体系数学
1. 小学数学体系
网络文库里有小学数学知识体系,第一学段、第二学段,都列的非常详细。希望能帮助你。
2. 体系完整是什么意思
泛指一定范围内或同类的事物按照一定的秩序和内部联系组合而成的整体,是不同系统组成的系统。
自然界的体系遵循自然的法则,而人类社会的体系则要复杂得多。影响这个体系的因素除人性的自然发展之外,还有人类社会对自身认识的发展。
体系,是指若干有关事物或某些意识相互联系的系统而构成的一个有特定功能的有机整体:如工业体系、思想体系、作战体系等。
(2)体系数学扩展阅读
关于体系,往大里说,总宇宙是一个体系,各个星系是一个体系。往小里说,社会是一个体系,人文是一个体系,宗教是一个体系,甚至每一学科及其内含的各分支均是一个体系,一人、一草、一字、一微尘,也是一个体系。
大体系里含有无穷无尽的小体系,小体系里含有无尽无量的、可以无穷深入的更小的体系。众多的小体系,构成了一个大体系以至于总体系。总则为一,化则无穷,反之亦然,这就是体系。
3. 介绍数学体系的书
似乎有一套张景中的书,但是体系和课堂教育不大一样的
4. 数学体系
数学 分类参考
◆ 数学史
* 中国数学史
* 外国数学史:巴比伦数学,埃及古代数学,希腊古代数学,印度古代数学,玛雅数学,阿拉伯数学,欧洲中世纪数学,十六、十七世纪数学,十八世纪数学,十九世纪数学。
* 中国数学家:刘徽祖冲之祖暅王孝通李冶秦九韶杨辉王恂郭守敬朱世杰程大位徐光启梅文鼎年希尧明安图汪莱李锐项名达戴煦李善兰华蘅芳姜立夫钱宝琮李俨陈建功熊庆来苏步青江泽涵许宝騄华罗庚陈省身林家翘吴文俊陈景润丘成桐
* 国外数字家:泰勒斯毕达哥拉斯欧多克索斯欧几里得阿基米德阿波罗尼奥斯丢番图帕普斯许帕提娅阿耶波多第一博伊西斯,A.M.S.婆罗摩笈多花拉子米巴塔尼阿布·瓦法奥马·海亚姆婆什迦罗第二斐波那契,L.纳西尔丁·图西布雷德沃丁,T.奥尔斯姆,N.卡西雷格蒙塔努斯,J.塔尔塔利亚,N.卡尔达诺,G.费拉里,L.邦贝利,R.韦达,F.斯蒂文,S.纳皮尔,J.德扎格,G.笛卡尔,R.卡瓦列里,(F)B.费马,P.de沃利斯,J.帕斯卡,B.巴罗,I.格雷果里,J.関孝和牛顿,I.莱布尼茨,G.W.洛必达,G.-F.-A.de伯努利家族棣莫弗,A.泰勒,B.马克劳林,C.欧拉,L.克莱罗,A.-C.达朗贝尔,J.le R.蒙蒂克拉,J.E.朗伯,J.H.贝祖,E.拉格朗日,J.-L.蒙日,G.拉普拉斯,P.-S.勒让德,A.-M.傅里叶,J.-B.-J.热尔岗,J.-D.高斯,C.F.泊松,S.-D.波尔查诺,B.贝塞尔,F.W.彭赛列,J.-V.柯西,A.-L.麦比乌斯,A.F.皮科克,G.罗巴切夫斯基格林,G沙勒,M.拉梅,G.施泰纳,J.施陶特,K.G.C.von 普吕克,J.奥斯特罗格拉茨基,M.B.阿贝尔,N.H.波尔约,J.斯图姆,C.-F.雅可比,C.G.J.狄利克雷,P.G.L.哈密顿,W.R.德·摩根,A.刘维尔,J.格拉斯曼,H.G.库默尔,E.E.伽罗瓦,E.西尔维斯特,J.J.外尔斯特拉斯,K.(T.W.)布尔,G.斯托克斯,G.G.切比雪夫凯莱,A.埃尔米特,C.艾森斯坦,F.G.M.贝蒂,E.克罗内克,L.黎曼,(G.F.)B.康托尔,M.B.克里斯托费尔,E.B.戴德金(J.W.)R.杜布瓦-雷P.D.G.诺伊曼,C.G.von李普希茨,R.(O.S.).克莱布什,R.F.A.富克斯,I.L.贝尔特拉米,E.哥尔丹,P.A.若尔当,C.韦伯,H.达布,(J.-)G.李,M.S.施瓦兹,H.A.诺特,M.康托尔,G.(F.P.)克利福德,W.K.米塔-列夫勒,(M.)G.弗雷格,(F.L.)G.克莱因,(C.)F.弗罗贝尼乌斯,F.G.柯瓦列夫斯卡娅,C.B.亥维赛,O.里奇,G.庞加莱,(J.-)H.马尔可夫,A.A.皮卡,(C.-)E.斯蒂尔杰斯,T.(J.)李亚普诺夫,A.M.皮亚诺,G.胡尔维茨,A.沃尔泰拉,V.亨泽尔,K.希尔伯特,D.班勒卫,P.闵科夫斯基,H.阿达尔,J.(-S.)弗雷德霍姆,(E.)I.豪斯多夫,F.嘉当,E.(-J.)波莱尔,(F.-E.-J.-E)策梅洛,E.F.F.罗素,B.A.W.列维-齐维塔,T.卡拉西奥多里,C.高木贞治勒贝格,H.L.哈代,G.H.弗雷歇,M.-R.富比尼,G.里斯,F.(F.)伯恩施坦,C.H.布劳威尔,L.E.J.诺特,(A.)E.米泽斯,R.von卢津,H.H.伯克霍夫,G.D.莱夫谢茨,S.李特尔伍德,J.E.外尔,(C.H.)H.莱维,P.赫克,E.拉马努金,S.A.费希尔,R.A.维诺克拉多夫莫尔斯巴拿赫,S.辛钦霍普夫,H.维纳,N.奈望林纳,R.西格尔,C.L.阿廷,E.哈塞,H.扎里斯基,O.博赫纳,S.布饶尔,R.(D.)塔尔斯基,A.瓦尔德,A.柯尔莫哥洛夫,A.H.冯·诺伊曼,J.嘉当,H.卢伊,H.哥德尔,K.韦伊,A.勒雷,.J.惠特尼,H.克列因阿尔福斯,L.V.庞特里亚金谢瓦莱,C.坎托罗维奇盖尔范德爱尔特希施瓦尔茨小平邦彦。
* 数字著作:《算数书》《算经十书》《周髀算经》《九章算术》《海岛算经》《孙子算经》《张丘建算经》《五曹算经》《五经算术》《缀术》《数术记遗》《夏侯阳算经》《缉古算经》《数理精蕴》《畴人传》《数书九章》《测圆海镜》《益古演段》《四元玉鉴》《算法统宗》《则古昔斋算学》《几何原本》《自然哲学的数学原理》《几何基础》
* 中国古代数学计算方法:筹算,珠算,孙子剩余定理,增乘开方法,贾宪三角,招差法,盈不足术,百鸡术。
* 其他:纵横图,记数法,黄金分割,希腊几何三大问题,计算工具,和算,费尔兹奖,沃尔夫奖,希尔伯特数学问题,国际数学教育委员会,国际数学联合会,国际数学家大会,数学刊物,中国数学教育,中国数学研究机构,中国数学会。
◆ 数学基础:逻辑主义,形式主义,直觉主义。
◆ 数理逻辑
* 逻辑演算:命题、一阶、高阶、无穷、多值-模糊、模态、构造逻辑等。
* 模型论:模态模型论,非标准模型等。
* 公理集合论:集合论公理系统,力迫方法,选择公理,连续统假设等。
* 逆归论:算法,递归函数,递归可枚举集,不可解度,广义递归论,判断问题,分层理论等。
* 证明论:数学无矛盾性,哥德尔不完备性定理,构造性数学,希尔伯计划等。
◆ 集合论:集合,映射,序数,基数,超限归纳法,悖论,数系(实数,虚数),组合数学,图论(四色问题)、算术等。
◆ 代数学
* 多项式:代数方程等。
* 线性代数:行列式,线性方程组,矩阵,自向量空间,欧几里得空间,线性变换,线性型,二次性,多重线性代数等。
* 群:有限群、多面群体、置换群、群表示论、有限单群等。
* 无限群:交换群,典型群,线性代数群,拓扑群,李群,变换群,算术群,半群等。
* 环:交换环,交换代数,结合代数,非结合代数-李代数,模,格-布尔代数等。
* 乏代数 * 范畴
* 同调代数-代数理论
* 域:代数扩张,超越扩张,伽罗瓦理论-代数基本定理,序域,赋值,代数函数域,有限域,p进数域等。
◆ 数论
* 初等数论:整除,同余,二次剩余,连分数,完全数,费马数,梅森数,伯努利数,数论函数,抽屉原理等。
* 不定方程:费马大定理等。
* 解析数论:筛法,素分布法,黎曼ζ函数,狄利克雷特征,狄利克雷L函数,堆垒数论-整数分拆,格点问题,欧拉常数等。
* 代数数论:库默尔扩张,分圆域,类域论等。
* 数的几何 * 丢番图逼近 * 一致分布 * 超越数论 * 概率数论 * 模型式论 * 二次型的算术理论 * 代数几何
◆ 几何学
* 欧几里得几何学-希尔伯特公理系统:欧里几得空间,坐标系,圆周率,多边形,多面体等。
* 解析几何学:直线,平面,二次曲线,二次曲面,二次曲线束,二次曲面束,初等几何变换,几何度量等。
* 三角学
* 综合几何学:尺规作图-希腊几何三大问题等。
* 仿射几何学:仿射变换等。
* 射影几何学:对偶原理,射影坐标,射影测度,绝对形,交比-圆点,直线几何等。
* 埃尔朗根纲领 * 百欧几里得几何学
* 微分几何学:曲线,曲面-直纹面-可展曲面-极小曲面等。
* 微分流形:张量,张量分析,外微分形式,流形上的偏微分算子,复流形,辛流形,黎曼几何学,常曲率黎曼空间-齐性空间-黎曼流形的变换群-闵科夫斯基空间,广义相对论,联络论,杨-米尔斯理论,射影微分几何学,仿射微分几何学,一般空间微分几何学,线汇论,积分几何学等。
◆ 拓扑学
* 一般拓扑学(拓扑空间,度量空间,维数,多值映射
* 代数拓扑学(同调论,同伦论-CW复形,纤维丛-复叠空间,不动点理论-闭曲面的分类-庞加莱猜想
* 微分拓扑学(流形-横截性
* 纽结理论 * 可微映射的奇点理论 * 突变理论 * 莫尔斯理论
◆ 分析学
* 微积分学
** 函数:初等函数,隐函数等。
** 极限:函数的连续性等。
** 级数
** 微分学:导数,微分,中值定理,极值等。
** 积分学:积分,原函数,积分法,广义积分,含参变量积分等。
** 多元微积分学:偏导数,全微分,方向导数,雅可比矩阵,雅可比行列式,向量,向量分析,场论等。
* 复变函数论:复变函数(解析函数,柯西积分定理,解析函数项级数,幂级数,泰勒级数,洛朗级数,留数,调和函数,最大模原理,共形映射,特殊函数,整函数,亚纯函数,解析开拓,椭圆函数,代数函数,模函数,函数值分布论,黎曼曲线,单叶函数,正规族,拟共形映射,解析函数边值问题,狄利克雷级数,解析函数边界性质,拉普拉斯变换,积分变换,泰希米勒空间,广义解析几何等)。
* 多复变函数论
* 实变函数论:勒贝格积分,有界变差函数,测度论,黎曼-斯蒂尔杰斯积分,赫尔德不等式,施瓦兹不等式,闵科夫斯基不等式,延森不等式等。
* 泛函分析:泛函数,函数空间,索伯列夫空间,拓扑线性空间,巴拿赫空间,半序线性空间,希尔伯特空间,谱论,向量值积分,线性算子,全连续算子,谱算子,线性算子扰动理论,赋范代数,广义函数,非线性算子(泛函积分,算子半群,遍历理论,不变子空间问题)等。
* 变分法:变分法,大范围变分法等。
* 函数逼近论:函数构造论,复变函数逼近(外尔斯特拉斯-斯通定理,拉格朗日插值多项式逼近,埃尔米特插值多项式逼近,三角多项式,连续模,强迫逼近,有理函数逼近,正交多项式,帕德逼近,沃外尔什逼近,联合逼近,抽象逼近,宽度,熵,线性正算子逼近,傅里叶和)等
* 傅里叶分析:三角函数,傅里叶级数,傅里叶变换-积分(傅里叶积分算子,乘子,共轭函数,卢津问题,李特尔伍德-佩利理论,正交系,极大函数,面积积分,奇异积分,算子内插,BMO空间,Hp空间,奇异积分的变换子,佩利-维纳定理,卷积,Ap权),概周期函数,群上调和分析(哈尔测度,正定函数,谱综合)等。
* 流形上的分析:霍奇理论,几何测度论,位势论等。
* 凸分析 * 非标准分析
◆ 微分方程
* 常微分方程(初等常数微分方程,线性常微分方程,常微分方程初值问题,常微分方程边值问题,常微分方程解析理论,常微分方程变换群理论,常微分方程定性理论,常微分方程运动稳定性理论,哈密顿系统,概周期微分方程,抽象空间微分方程,泛函数分方程-微分差分方程,常微分方程摄动方法,常微分方程近似解似解,动力系统-拓扑动力系统-微分动力系统
* 偏微分方程(数学物理方程,一阶偏微分方程,哈密顿-雅可比理论,偏微分方程特征理论,椭圆型偏微分方程-拉普拉斯方程,双曲型偏微分方程-波动方程,双曲守恒律的间断解,抛物型偏微分方程-热传导方程,混合型偏微分方程,孤立子,索伯列夫空间,偏微分方程的基本解,局部可解性,偏微分算子的特征值与特征函数,数学物理中的反问题,自由边界问题,分歧理论,发展方程,不适定问题
* 积分方程:弗雷德霍姆积分方程,沃尔泰拉积分方程,对称核积分方程,奇异积分方程,维纳-霍普夫方程,维纳-霍普夫方法等。
◆ 计算数学
* 数值分析:数值微分等。
* 数值逼近:插值,曲线拟合等。
* 计算几何:样条函数值积分-数论网格求积分法,有限差演算,有限差方程等。
* 常微分方程初值问题数值解法:单步法,多步法,龙格-库塔法,亚当斯法等。
* 常微分方程边值问题数值解法:打靶法等。
* 高次代数方程求根 * 超越方程数值解法
* 非线性方程组数值解法:迭代法,牛顿法等。
* 最优化
* 线性规划:单纯形方法等。
* 无约束优化方法 * 约束优化方法 * 概率统计计算
* 蒙特卡罗达:伪随机数等。
* 代数特征值问题数值解法:广义特征值问题数值解法等。
* 线性代数方程组数值解法:稀疏矩阵,广义逆矩阵,对角优势矩阵,病态矩阵,消元法-高斯消去法,松驰法,共轭梯度法等。
* 偏微分方程边值问题差分方法
* 偏微分方程初值问题差分方法:计算流体力学,特片线法,守恒格式,分步法(局部一维方法、交替方向隐式法、显式差分方法、隐式差分方法),有限差分方法,有限元方法,里茨-加廖金方法(里茨法、加廖金法),玻耳兹曼方程数值解法,算图-诺模图等。
* 数值软件:并行算法,误差,最小二乘法,外推极限法,快速傅里叶变换-快速数论变换,数值稳定性,区间分析,计算复杂性等。
◆ 概率论
* 概率分布(数学期望,方差,矩,正态分布,二项分布,泊松分布
* 随机过程(马尔可夫过程,平稳过程,鞅,独立增量过程,点过程,布朗运动,泊松过程,分支过程,随机积分,随机微分方程,随机过程的极限定理,随机过程统计,滤波,无穷粒子随机系统等。
* 概率,随机变量 * 概率论中的收敛 * 大数律 * 中心极限定理 * 条件期望
◆ 数理统计学
* 参数估计:点估计,区间估计等。
* 假设检验:列联表等。
* 线性统计模型:回归分析,方差分析等。
* 多元统计分析:相关分析等。
* 统计质量管理:控制图,抽样检验,寿命数据统计分析,概率纸等。
* 总体 * 样本 * 统计量 * 实验设计法 * 抽样调查 * 统计推断 * 大样本统计 * 统计决策理论 * 序贯分析
* 非参数统计 * 稳健统计 * 贝叶斯统计 * 时间序列分析 * 随机逼近 * 数据分析
◆ 运筹学
* 数学规则:线性规划,非线性规划,无约束优化方法,约束优化方法,几何规划,整数规划,多目标规划,动态规划-策略迭代法,不动点算法,组合最优化-网络流,投入产出分析等。
* 军事运筹学:彻斯特方程,对抗模拟,对策论,最优化等。
* 马尔可夫决策过程 * 搜索论 * 排队论 * 库存论 * 决策分析 * 可靠性数学理论 * 计算机模拟 * 统筹学 * 优选学
◆ 数学物理
◆ 控制理论
◆ 信息论
◆ 理论计算机科学
◆ 模糊性数学
5. 数学分析这个数学体系怎样建立的
实数系的完备化
→
数列的极限,函数的极限,连续性,可导性,微分与积分
数项级数,函数项级数,级数展开
多元微积分
总之,当实数系建立了完备性以后,所有就可以牵成一条线了。
6. 小学数学概念的八大体系
小学数学概念只有七大体系吧!
一、数
1、数的意义回
2、数的读法和写答法
3、数的改写
4、数的大小比较
5、数的整除
6、分数、小数的基本性质
二、数的运算
1、四则运算的意义和法则
2、运算定律和简便算法
3、四则混合运算
三、代数的初步知识
1、用字母表示数
2、简易方程
3、比和比例
四、应用题
1、简单应用题
2、复合应用题
3、列方程解应用题
4、分数、百分数应用题
5、用比例知识解应用题
6、用不同的知识解答应用题
五、量的计量
六、几何初步知识
1、平面图形的认识
2、平面图形的周长和面积
3、立体图形的认识
4、立体图形的表面积和体积
七、简单的统计
7. 数学几何体系
简称“欧氏几何”。几何学的一门分科。公元前3世纪,古希腊数学家欧几里德把人们公认的一些几何知识作为定义和公理,在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。在其公理体系中,最重要的是平行公理,由于对这一公理的不同认识,导致非欧几何的产生。按所讨论的图形在平面上或空间中,分别称为“平面几何”与“立体几何”。
欧几里德几何指按照欧几里德的《几何原本》构造的几何学。
欧几里德几何有时就指平面上的几何,即平面几何。三维空间的欧几里德几何通常叫做立体几何。 高维的情形请参看欧几里德空间。
数学上,欧几里德几何是平面和三维空间中常见的几何,基于点线面假设。数学家也用这一术语表示具有相似性质的高维几何。
欧几里德几何的五条公理是:
任意两个点可以通过一条直线连接。
任意线段能无限延伸成一条直线。
给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆。
所有直角都全等。
若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角,则这两条直线在这一边必定相交。
第五条公理称为平行公理,可以导出下述命题:
通过一个不在直线上的点,有且仅有一条不与该直线相交的直线。
平行公理并不像其他公理那么显然。许多几何学家尝试用其他公理来证明这条公理,但都没有成功。19世纪,通过构造非欧几里德几何,说明平行公理是不能被证明的。(若从上述公理体系中去掉平行公理,则可以得到更一般的几何,即绝对几何。)
从另一方面讲,欧几里德几何的五条公理并不完备。例如,该几何中的有定理:任意线段都是三角形的一部分。他用通常的方法进行构造:以线段为半径,分别以线段的两个端点为圆心作圆,将两个圆的点作为三角形的第三个顶点。然而,他的公理并不保证这两个圆必定相交。 因此,许多公理系统的修订版本被提出,其中有希尔伯特公理系统。欧几里德还提出了五个“一般概念”,也可以作为公理。当然,之后他还使用量的其他性质。
与同一事物相等的事物相等。
相等的事物加上相等的事物仍然相等。
相等的事物减去相等的事物仍然相等。
一个事物与另一事物重合,则它们相等。
整体大于局部。
非欧几何学是一门大的数学分支,一般来讲 ,他有广义、狭义、通常意义这三个方面的不同含义。所谓广义式泛指一切和欧几里的几何学不同的几何学,狭义的非欧几何只是指罗氏几何来说的,至于通常意义的非欧几何,就是指罗氏几何和黎曼几何这两种几何。
欧几里得的《几何原本》提出了五条公设,长期以来,数学家们发现第五公设和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见。
有些数学家还注意到欧几里得在《几何原本》一书中直到第二十九个命题中才用到,而且以后再也没有使用。也就是说,在《几何原本》中可以不依靠第五公设而推出前二十八个命题。
因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于“平行线理论”的讨论。
由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走的对不对?第五公设到底能不能证明?
到了十九世纪二十年代,俄国喀山大学教授罗巴切夫斯基在证明第五公设的过程中,他走了另一条路子。他提出了一个和欧式平行公理相矛盾的命题,用它来代替第五公设,然后与欧式几何的前四个公设结合成一个公理系统,展开一系列的推理。他认为如果这个系统为基础的推理中出现矛盾,就等于证明了第五公设。我们知道,这其实就是数学中的反证法。
但是,在他极为细致深入的推理过程中,得出了一个又一个在直觉上匪夷所思,但在逻辑上毫无矛盾的命题。最后,罗巴切夫斯基得出两个重要的结论:
第一,第五公设不能被证明。
第二,在新的公理体系中展开的一连串推理,得到了一系列在逻辑上无矛盾的新的定理,并形成了新的理论。这个理论像欧式几何一样是完善的、严密的几何学。
这种几何学被称为罗巴切夫斯基几何,简称罗氏几何。这是第一个被提出的非欧几何学。
从罗巴切夫斯基创立的非欧几何学中,可以得出一个极为重要的、具有普遍意义的结论:逻辑上互不矛盾的一组假设都有可能提供一种几何学。
几乎在罗巴切夫斯基创立非欧几何学的同时,匈牙利数学家鲍耶·雅诺什也发现了第五公设不可证明和非欧几何学的存在。鲍耶在研究非欧几何学的过程中也遭到了家庭、社会的冷漠对待。他的父亲——数学家鲍耶·法尔卡什认为研究第五公设是耗费精力劳而无功的蠢事,劝他放弃这种研究。但鲍耶·雅诺什坚持为发展新的几何学而辛勤工作。终于在1832年,在他的父亲的一本著作里,以附录的形式发表了研究结果。
那个时代被誉为“数学王子”的高斯也发现第五公设不能证明,并且研究了非欧几何。但是高斯害怕这种理论会遭到当时教会力量的打击和迫害,不敢公开发表自己的研究成果,只是在书信中向自己的朋友表示了自己的看法,也不敢站出来公开支持罗巴切夫斯基、鲍耶他们的新理论。
罗氏几何
罗氏几何学的公理系统和欧式几何学不同的地方仅仅是把欧式几何平行公理用“从直线外一点,至少可以做两条直线和这条直线平行”来代替,其他公理基本相同。由于平行公理不同,经过演绎推理却引出了一连串和欧式几何内容不同的新的几何命题。
我们知道,罗氏几何除了一个平行公理之外采用了欧式几何的一切公理。因此,凡是不涉及到平行公理的几何命题,在欧式几何中如果是正确的,在罗氏几何中也同样是正确的。在欧式几何中,凡涉及到平行公理的命题,再罗氏几何中都不成立,他们都相应地含有新的意义。下面举几个例子加以说明:
欧式几何
同一直线的垂线和斜线相交。
垂直于同一直线的两条直线或向平行。
存在相似的多边形。
过不在同一直线上的三点可以做且仅能做一个圆。
罗氏几何
同一直线的垂线和斜线不一定相交。
垂直于同一直线的两条直线,当两端延长的时候,离散到无穷。
不存在相似的多边形。
过不在同一直线上的三点,不一定能做一个圆。
从上面所列举得罗氏几何的一些命题可以看到,这些命题和我们所习惯的直观形象有矛盾。所以罗氏几何中的一些几何事实没有象欧式几何那样容易被接受。但是,数学家们经过研究,提出可以用我们习惯的欧式几何中的事实作一个直观“模型”来解释罗氏几何是正确的。
1868年,意大利数学家贝特拉米发表了一篇著名论文《非欧几何解释的尝试》,证明非欧几何可以在欧几里得空间的曲面(例如拟球曲面)上实现。这就是说,非欧几何命题可以“翻译”成相应的欧几里得几何命题,如果欧几里得几何没有矛盾,非欧几何也就自然没有矛盾。
人们既然承认欧几里得是没有矛盾的,所以也就自然承认非欧几何没有矛盾了。直到这时,长期无人问津的非欧几何才开始获得学术界的普遍注意和深入研究,罗巴切夫斯基的独创性研究也就由此得到学术界的高度评价和一致赞美,他本人则被人们赞誉为“几何学中的哥白尼”。
欧氏几何、罗氏几何、黎曼几何是三种各有区别的几何。这三中几何各自所有的命题都构成了一个严密的公理体系,各公理之间满足和谐性、完备性和独立性。因此这三种几何都是正确的。
8. 求 大学数学体系、结构图
你这张图太杂,不同专业选学不同模块。不过最先学的是高等数学(里面包版括微积分、解权析几何初步和常微分方程基础)、线性代数(这是代数中的一块内容,主干内容是解线性方程组,代数的研究范围就更广、更抽象了)、概率论和数理统计。
然后再学其他的,有了上述基础,其他的就可以并列、交叉学了。
看你列举出高等数学而不是数学分析,说明你不是数学专业的学生,那么很多分支是你不用学的,先学好最基本的吧。另外,你说的“具体数学”是什么东东?没听说过
9. 数学理论体系是怎样建立的
《九章算术》问世之后,我国的数学著述基本上采取两种方式:一是为《九章算术》作注;二是以《九章算术》为楷模编纂新的著作。其中刘徽的《九章算术注》被认为是我国古代数学理论体系的开端。祖冲之的数学研究工作在南北朝时期最具代表性,他在刘徽《九章算术注》的基础上,将传统数学大大向前推进了一步,成为重视数学思维和数学推理的典范,我国古典数学理论体系至此建立。
《孙子算经》有3卷,常被误认为春秋军事家孙武所著,实际上是魏晋南北朝时期前后的作品,作者不详。这是一部数学入门读物,通过许多有趣的题目,给出了筹算记数制度及乘除法则等预备知识。
《孙子算经》还有许多有趣的问题,比如“物不知数”等,在民间广为流传,向人们普及了数学知识。
其实,魏晋时期特殊的历史背景,不仅激发了人们研究数学的兴趣,普及了数学知识,也丰富了当时的理论构建,使我国古代数学在理论上有了较大的发展。在当时,思想界开始兴起“清谈”之风,出现了战国时期“百家争鸣”以来所未有过的生动局面。与此相适应,数学家重视理论研究,力图把从先秦到两汉积累起来的数学知识建立在必然的可靠的基础之上。而刘徽和他的《九章算术注》,则是这个时代造就的最伟大的数学家和最杰出的数学著作。
刘徽生活在“清谈”之风兴起而尚未流入“清谈”的魏晋之交,受思想界“析理”的影响,对《九章算术》中的各种算法进行总结分析,认为数学像一株枝条虽分而同本干的大树,发自一端,形成了一个完整的理论体系。
777刘徽的《九章算术注》解决了哪些问题?
刘徽的《九章算术注》作于263年,原10卷。前9卷全面论证了《九章算术》的公式?解法,发展了出入相补原理?截面积原理?齐同原理和率的概念,首创了求圆周率的正确方法,指出并纠正了《九章算术》的某些不精确的或错误的公式,探索出解决球体积的正确途径,创造了解线性方程组的互乘相消法与方程新术?用十进分数逼近无理根的近似值等,使用了大量类比?归纳推理及演绎推理,并且以后者为主。第10卷原名“重差”,为刘徽自撰自注,发展完善了重差理论。此卷后来单行,因第一问为测望海岛的高远,名称《海岛算经》。
777我国古典数学理论体系的建立有哪些好处?
我国古典数学理论体系的建立,除了刘徽及其《九章算术注》不世之功和《孙子算经》的贡献外,魏晋南北朝时期的《张丘建算经》?《缀术》也丰富了这一时期的理论创建。
南北朝时期数学家张丘建著的《张丘建算经》3卷,成书于北魏时期。此书补充了等差级数的若干公式,其百鸡问题导致三元不定方程组,其重要之处在于开创“一问多答”的先例,这是过去我国古算书中所没有的。
公鸡每只值5文钱,母鸡每只值3文钱,而3只小鸡值1文钱。用100文钱买100只鸡,问:这100只鸡中,公鸡?母鸡和小鸡各有多少只?
这个问题流传很广,解法很多,但从现代数学观点来看,实际上是一个求不定方程整数解的问题。
百鸡问题还有多种表达形式,如“百僧吃百馒”和“百钱买百禽”等。宋代数学家杨辉算书内有类似问题,此外,中古时近东各国也有相仿问题流传,而且与《张丘建算经》的题目几乎全同,可见其对后世的影响。
与上述几位古典数学理论构建者相比,祖冲之则重视数学思维和数学推理,他将传统数学大大向前推进了一步。
祖冲之写的《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本。他将圆周率的真值精确到3.1415926,是当时世界上最先进的成就。他还和儿子祖暅一起,利用“牟合方盖”圆满地解决了球体积的计算问题,得到正确的球体积公式。
祖冲之还在462年编订《大明历》,使用岁差,改革闰制。他反对谶纬迷信,不虚推古人,用数学方法比较准确地推算出相关的数值,坚持了实事求是的科学精神。
孙子算经
10. 学而思是怎么划分数学的十二个体系的
新体系将教学模块划分为小学生必会的八大问题:“计算问题、应用问题、行程问题、图形问题、整数问题、计数问题、组合问题、综合问题”,结合精美的新版教材,真正做到让学习更有效!
十二级体系包括“优秀儿童智力开发体系”(简称“优秀体系”)和“超常儿童培养体系”(简称“超常体系”)两个结构统一的部分。
(10)体系数学扩展阅读
在学而思培优的教学中,优秀体系主要在基础班、提高班、尖子班等班型实施,超常体系则在超常班、集训队等班型使用。两个体系大纲统一,但难度梯度不同,适合于不同基础,不同培养方向的学生。
合适的才是最好的。每一位学生在报名之前,都需进行入学测试,测试通过的孩子可进入优秀体系的合适班次学习。此外,我们每年都会举行超常体系选拔考试,在考试中表现优异的学生可进入超常体系学习。