自然界的数学
花瓣对称排列在花托边缘,整个花朵几乎完美无缺地呈现出辐射对称形状。于是,通过研究,著名数学家笛卡儿根据所研究的一簇花瓣和叶形曲线特征,列出了x3+y3-3axy=o的方程式,这就是现代数学中有名的“笛卡儿叶线”。不仅如此,科学家还发现,植物的花瓣、萼片、果实的数目以及其他方面的特征,都非常吻合于一个奇特的数列。1、2、3、5、8、3、21、34、55、89……其中,从3开始,每一个数字都是前2项之和。这就是斐波那契数列。
在我国的西安地区有一种常见的小草叫作车前草。它的叶片间的夹角正好是137.5°,与数学中称为黄金角的数值相吻合。车前草按照这一角度排列的叶片,能保证每片叶子都可以最大限度地获得阳光,从而有效地提高植物光合作用的效率。于是,建筑师们就参照车前草叶片排列的数学模式,设计出了新颖的螺旋式高楼,最佳采光效果使得高楼的每个房间都很明亮。
② 自然界中有哪些数学家
数学是人类创造的一个学科。如果有人对你说,有许多动物也“精通数学”,你一定会感到很奇怪。事实上,大自然中确实有许多奇妙的动物“数学家”。
“天才设计师”——蜜蜂
产于我国的珍稀动物丹顶鹤总是成群结队地迁徙,而且排成“人”字形。这“人”字形的角度永远是110°左右,如果计算更精确些,“人”字夹角的一半,即每边与丹顶鹤群前进方向的夹角为54°44′08″,而世界上最坚硬的金刚石晶体的角度也恰好是这个度数。这是巧合还是某种大自然的 “契合”?
珊瑚虫则在另一个方面展示出自己过人的数学天赋,它能在自己身上奇妙地记下“日历”:每年在自己的体壁上“刻画”出365 条环形纹,显然是一天“画”一条。一些古生物学家发现,3.5 亿年前的珊瑚虫每年所“画”出的环形纹是400条。天文学家告诉我们,当时地球上的一天只有21.9 小时,也就是说当时的一年不是365 天,而是400天。可见珊瑚虫能根据天象的变化来“计算”并“记载”一年的时间,其结果还相当准确。
③ 生活中、自然界中的数学现象、数学故事共计十篇 求求求了,寒假作业啊
动物中的数学“天才”
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。
丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天
④ 蜜蜂为什么被称为“自然界的数学家”
,蜂窝的优美形状,是自然界最有效劳动的代表。他猜想,人们所见到的、截面呈六边形的蜂窝,是蜜蜂采用最少量的蜂蜡建造成的。他的这一猜想称为“蜂窝猜想”,但这一猜想一直没有人能证明。
几周前,美密执安大学数学家黑尔宣称,他已破解这一猜想。 蜂窝是一座十分精密的建筑工程。蜜蜂建巢时,青壮年工蜂负责分泌片状新鲜蜂蜡,每片只有针头大小。而另一些工蜂则负责将这些蜂蜡仔细摆放到一定的位置,以形成竖直六面柱体。每一面蜂蜡隔墙厚度不到0.1毫米,误差只有0.002毫米。6面隔墙宽度完全相同,墙之间的角度正好120度,形成一个完美的几何图形。
人们一直疑问,蜜蜂为什么不让其巢室呈三角形、正方形或其他形状呢?各墙为什么呈平面,而不是呈曲面呢?虽然蜂窝是一个三维体建筑,但每一个蜂巢都是六面柱体,而蜂蜡墙的总面积仅与蜂巢的截面有关。由此引出一个数学问题,即寻找面积最大、周长最小的平面图形。1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。但如果多边形的边是曲线时,会发生什么情况呢?陶斯认为,正六边形与其他任何形状的图形相比,它的周长最小,但他不能证明这一点。而黑尔在考虑了周边是曲线时,无论是曲线向外突,还是向内凹,都证明了由许多正六边形组成的图形周长最小。
⑤ 数学与自然界有着怎样的联系
数学与自然界有着密切的联系,许多不同数学领域的对象和形状都会出现在自然现象中。
自然界为什么对六边形一直这么青睐呢?它又有什么特点呢?自然对象的形成和生长受到周围空间和材料的影响。正六边形是由三种不重叠的正多边形铺满一个平面而组成的。在这三种正多边形(正六边形、正方形和正三角形)中,六边形以最小量的材料占有最大面积。正六边形的另一个重要特点就是它有六条对称轴,因此它能够经过各式各样的旋转而不改变其形状。
当许多球互相挨着被放进一个箱子或容器中时,每一个被包围的球都是与另外六个球相切。当我们在这些球之间画出一些经过切点的线段时,外切于球的图形是一个正六边形。把这些球想象为肥皂泡,就可以对一群肥皂泡聚拢时为什么以三重联结的形式相接的原因,做出一个简化的解释。所谓的三重联结形式,就是指相交的三个角都是120°,而大家都知道,一个正六边形的内角正是120°。
在自然界中,三重联结表现在众多的领域,如玉米棒上的玉米粒的构成、香蕉果肉的内部结构,以及平时我们看到的干土的裂缝等都可以看到三重联结的影子。。
今天,对于六边形在自然界中新的存在形式的发现,比起第一次的发现情形来说,同样令人感到兴奋。自从1987年以来,天文学家们一直集中注意于大麦哲伦云,超新星1987A就是在其中观察到的。在新星爆发之后看到气泡已经不是第一次了,但是发现气泡以蜂窝状聚集在一起则是第一次。英国曼彻斯特大学的王立帆发现了巨大到约30光年×90光年的“蜂窝”,它由约10光年直径的气泡约20个组成。他推测,气泡呈现出了六边形结构的原因,很可能是由一个星团,产生出巨大的风形成的,而这个星团则是由大约相同速率且可能演化了数千年的大小相似的星组成的。
细心的人都会发现,自然界的雪花具有六边形的形状,同时雪花也揭示了六边形对称和分形几何。此外,如果用科克雪花曲线来模拟雪花的生长,那么这个雪花的分形便是由一个等边三角形生成而来的。
由此可知,欧几里得几何与非欧几何之所以被联系了起来,正是得益于等边三角形、正六边形和分形雪花之间的关系。
自然界中的许多对象已经提供了数学模型,并且许多还在激励着数学模型的发现。自然界有一种在它的创造物中达到平衡和微妙均势的方法。了解自然作品的钥匙是利用数学和科学。伽利略把这一点表达得很清楚,他曾说过,宇宙是用数学语言写成的。数学工具提供了我们用来试图了解、解释和再现自然现象的手段。在自然界中,一个数学发现引出下一个数学发现。那么在外层空间中六边形的发现将会引发出什么来呢?这个问题也许只有时间能回答我们。
⑥ 自然界中有哪些有趣啊数学现象
蜜蜂的巢是六边形的,最省材料
⑦ 大自然中的动物数学家有哪些
在大自然中有许多奇妙的“动物数学家”。珊瑚虫能在自己身上奇妙地记下“日历”:它们每年在自己的体壁上“刻画”出365条环纹,显然是一天画一条。奇怪的是古生物学家发现,3亿5千万年前的珊瑚虫每年所“画”的环纹是400条。可见,珊瑚虫能根据天象的变化来“计算”、“记载”一年的时间,结果相当准确。
每天上午,当太阳升至与地平线的夹角呈30度时,蜜蜂中的“侦察蜂”就飞出蜂巢去寻找蜜源,返回后用特有的“舞蹈语言”报告花蜜的方位、距离、数量。于是蜂王便派工蜂去采蜜。奇妙的是,蜂王的“模糊数学”相当准确,派出的工蜂不多不少,恰好都能吃饱,并保证回巢酿蜜。
更奇妙的是蜜蜂中的“建筑师”——工蜂。它们建造的巢是严格的六角柱状体——一端是平整的六角形开口,另一端则是封闭的六角棱锥体,由三个相同的菱形组成。有趣的是无论哪个蜂巢,组成底盘的菱形的所有钝角都等于109度28分,所有锐角都等于70度32分,这个数据与数学家确认的“要消耗最少的材料,制成最大的菱形容器”的数据一分不差。
蚂蚁的计算本领也十分高明。英国科学家亨斯顿曾做过一个有趣的实验:他把一只死蚱蜢按“4、2、1”的体积切成三块,当蚂蚁发现这三块食物40分钟后,分别聚集在食物边的数量比恰好也是“4、2、1”。
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案。人们即使用直尺或圆规也很难画得像蜘蛛网那样匀称。
猫在冬天睡觉时,总是把身体抱成一个球形,其间也有数学。因为球形使身体表面积最小,从而散发的热量也最少。
鼹鼠几乎是瞎眼,但它在地底下挖掘的隧道,总是沿着90度转弯。
丹顶鹤总是成群结队排成“人”字形迁徙,而这“人”字形的夹角永远是110度。据科学家表明,这“人”字形夹角的一半恰好是金刚石结晶体的角度,这是巧合还是大自然的某种默契?至今还是不解之谜
谢谢采纳,(*^__^*) 嘻嘻……(*^__^*) 嘻嘻……O(∩_∩)O谢谢~\(≥▽≤)/~啦啦啦( ⊙o⊙ )千真万确
⑧ 数学与大自然有什么联系
大自然来中,我们离不开数学。数学是自深奥的,大自然是神秘的。
数学的用处还有很多的,比如在生活中,买东西,这是最简单的啦
还有,数学与天文之间也有很多联系,数学对科学的发展与推动是必不可少的
如果好的话,请按满意答案哦
⑨ 自然界中有哪些数学曲线
直线,抛物线,正弦曲线,指数曲线,
螺旋线,双纽线,摆线,圆锥曲线当然也是.
还有:蔓叶线,心脏线,外摆线,内摆线,圆,旋轮线,内旋轮线,悬链线,渐开线 .