当前位置:首页 » 语数英语 » 数学的领域

数学的领域

发布时间: 2021-08-15 22:13:49

A. 数学中的领域概念

那么,数学家究竟都在研究什么呢?或者说数学是由哪些部分组成的?传统上,我们可以将数学分为两大类:研究数学本身的纯数学和应用于解决现实问题的应用数学。但是这种分类法并不十分清晰,许多领域起初是按照纯数学发展的,但后来却发现了意想不到的应用。许多领域之间也有着非常紧密的关系,因此,如果要精确地为数学分类的话,应该是一个复杂的网络。

而在本文中,我们将会带领读者简单地了解数学的五大部分:数学基础、代数学、分析学、几何学和应用数学。

1.数学基础
数学基础研究的是逻辑或集合论中的问题,它们是数学的语言。逻辑与集合论领域思考的是数学本身的执行框架。在某种程度上,它研究的是证明与数学现实的本质,与哲学接近。

数理逻辑和基础(Mathematical logic and foundations)
数理逻辑是这一部分的核心,但是对逻辑法则的良好理解产生于它们第一次被使用之后。除了在计算机科学、哲学和数学中正式地使用了基础的命题逻辑之外,这一领域还涵盖了普通逻辑和证明论,最终形成了模型论。在此,一些著名的结果包括哥德尔不完全性定理以及与递归论相关的丘奇论题。

2.代数学
代数是对计数、算术、代数运算和对称性的一些关键的概念进行提炼而发展的。通常来说,这些领域仅通过几个公理就可定义它们的研究对象,然后再考虑这些对象的示例、结构和应用。其他非常偏代数的领域包括代数拓扑、信息与通信,以及数值分析。

数论(Number theory)
数论是纯数学中最古老、也是最庞大的分支之一。显然,它关心的是与数字有关的问题,这通常是整数或有理数(分数)。除了涉及到全等性、可除性、素数等基本主题之外,数论现在还包括对环与数域的非常偏代数的研究;还有用于渐近估计和特殊函数的分析方法和几何主题;除此之外,它与密码学、数学逻辑甚至是实验科学之间都存在着重要的联系。

群论(Group theory)
群论研究的是那些定义了可逆结合的“乘积”运算的集合。这包括了其他数学对象的对称集合,使群论在所有其他数学中占有一席之地。有限群也许是最容易被理解的,但矩阵群和几何图形的对称性同样也是群的中心示例。

B. 小学数学四大领域包括

四大领域
数与代数:数的认识,数的表示,数的大小,数的运算,数量的估计;
图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;
统计与概率:收集、整理和描述数据,处理数据;
实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。

小学数学新课标的基本理念

1.义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。

2.数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。

3.学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。

C. 数学有几个领域分类(比如函数,几何此类的分法)

现代数学的基本分支

逻辑及集合论
作为数学公理化的基础。
代表人物:康托尔、希尔伯特。

代数学
包括线性代数、群论、伽罗瓦理论、范畴论。
代表人物:阿贝尔、伽罗瓦、格罗滕迪克。

分析学
包括实分析、复分析、泛函分析,以至在偏微分方程上的应用。
代表人物:牛顿、莱布尼兹、柯西、魏尔施特拉斯、勒贝格。

拓朴学及几何学
包括微分几何学、非欧几何、代数拓扑。
代表人物:高斯、黎曼、庞加莱、陈省身。

机率论及随机数学
代表人物:白努利 高斯

应用数学
包括运筹学、信息论等

D. 数学分为那几个领域

微积分,线性代数,空间解析几何,统筹学,博弈论,数学分析,数论,复变函数,多元积分,黎曼几何,立体几何,平面几何,图论,拓扑学、几次函数等等,数不清的,学数学可谓是任重而道远。

E. 数学四大领域都研究什么

1.算术的研究 主要是指《高斯的名著《算术研究》》 1801年,高斯的名著《算术研究》问世。《算术研究》是用拉丁文写成的。这部书是高斯大学毕业前夕开始撰写的,前后花了三年时间。1800年,高斯将手稿寄给法国科学院,请求出版,却遭到拒绝,于是高斯只好自筹资金发表。 目录 内容范围 学术意义 核心课题 同余理论 二次互反律 二次互反律发展型的理论 数论问题中复数的作用 首先是对复数的承认 复数带进了数论内容范围 学术意义核心课题 同余理论 二次互反律 二次互反律发展型的理论数论问题中复数的作用 首先是对复数的承认 复数带进了数论内容范围在这本书的序言一开头,高斯明确地说明了本书的范围:“本书所研究的是数学中的整数部分,分数和无理数不包括在内。” [编辑本段]学术意义《算术研究》是一部划时代的作品,它结束了19世纪以前数论的无系统状态。在这部书中,高斯对前人在数论中的一切杰出而又零星的成果予以系统的整理,并积极加以推广,给出了标准化的记号,把研究的问题和解决这些问题的已知方法进行了分类,还引进了新的方法。 [编辑本段]核心课题全书共有三个核心课题:同余理论、齐式论及剩余论和二次互反律。这些都是高斯贡献给数论的卓越成就。 同余理论同余是《算术研究》中的一个基本研究课题。这个概念不是高斯首先提出的,但是给同余引入现代的符号并予以系统研究的却是高斯。他详细地讨论了同余数的运算、多项式同余式的基本定理以及幂的同余等各种问题。他还运用幂的同余理论证明了费马小定理。 二次互反律二次互反律是高斯最得意的成果之一,它在数论中占有极为重要的地位。正如美国现代数学家狄克逊(1874—1954)所说:“它是数论中最重要的工具,并且在数论发展史上占有中心位置。”其实,高斯早在1796年就已经得出了这个定理及其证明。发表在《算术研究》中的则是另一种证明。 二次互反律发展从二次互反律出发,高斯相继引出了双二次互反律和三次互反律,以及与此相联系的双二次和三次剩余理论。为了使三次和双二次剩余理论优美而简单,高斯又发展出了复整数和复整数数论;而它的进一步结果必然是代数数理论,这方面由高斯的学生戴德金(1831—1916)作出了决定性的贡献。 [编辑本段]型的理论在《算术研究》中,高斯出乎寻常的以最大的篇幅讨论了型的理论。他从拉格朗日的著作中抽象出了型的等价概念后,便一鼓作气地提出了一系列关于型的等价定理和型的复合理论,他的工作有效地向人们展现了型的重要性——用于证明任何多个关于整数数的定理。正是由于高斯的带领,使型的理论成为19世纪数论的一个主要课题。高斯关于型和型类的几何表式的论述是如今所谓数的几何学的开端。 [编辑本段]数论问题中复数的作用高斯对数论问题的处理,有许多涉及到复数。 首先是对复数的承认这是个老问题。18、19世纪不少杰出的数学家都曾被“复数究竟是什么?”搞不清楚。莱布尼兹、欧拉等数学大师对此一筹莫展。高斯在代数基本定理的证明中无条件地使用了复数。这使得原先仅从运算通行性这点考虑对复数的承认,扩大到在重大的代数问题的证明中来确认复数的地位。高斯以其对该定理的高超证明,使数学界不仅对高斯而且对复数刮目相待。 复数带进了数论高斯不仅如此,他又把复数带进了数论,并且创立了复整数理论。在这一理论中,高斯证明了复整数在本质上具有和普通整数相同的性质。欧几里得在普通整数中证明了算术基本定理——每个整数可唯一地分解为素数的乘积,高斯则在复整数中得出并证明,只要不把四个可逆元素(±1,±i)作为不同的因数,那么这个唯一分解定理对复数也成立。高斯还指出,包括费马大定理在内的普通素数的许多定理都可能转化为复数的定理(扩大到复数领域)。 [编辑本段]当时的评价《算术研究》似乎任何一个学过中学普通代数的人都可以理解,但是,它完全不是给初学者看的。在当时,读懂这本书的人较少。困难不是详细的计算示例而是对主题的理解和对深奥思路的认识。由于全书有7个部分,人们风趣地称它是部“加七道封漆的著作”。 [编辑本段]传播《算术研究》出版后,很多青年数学家纷纷购买此书并加以研究,狄利克雷(1805—1859)就是其中之一。狄利克雷是德国著名数学家,对分析、数论等有多方面的贡献。他把《算术研究》视为心爱的宝贝,把书藏在罩袍里贴胸的地方,走到哪儿带到哪儿,一有空就拿出来阅读。晚上睡觉的时候,把它垫在枕头下面,在睡前还读上几段。功夫不负有心人,凭着这股坚韧不拔的毅力,狄利克雷终于第一个打开了“七道封漆”。后来他以通俗的形式对《算术研究》作了详细的介绍和解释,使这部艰深的作品逐渐为较多的人所理解和掌握。 [编辑本段]数学界的认可关于《算术研究》和狄利克雷之间还有一段感人的故事。1849年7月16日,正好是高斯获得博士学位50周年。哥廷根大学举行庆祝活动,其中有一个别出心裁的节目,他们要高斯用《算术研究》中一页原稿来点燃自己的烟斗。狄利克雷正好站在高斯身旁,他看到这个情景完全惊呆了。在最后一刹那,他不顾一切地从自己恩师的手中抢下了这页原稿,并把它珍藏起来。这页手稿直到狄利克雷逝世以后,编辑人员在整理他的遗稿中才重新发现了它。 《算术研究》发表后,拉格朗日曾经悲观地以为“矿源已经挖尽”、数学正濒临绝境,当他看完《算术研究》后兴奋地看到了希望的曙光。这位68岁高龄的老人致信高斯表示由衷的祝贺: “您的《算术研究》已立刻使您成为第一流的数学家。我认为,最后一章包含了最优美的分析的发现。为寻找这一发现,人们作了长时间的探索。……相信我,没有人比我更真诚地为您的成就欢呼。” 关于这部著作,19世纪德国著名数学史家莫里茨·康托曾发表过高见,他说: “高斯曾说:‘数学是科学的女皇,数论则是数学的女皇。’如果这是真理,我们还可以补充一点:《算术研究》是数论的宪章。” 《算术研究》是高斯一生中的巨著。暮年高斯在谈到这部书时说:“《算术研究》是历史的财富。” [编辑本段]高斯的成就高斯原本计划继续撰写《算术研究》第2卷,但由于工作的变化和研究兴趣的转移,这一计划未能实现。 高斯的许多数学成就都是在他去世后才被人们发现的。从1796年3月30日高斯用尺规作出正17边形后,他开始记科学日记,并且长期坚持下来,到1814年7月9日。高斯的科学日记是1898年哥廷根皇家学会为了研究高斯,向高斯的孙子借来的。从此,这本科学日记的内容才在高斯逝世43年后流传。这本日记共146项研究成果,由于仅供个人使用,所以每一条记录往往只写三言两语,十分简短。有的条目简单得甚至专家也摸不着头脑。 1796年10月11日, Vicimus GEGAN 1799年4月8日, 这两项研究成果,至今仍是个谜。 在1796年7月10日中有这样一条日记: EYPHKA!num=△+△+△ EYPHKA是希腊文找到了的意思。当年,阿基米德在洗澡的时候突然发现了浮力定律,兴奋地从浴缸一跃而起,在大街上狂奔高喊的就是“EYPHKA!”高斯在这里找到了费马提出的一个困难定理的证明:每个正整数是三个三角数之和。 高斯的科学日记一经披露,轰动了整个科学界。人们第一次了解到,有许多重大成果高斯实际上早就发现,而公开发表得很晚,有的甚至生前根本没有发表。有关椭圆函数双周期性的内容一直到日记发表的时候人们才知道,以致这个重大成果在日记里整整沉睡了100年。1797年3月19日的一条日记清楚表明,高斯已经发现了这个成果;后来又有一条,说明高斯还进一步认识到一般情况下的双周期性。这个问题后来经过雅可比(1804—1851)和阿贝尔独立研究发展,才成为19世纪函数论的核心。类似的例子不胜枚举。 这样大量的重大发现在日记里竟被埋没了几十年甚至一个世纪!面对这一不可思议的事实,数学家无不大为震惊。如果及时发表这些内容,无疑会给高斯带来空前的荣誉,因为日记中的任何一项成果都是当时世界第一流的。如果及时发表这些内容,就可以免得后来的数学家在许多重要领域中的苦苦摸索,数学史因而将大大改写。有的数学家估计,数学的发展可能要比现在先进半个世纪之多。 [编辑本段]当时的社会环境和高斯个人性格为什么会出现这现象呢?这与当时的社会环境和高斯个人性格有十分重要的关系。 18世纪,数学界贯穿着激烈的争论,数学家们各持己见,互相指责,由于缺乏严格的论证,在争论中又产生了种种错误。为了证明自己的论点,他们往往自吹自擂,互相讽刺挖苦,这类争论给高斯留下了深刻的印象。高斯虽然出身贫微,却和他的父母一样,有着极强的自尊心,加之他对科学研究的极端慎重的态度,使他生前没有公开这本日记。他认为,这些研究成果还须进一步加以论证。他在科学研究上遵循的格言是“宁少毋滥”。 高斯这种严谨的治学态度,虽然使后辈科学家付出了巨大的代价,但是,也给科学研究带来了好处。高斯出版的著作至今仍然像第一次出版一样正确而重要,他的出版物就是法典,比人类其他法典都更高明,因为不论何时何地从未发现其中有任何毛病。 高斯治学的态度正如他在自己的肖像下工工整整地写下的《李尔王》中的一段格言一样: “大自然,您是我的女神,我一生的效劳都服从于您的规律。” 高斯在数学领域中的成就是巨大的。后来人们问起他成功的秘诀,他以其特有的谦逊方法回答道: “如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。” 为了证明自己的结论,有一次他指着《算术研究》第633页上一个问题动情地说: “别人都说我是天才,别信它!你看这个问题只占短短几行,却使我整整花了4年时间。4年来我几乎没有一个星期不在考虑它的符号问题。”更多的你可以参考这个网址: http://zjyx.sxtge.net/Resource/Book/E/KPTS/joy02010/0003_ts086011.htm

F. 数学的最高领域是什么

对于一般的人不说大学教授来说我觉得他的解题能力要高,对初高中的知识体系有一个良好的把握,包括竞赛内容,对每一个要能够说出它所涉及的知识点,比如举一个简单的例子,能被4整除的数有什么性质回答,整数可以表示为100a+10b+c.用/表示整除,一下不在说明,如2/8,若4/100a+10b+c,4/100a,所以有4/10a+b,所以最后两位被4整除,整个数就可以被4整除,到这里还不算你真的水平高,好要能说出推倒的根据,即对于整除有性质c/b.c/a,那么c/a±b,但是对于很多的难题来说,主要是技巧太高,涉及的知识并不复杂,这就需要掌握一些技巧,需要练题目,认真的揣摩技巧的本质,掌握数学的一些思想也很重要,比喻分类讨论思想,极端性原理,反面看问题,把问题倒退到简单的情形来分析,构造图形函数,等等在解决组合类问题时数学的思想作用更大,对于一般的数学问题解题的思路一般是这样的,看已知条件,再看所求量,分析他们之间的联系有哪些,如何实现两者的转化,从大脑的知识体系中抽取知识和有关的解题技巧 把两者有机的联系起来,所以可以看出知识体系记得越牢固,解题的速度应该快一些,对题目进行分类总结规律也是必要的,数学要提高速度也要记做过的典型题目有关的结论,记忆很重要,如果能对现实的世界的空间和数量做深刻的洞察,创造出新的数学知识,那是天才了我觉得是最高的领域,据说概率的产生就是因为分析赌徒的胜率而出现的,

G. 数学当中的有哪些领域

纯数学的话,代数,几何和分析是三大分支,不过分析比代数和几何出现晚多了。小朋友的话告诉他们一点具体的例子吧,像古希腊的数学,尤其是一些几何问题,还有古典的概率问题,或者运筹学策略论里面也有很多有趣的例子。还有逻辑推理,悖论。我在小学时候曾经有幸接触到一些有趣的问题,对数学的兴趣就是从那里开始的。

H. 数学在各领域中的运用

分析学、代数学、几何学、概率论、物理学、数学模型(数学实验)、计算机基础、数值方法、数学史等
储蓄、保险、纳税是最常见的有关理财方面的数学问题
生活中商品促销满xx送xx
数学与日常生活是两条互相交织的线,这一说法是45岁的印度数学家高塔姆·慕克吉在不久前的国际数学家大会上提出的。大约3500名专家出席了这次大会,就数学的现状和前景进行了讨论,并说明了数学如何影响人们的日常生活。

——从恒温器到因特网搜索引擎。如果将取暖器的恒温指数确定为20摄氏度,机器首先要加热使室温上升到20摄氏度以上,然后停止工作直到室温下降至20摄氏度以下,接着重新开始加热。马德里自治大学教授恩里克·苏亚苏亚指出:“何时开始加热及何时停止加热不是随意决定的,需要用数学方程式进行精确计算。”这些方程式在维持光盘运转速度或确定何时给地下蓄水池添水等问题上都得到运用。

苏亚苏亚说:“人们习惯于认为事物是单独运行的,但实际上它们背后另有促使它们运行的因素。”例如,在因特网上用搜索引擎寻找一个单词,结果并非是偶然得到的。他说:“在数学家眼里,网络就像是放在某个平面上的无数玻璃球,必须找到你需要的球然后把它们分类,而这个过程是通过计算所有变量的算式进行的。”

——自行车头盔和节能汽车。最近几年自行车头盔的前半部变得越来越圆,后半部则更像鸟嘴。这一变化不是出于美学考虑,而是根据旨在让运动员获得更好成绩的空气动力学原理。工程师通过不同方程式模拟固体在空气中的运动,直到得到最佳设计数据。飞机、汽车和轮船的设计都需要使用方程式,以达到更快、更耐用和更省油的目的。

——决策和管理级别。马德里卡洛斯三世大学教授安赫尔·桑切斯说,在企业中,通过数学可以了解员工的人际关系情况,如哪位职员人际关系最好、谁的信息最全面等。数学家通过数学定理对员工的电子邮件记录进行计算得出结论。

数学在社会学中的应用也非常广泛,在统计学中更是如此。它甚至可以用来避免疫病流行或减轻它们的影响力。当我们无法对全部人口采取免疫措施时,数学可以帮助我们确定哪些人必须注射疫苗以减少风险。

在艺术领域,数学仍然无处不在。音乐、绘画、雕塑……所有门类的艺术都通过这样或那样的方式得到数学的帮助。日本雕塑家潮惠三喜欢用几何和拓扑学来创造自己的作品,通过数学计算分割雕塑用的花岗岩。潮惠三说:“数学是宇宙语言。”(

I. 数学属于什么领域

数学就属于五大领域中的科学领域

五大领域是:健康、科学、社会、语言和艺术。

1、健康。其主要目的是增强幼儿体质,培养健康生活的态度和行为习惯。

2、科学。目的是激发幼儿的好奇心和探究欲望,发展认识能力,有好奇心。

3、社会。其目的是增强幼儿的自尊,自信, 培养幼儿关心,友好的态度和行为。

4、语言。其目的是提高幼儿语言交往的积极性,发展语言能力。

5、艺术。其主要目的就是丰富幼儿的情感,培养初步的感受美,表现美的情趣和能力。

数学思维拓展训练特点:

1、 全面开发孩子的左右脑潜能,提升孩子的学习能力、解决问题能力和创造力;帮助幼儿学会思考、主动探讨、自主学习,

2、 通过思维训练的数学活动和策略游戏, 对思维的广度、深度和创造性方面进行综合训练。

3、 根据儿童身心发展的特点,提高幼儿的数学推理、空间推理和逻辑推理,促进幼儿多元智能的发展,为塑造幼儿的未来打下良好的基础。

4、利用神奇快速的心算训练和思维启蒙训练,提高与智商最为相关的五大领域的基础能力

J. 领域在数学中是什么意思

设A是拓扑空间(X,τ)的一个子集,点x∈A。如果存在集合U,满足①U是开集,即U∈τ,②点x∈U,③U是A的子集,则称点x是A的一个内点,并称A是点x的一个领域。若A是开(闭)集,则称为开(闭)领域。

热点内容
嫩江教育局 发布:2025-06-17 10:43:44 浏览:340
小叶老师 发布:2025-06-17 09:55:38 浏览:146
长安星光怎么样 发布:2025-06-17 08:33:42 浏览:365
鸢尾怎么读 发布:2025-06-17 06:36:20 浏览:956
上海通用雪佛兰怎么样 发布:2025-06-17 05:49:22 浏览:799
物理奥赛培训 发布:2025-06-17 05:05:39 浏览:336
重庆英语口语家教 发布:2025-06-17 04:45:29 浏览:116
美国生物就业 发布:2025-06-17 04:44:17 浏览:578
水泥的历史 发布:2025-06-17 04:25:15 浏览:643
机械生物游戏 发布:2025-06-17 04:07:47 浏览:947