当前位置:首页 » 历物理化 » 岩石物理性质

岩石物理性质

发布时间: 2025-09-29 02:18:32

Ⅰ 岩石物理性质和热物理性质评价

岩石物理性质包括岩石的结构、构造、矿物成分、密度、孔隙率、弹性波速、磁化率、电阻率、放射性等,岩石热物理性质包括岩石热导率、热容量、生热率。在浅层地温研究中关注更多的是密度、孔隙率和热物理性质。

(一)岩石密度、孔隙度、含水率

1.岩石密度

岩石密度是指单位体积岩石的质量,用ρ表示:

浅层地温能资源评价

式中:ρ———密度(g/cm3);

m———质量(g);

V———体积(cm3)。

岩石的密度与化学成分、矿物组成、结构构造、孔隙度以及它所处外部条件有关。

岩浆岩的密度与化学成分有直接关系,总体讲由基性岩到酸性岩密度减小。化学成分相同时,侵入岩密度大于喷出岩,这是由喷出岩中孔隙度比侵入岩大所致。

沉积岩的密度取决于沉积物矿物组成、孔隙度和孔隙内充填物的密度。沉积岩孔隙度变化范围较大,一般为2%~2.5%,高者达50%,松散沉积物孔隙度更大。因此,沉积岩密度变化大。随埋藏深度增加和成岩作用的加深,密度增大,形成了同种岩性埋藏深度越大则密度越大、地层成岩时代越老则岩石密度越大的规律。

变质岩的密度取决于矿物组成。变质岩中孔隙度很小,一般为0.1%~3%,极少达到5%,岩石密度受孔隙影响很小,而受变质作用性质影响较大。在区域变质岩中绿片岩相岩石密度小于原岩,角闪岩、麻粒岩、榴辉岩等中深度变质岩密度大于原岩,这是由于化学成分中镁铁元素集中的结果。在动力变质过程中有矿物重结晶者密度大于原岩,无重结晶者密度小于原岩,原因在于无重结晶者使岩石产生了裂隙。

2.岩石孔隙度

岩石孔隙度又称孔隙率,是岩石的孔隙体积与包括空隙体积在内的岩石总体积之比。孔隙度是表示岩石孔隙性的数量指标,反映岩石颗粒接触关系和成岩及后期淋滤作用的综合结果。

岩石的孔隙度取决于岩石的结构和形成条件。岩浆岩的孔隙度与形成环境相关,喷出岩孔隙度大于侵入岩。变质岩由于在变形条件下伴有组分变化,且在一定压力下孔隙度变小。沉积岩在不同的成岩阶段孔隙度变化很大,沉积物组成、结构中的支撑关系、成岩作用和成岩后淋滤作用都对孔隙度产生影响;沉积岩孔隙度不但影响油气迁移富集,而且对岩石热导率和热容量也有重要影响。

3.岩石含水率

岩石含水率是岩石中水的质量与岩石矿物或颗粒质量之比。含水率与孔隙度直接相关。孔隙是岩石充水的前提条件,岩石中孔隙都被水充填时岩石达到水饱和状态。

(二)岩石热导率、比热容、生热率

物质热传导都是物质内部微观粒子相互碰撞和传递的结果。不同物质处于不同状态时,结构不同,导热机理不尽相同。固体中的热传导机制主要由两部分组成:①电子传导(依靠电子相互作用和碰撞传递热量);②晶格原子传导(依靠晶体点阵和晶格振动传递热量)。一般金属中热量主要由电子传导,硅质物质中的传热主要由晶格原子完成。

岩石热导率(K)、热容(C)和生热率(A)是基本热物理参数,分别反映了岩石对热能量传输、储存和生热的能力。浅层岩石土壤热导率(K)、热容(C)、生热率(A)是影响浅层地温能资源质量的主要因素。

1.岩石热导率(K)

热导率是反映物质导热能力的性质参数,一般通过理论计算和实验测试来确定热导率,后者是获得物质热导率的主要途径。

岩石传热机理是通过造岩矿物晶格振动和矿物晶体点阵振动进行的,主要是传导方式。岩石热导率指沿热流传递方向单位长度(l)上温度(T)降低1℃时单位时间(t)内通过单位面积(S)的热量(Q)。根据傅里叶定律,物质热导率与热流密度成正比,与温度梯度成反比,用如下关系式表达:

浅层地温能资源评价

热导率受矿物成分(岩性)和矿物间接触关系即岩石结构影响,同时受外部环境影响,如岩石裂隙、孔隙及含水率、压力条件等(对于松散堆积物的热导率影响的因素更为复杂),一般情况下岩石热导率随压力、密度、湿度增大而增大。均质物质热导率可用一个数值表征,非均质材料热导率不能用一个数值来表征,岩石属非均质体,特别是具有层理、片理、叶理以断层等外部条件约束时,热导率就不可用简单关系描述。

总体上,结晶岩热导率数值高于沉积岩,且随岩石中镁铁组分增高而增大,表2-9是根据杨淑贞对华北地壳上部岩石热传导结构探讨,熊亮萍等对中国东南地区岩石热导率值分析,邱楠生对西北塔里木、准噶尔、柴达木三盆地岩石热导率研究和吴乾蕃对松辽盆地地热场研究资料汇总简化而成。由表2-9可见,岩浆岩、变质岩热导率普遍高于沉积岩,沉积岩热导率随颗粒粒径增大而增大,化学沉积岩热导率随成分而异并随结晶程度增高而增大。

表2-9 中国各地岩石热导率表

沉积岩热导率变化较大,沉积物颗粒成分、形状、接触关系、孔隙度、含水率等对热导率有直接影响。此外,热导率还受岩石所处构造环境影响。同一种岩性固态颗粒,由细到粗热导率增大,压力增大热导率升高,孔隙含水率增大热导率增大,温度升高热导率减小。对于松散沉积物来讲,其孔隙度大、含水率不同,热传输的影响因素不仅有传导形式,还有水参与下的对流和无水孔隙中的辐射,其热传输机理较复杂。

孔隙中含水程度不同,热导率不同,在成岩岩石中热导率与孔隙度呈指数关系,表2-10是杨淑贞等于1986年对砂岩与泥岩的研究成果,以图2-19表示;表2-11是对岩石不同含水率下的热导率的测试结果,显示当孔隙一定时,热导率随含水率增大而增大,呈线性关系。图2-20这种线性形式可用K=A+B·W表示,式中,K为热导率,A为初始热导率,B为变化系数,W为含水量。

表2-10 饱和水和风干状态孔隙岩石热导率表

注:K=A+Blogφ,回归系数r为0.9748或0.9660。(据杨淑贞,1986,略修改)

图2-19 砂岩(砂质泥岩)热导率与孔隙度关系图(据杨淑贞,1986)

南京大学肖琳对不同孔隙度与含水量的土体热导率进行了实验室热线法研究,得出不同土体热导率随含水量及孔隙度的变化规律是:孔隙度一定时,土体热导率随含水量增大而增大;含水量一定时土体热导率随孔隙度增大而减小。由图2-21可见,土体热导率随孔隙度、含水量变化规律在不同土体中表现形式不同。对于粉砂和粉土热导率与含水量呈对数关系,含水量增大至一定量时,热导率趋于稳定;粉质粘土热导率与含水量呈指数关系,热导率在较大含水量范围内增加急剧,达一定量时趋于稳定。土体热导率随孔隙度增大而减小,粉砂和粉土热导率与孔隙度呈指数函数,先急剧增大后趋稳定;粉质粘土热导率与孔隙率呈对数函数,随孔隙度增长先平缓减小后急剧增加。

表2-11 不同含水率时孔隙岩石热导率表

(据杨淑贞等,1985)

图2-20 孔隙岩石热导率与含水率的关系图(据杨淑贞,1986)

这项研究还表明,孔隙岩石中热导率随含水率变化是有临界值的,含水率增加到临界值时,热导率不再增加。究其原因是因为粘土颗粒的热传递依靠颗粒接触进行,水的加入使颗粒接触面积增大,热导率升高,当水量达到使颗粒充分接触时,水量再继续增加,颗粒有效接触面积不会增加。所以,热导率趋于稳定。北京地区实际测试岩土体热导率结果也支持这一结论。

图2-21 含水量对土样(不同孔隙率)热导率的影响图(据肖玉林等,2008)

沉积岩(物)热导率随压力增大、埋藏深度增大、岩石地层形成年龄增长而增大的根本原因在于岩石中孔隙度随上述因素增加而减小、颗粒质点接触面积加大。

沉积岩(物)热导率随温度升高而降低,但降低数量级在10-3上,影响很小。虽然这一数量级对热导率影响较小,但这一变化规律在地温场研究中非常重要。据张延军研究,在0℃以上,粘土和中细砂热导率与温度有以下线性关系:

粘土:k=-0.0016T+1.2269,β=1.30×10-3

中砂:k=-0.0057T+1.8819,β=3.03×10-3

细砂:k=-0.0099T+1.8957,β=5.22×10-3

式中:k———热导率(W/(m·K));

T———温度;

β———温度影响系数。

2.岩石比热容(C)

岩石比热容指使单位质量物质温度变化1K所必需的热量,单位为J/(kg·K)。

C=Q/(m·ΔT)

式中:C———比热容;

m———质量(kg);

ΔT———温度变化。

比热容是反映物质吸热或放热能力的物理量。任何物质都有自己的比热容,同种物质在不同状态下,比热容也不同。比热容与过程有关,可分为定压比热容和定容比热容。从工程手册上可以查阅的比热容为物质的平均比热容(表2-12)。

松散沉积物比热容是(颗粒)固态物质与孔隙及填充物比热容之和。不同物质成分、结构岩性层构成的堆积体比热容采用加权平均法计算;对同一岩性,饱和水状态与非饱和水状态、均质状态和非均质状态下,比热容有显著差别。

比热容是计算热量的主要参数之一,岩土体的比热容可以通过多种测试方法获得,也可查阅各种工程手册获得。

表2-12 几种岩石土壤比热容表

(据胡芃等,2009)

3.岩石生热率(A)

岩石生热率是指单位体积岩石在单位时间内生成热量的总和,是表征岩石自身生热能力高低的性质参数。一般认为,地壳浅部热源是由岩石中U,Th,K三种放射性元素衰变产生的,可以用下式来求取岩石热量:

浅层地温能资源评价

式中:A———岩石生热率(μW/m3);

w(U),w(Th),w(K)———U,Th,K在岩石中的质量分数(10-6)。

岩石生热率与岩性密切相关,岩浆岩由基性到酸性生热率增高;沉积岩随颗粒减小生热率增高;变质岩生热率变化较大,为0.3~10.9μW/m3,以变粒岩最大。三大岩类的生热率排列为岩浆岩>沉积岩>变质岩。

岩石生热率随深度(z)分布呈指数递减,表达式为

A(z)=A(0)·exp(-z/H)

式中:A(z)———岩石生热率随深度变化值;

A(0)———地表岩石生热率;

H———对数缩减量。

地球不同深度带生热率估计如下:0~100km大地热流为50%;100~200km为25%;200~300km为15%;300~400km为8%;>400km为2%。

岩石放射性是地壳温度场分布的主要控制因素,是地球内部驱动深部构造热过程的重要动力来源,在浅层地温场评价中应予高度重视。

表征岩石热物理性质的参数还有热阻率、热扩散率、不同传热形式的热流密度等。热导率、比热容和生热率是岩石最基本的热物理性质参数,以此为基础,利用其他物性参数和相应关系可以导出岩石的其他热物理性质参数。

热点内容
少儿教学视频 发布:2025-09-30 02:55:26 浏览:510
数学应用软件 发布:2025-09-30 02:27:34 浏览:871
男性包茎手术多少钱 发布:2025-09-30 01:14:47 浏览:274
电池多少 发布:2025-09-30 01:10:02 浏览:169
通用化学公司 发布:2025-09-30 00:08:17 浏览:458
中小学教师心得体会 发布:2025-09-30 00:07:15 浏览:260
自考英语二试题及答案 发布:2025-09-29 23:52:40 浏览:988
如何提高作文水平 发布:2025-09-29 23:48:09 浏览:502
厦门奥教育 发布:2025-09-29 23:13:09 浏览:90
幼儿师德演讲稿精选 发布:2025-09-29 19:33:24 浏览:512