流,感受解决问题策略的多样化与灵活性。
第四,着重研究学生,特别注重学习方法的研究和指导,让学生在学会的过程中,逐步达到会学。学习方法是学生获得知识,形成能力过程中所采取的、基本活动方式和基本思想方法,学法的研究和指导,是保证现代教法实施的必要环节,是提高教学质量的关键。
第五,在使学生获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能外,更加重视培养学生的态度、情感、价值观。态度、情感、价值观作为学习的内驱力,在学习中发挥着重要的作用。现代小学数学教学方法充分地考虑到这一点,注重学生学习兴趣的培养,学习动机的激发,强调师生双方的感情交流,充分利用情感的作用去开启学生认知结构的大门。
第六,强调多种教学方法的交叉使用和互相配合。重视采用现代化教学手段。传统的教学方法往往采用固定的教学方法,形成一套模式。随着现代教学论的发展、教学方法的增多以及对教学方法本质的深入研究,广大教育工作者逐渐认识到教学方法是多种多样的,没有一种万能的教学方法。教学方法因数学课题、所教的儿童以及教师的风格而有所不同;教学方法也不是“单一的”,可以有不同的组合。另外,重视现代化教学手段的运用,把形、声、光结合起来,生动、形象、鲜明,感染力强,抽象的数学概念和原理,通过结合形象的画面来讲解,可以更好地吸引学生的注意力,提高学习兴趣。加深对教材的理解和记忆。在我国开展的CAI、微格教学。都是应用现代技术手段的直接产物,现代教学方法的发展。必须考虑到现代化教学技术手段的作用和地位。考虑到现代技术设备的引入对常规教学方法的冲击和变革,找到其中的组合点和发展方向,使其为教学方法服务。
以上是现代教学方法呈现的新特点。但纵观各种小学教学方法。还存在着一些问题:一些教学方法的命名欠推敲,主观随意性很大,不够科学;一些教学方法的“内涵”和“外延”不清;一些教学方法存在着将某种教学方法凝固化、模式化的倾向;有些教学方法缺乏教学理论依据;等等。这些问题都需要很好地加以解决。否则不仅有碍教学质量的提高,也有碍于教学方法研究的深入开展。
⑹ 如何学习现代数学,有哪些书推荐
推荐书书籍:
1、《现代数学引论》 杜珣 北京大学出版社
2、《从大学数学走向现代数学》 徐宗本 科学出版社
3、《现代数学方法》作者:周永正//詹棠森//方成鸿//邱望仁 出版社:天津大学
周永正和詹棠森等编著的《现代数学方法》是在落实教育部《高等教 育面向21世纪教学内容和课程体系改革计划》要求的基础上,根据普通高 等学校教学改革的最新要求,结合作者多年来从事“现代数学方法”课程 教学的实践体会编写而成的。教材从体例上突出了方法、应用案例并重的 特点,主要内容包括正交设计方法、数值逼近方法、模糊数学方法,每一 种方法都提供了应用案例分析,并附有一定数量的习题。 《现代数学方法》可作为普通高等学校本、专科学生“现代数学方法 ”课程教材或教学参考书,还可供从事应用研究的工程技术人员参考。
⑺ 现代数学方法
按时仨上上色温区委区委
⑻ 现代数学研究什么
什么是数学?有人说:“数学,不就是数的学问吗?”
这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。
历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。”
那么,究竟什么是数学呢?
伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。
数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。
纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。
应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。
高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。
体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。
广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。
各门科学的“数学化”,是现代科学发展的一大趋势。
⑼ 现代地理学中的数学方法
其实教学方法的话,你只需要正常的理解,他应该就是可以的,老是很麻烦的。
⑽ 求一份现代数学方法 (周永正詹堂森) 课后答案的pdf,谁帮忙100分献上速度!有的发到邮箱[email protected]
看到你发的,不知道你得到答案没?有的话可以给我发下吗?[email protected]谢谢