物理学史
A. 学习物理学史的意义
一、物理学史的研究有重要意义。一般来说,物理学是自然科学中的一门基础学科,处于核心地位。科学史很重要的部分就是物理学史,所以,研究物理学史有助于阐明科学发展的规律,有助于了解科学与社会的关系,科学与技术的关系,以及科学与哲学的关系。从学习物理学的角度来说,了解物理概念和理论的发展,不但可以加深对这些概念和理论的理解,而且可以进一步认识物理学这门学科的特点。作为未来物理学工作者或科技工作者的一员,更应该把握住物理学发展的趋势,了解它的动向,使自己自觉地推动物理学前进。著名美籍华裔物理学家杨振宁教授在谈到物理学史的意义时说:“中国物理学的发展中有些问题,根据我的普遍接触,有这么一个印象:前些年对国外的东西什么都想知道,结果弄得有点眼花缭乱,无所适从。其实有些介绍进来的东西,只是发展过程中的噪音,一转眼就消失了。
“其结果是对事物的来龙去脉弄不清楚,对主干发展看不清楚。可是不了解主干的发展,就不容易培养出有独到见解的学生。他们就会老是跟着许多噪音在乱转。现在国内学理论物理的学生那么多,太多了,我看他们成功的机会很少。如果能真正对国外的发展作些切实的介绍,我看会更有意义。”①
物理学和其他各门自然科学一样,正在发展之中,昨天的事情就是历史。了解过去,为的是把握住发展的脉络,预测未来的动向,从而端正自己的航向。杨振宁先生的讲话对我们物理学工作者很有实际意义,值得我们深思。
二、学习和研究物理学史,要注重历史资料。说话要有根据,不可想当然,乱发挥。要从史实出发,从史料的分析中找结论,切不可拿史料来凑结论。物理学史是一门科学,我们要持科学态度,实事求是,忌主观武断,提倡严谨作风,这样才能使物理学史真正发挥指导和借鉴的作用。这一点对从事物理学史工作的人有现实意义,对学习者和任何与之有关的各门学科的研究者,也是应该注意的。
三、学习物理学史不能代替本门业务的学习,只能对本科学习起辅助作用。物理学的课程基本上是按逻辑体系讲述,而物理学史则是按历史顺序编排。在横向联系的基础上再加一些纵向联系,使我们的知识立体化,知识就必然会得到加深和拓宽。这一补充确有价值,但不可喧宾夺主,否则就会本末倒置,变成夸夸其谈,舍本求末,失去了原来的用意。
四、学习物理学史,不要满足于增添了某些历史知识,也不只是为了加深对物理概念和规律的认识,更重要的是要从物理学的发展中找观点,找方法,找榜样,从前人的经验中受到启发。为此我们的学习应该是:
(1)靠自学,靠自己收集资料,自己研究,独立思考:
(2)注重分析,开展学术争论,以开阔思路。切忌把物理学史的教学变成填鸭式,背诵条文,人云亦云。
(3)要注意学会用历史的方法。历史方法是科学研究的重要方法之一。收集和分析历史资料,是科学研究的一项基本功。每一位年轻人在做学位论文时大概都要首先对本门学科作一历史的回顾和发展的综述,以说明自己工作的意义,这就是历史的方法,物理学史的学习可以帮助你掌握这个方法。
五、找观点,就是学习前辈科学家在推动科学前进时是受什么思想支配的。他们为什么要研究这些问题?他们怎样看待这些问题?他们怎样处理理论与实验之间的分歧?他们怎样分析事物的矛盾?他们奋斗的目标是什么?例如:我们可以问问:他们追求的目标是什么?回答也许是:
(1)自然界的统一性。牛顿把各种力归结为近距力和远距力,他把天体吸引力和地球重力统一到一起,归结为万有引力。而万有引力和电力,磁力之间的统一性虽未找到,却启示了后人发现电力和磁力的平方反比定律。奥斯特在1820年发现电流的磁效应,并非偶然,而是受19世纪一种科学思潮的影响,认为自然力是统一的。他在1803年曾说过:“我们的物理学将不再是关于运动、热、空气、光、电、磁以及我们所知道的任何现象的零散汇总,而我们将把整个宇宙容纳在一个体系中。”他一直在寻找电和磁这两大自然力之间的联系,终于在实验中观察到了电流的磁效应。
法拉第也笃信自然“力”的统一性。在这一思想的推动下,他几经挫折,在1845年发现了磁场对光学偏振面的影响。这是第一个磁光效应,对电磁理论的发展起了相当大的作用。因为这个现象表明电,磁和光之间确实存在某种联系。他还信奉物理“力”的不可灭性和可转化性。他虽然在探索电力和重力之间的联系上未获成功,但他的思想发人深省。万有引力和电磁力以及其他几种力,例如弱相互作用和强相互作用能否取得统一,这正是当代物理学研究的重大课题之一。
(2)物理学家追求的第二个目标是自然规律的普遍性。例如对守恒定律的认识就是如此。从古代起自然哲学就有守恒的观念。能量守恒与转化定律,质量守恒与质能转化,动量守恒与角动量守恒等定律(或原理),都是物理学深入发展和综合研究的结果,而守恒的实质在于对称性,例如:
时间平移对称性(不变性)导致能量守恒;
空间平移对称性(不变性)导致动量守恒;
空间转动对称性(不变性)导致角动量守恒;
电磁场在规范变换下的对称性(不变性)导致电荷守恒,等等。
随着研究的深入,人们发现较低层次的对称性往往要进化到较高层次的对称性,相应的较低层次的守恒定律往往在一定条件之外并不守恒,而要归并到更高层次的守恒定律,例如:
机械能守恒定律→能量守恒与转化定律→质能转化关系;
1956年李政道,杨振宁发现宇称不守恒→CP联合守恒;
1964年克罗宁发现CP联合不守恒→CPT联合守恒。
从低级走向高级,从特殊走向一般,从表及里,从粗到精,这就是物理学进化的规律。
(3)物理学家追求的第三个目标是理论与实验的统一。在物理学中有一条准则,就是检验理论的客观标准,不是别的,而是实验。许多物理学家对于刚出现的新理论往往持怀疑态度,但一经实验证实就转而站在新理论一边。不过这里也要指出,并不是所有实验都是正确无误的。个别实验难免会有错误或料想不到的误差,这时必须慎重对待。爱因斯坦在对待考夫曼的电子质量随速度变化的实验结果时就采取了正确态度。实验是检验理论的标准这一提法没有错,应该全面地理解。检验理论的标准并不就是指某个具体的实验,正确地应该说实验作为一个整体对理论起检验作用。
六、找方法,就是从前辈科学家的创新活动中学习他们处理问题的方法。例如:
他们是怎样抓住新课题,从而把握科学发展新动态,发现新规律,新现象;
他们是怎样借鉴前人,总结历史的经验教训,从而找到新的途径;
他们是怎样对待矛盾,从矛盾的对立中找到突破口;
他们是怎样设计新实验,从而取得判决性实验结果的。
具体的研究方法也很值得学习:
对比方法是探索新现象的规律常用的方法。人们用移植的办法大大加快新兴领域的发展速度;
理想实验是科学推理的重要手段,反证法也是逻辑推理的有力工具。
方法有多种多样,为了达到某一目标,既可以采用这种方法,也可以采用那种方法,因势利导,辩证下药,通过物理学史的学习,可以进行比较,使自己从前人的活动中吸取经验,以利日后在需要时参考借鉴。你在平时注意学习研究,到了关键时刻,自会产生应有的作用。电子衍射的发现者之一G.P.汤姆生指出:“研究科学史有许多理由,最好的理由是要从典型例子看科学发现是怎样作出的。我们需要了解许多实例,因为道路有各种各样,很难找到什么捷径”。
七、找榜样,当然包括从各种典型案例中找典型人物,引为自己的榜样,树为自己的学习楷模。我这里指的是更广泛的涵义,既包括科学家的治学创业,也涉及他的为人处世。大科学家也是人,从小长大,各有其成长的过程。他们的成长道路对学生和教师有特殊的参考价值。科学家也有自己的喜怒哀乐。他对待困难和逆境的态度,他对名誉地位的看法,他坚持不懈,顽强拼搏的毅力,他灵活机动的风格,他敏锐的观察和一针见血的洞察力,他对祖国对人民的热爱,他的献身精神,等等,都值得我们学习和借鉴。
榜样的力量是巨大的。我们当然可以抽象出他们成功的共同要素,提炼成几条座右铭,但是重要的并不在于现成的结论,而在真正有所体会,变成自己的信条。所以应该是自己去吸取经验,真正做到心悦诚服。最好能深入了解一两位或几位物理学家,以他们为榜样,并在自己的实践中努力照着榜样做,这样你就可以得到鼓舞自己的力量。
1986年诺贝尔化学奖获得者李远哲说过,他以前爱看科学家传记,其中居里夫人特别令他感动。
杨振宁在一次讲话中说:“常常有同学问我做物理工作成功的要素是什么?我想要素可以归纳为三个P:
Perception, Persistence, and Power。
“Perception”——眼光,看准了什么东西,就要抓住不放;
“Persistence”——坚持,看对了要坚持;
“Power”——力量,有了力量能够闯过关,遇到困难你要闯过去”。①
爱因斯坦有一句名言,也许大家早就知道,有人问他成功的“秘诀”,他写了一个公式:
A=X+Y+ZA代表成功,X代表艰苦的劳动,Y代表正确的方法,Z代表少说空话。这个公式概括了爱因斯坦的科学生涯。
1979年诺贝尔物理奖获得者之一,弱电统一理论的提出者之一温伯格说过:物理学家很重要的一个素质是“进攻性”——对自然的“进攻性”。
学习物理学史,要比读科学家传记,对科学家的认识来得更深刻、更全面,因为这样就可以从科学发展的历史背景中去了解科学家的一生,了解他的活动和他所发挥的作用。我们要正确认识人物的历史作用,不要盲目崇拜,不要把大科学家神秘化,以为望尘莫及,高不可攀。他们确实比我们高明,但并不是不可学,当然学了也未必能有他们那样的机会作出那样伟大的贡献,但是他们的精神总是可以运用到各种岗位上,指导你根据自己的条件做出相应的成就。
最后一点是要把自己摆进去,使物理学史的学习形成促进自己前进的动力。
学习物理学史,你应该有一种亲切感,似乎身临其境。那些历史人物和历史事件活生生地在你面前重现。你可以扪心自问,如果我自己处于那个时代遇到那样的问题我会怎样做,或者说今天我遇到类似的事情我该怎样做?
当然由于时代的不同,前人和我们的境遇会有相当大的差别。但是只要你用历史的眼光,对历史的条件作恰当的分析,你还是可以从中吸取智慧的。
学习物理学史可以使我们眼界开阔,思想活跃。
学习物理学史还应该联系我们自己的使命。我们认识到科学与社会的关系,自然会增加发展我国科学事业的紧迫感。我们中国起步比人家晚,就应该研究人家发展的历史,了解人家走过的道路,以便迎头赶上,不重犯人家犯过的错误。
B. 物理学史的发展史
物理学是研究物质及其行为和运动的科学。它是最早形成的自然科学之一,如果把天文学包括在内则有可能是名副其实历史最悠久的自然科学。最早的物理学著作是古希腊科学家亚里士多德的《物理学》。形成物理学的元素主要来自对天文学、光学和力学的研究,而这些研究通过几何学的方法统合在一起形成了物理学。这些方法形成于古巴比和古希腊时期,当时的代表人物如数学家阿基米德和天文学家托勒密;随后这些学说被传入阿拉伯世界,并被当时的阿拉伯科学家海什木等人发展为更具有物理性和实验性的传统学说;最终这些学说传入了西欧,首先研究这些内容的学者代表人物是罗吉尔·培根。然而在当时的西方世界,哲学家们普遍认为这些学说在本质上是技术性的,从而一般没有察觉到它们所描述的内容反映着自然界中重要的哲学意义。而在古代中国和印度的科学史上,类似的研究数学的方法也在发展中。
在这一时代,包含着所谓“自然哲学”(即物理学)的哲学所集中研究的问题是,在基于亚里士多德学说的前提下试图对自然界中的现象发展出解释的手段(而不仅仅是描述性的)。根据亚里士多德以及其后苏格拉底的哲学,物体运动是因为运动是物体的基本自然属性之一。天体的运动轨迹是正圆的,这是因为完美的圆轨道运动被认为是神圣的天球领域中的物体运动的内在属性。冲力理论作为惯性与动量概念的原始祖先,同样来自于这些哲学传统,并在中世纪时由当时的哲学家菲洛彭洛斯、伊本·西那、布里丹等人发展。而古代中国和印度的物理传统也是具有高度的哲学性的。 在十七世纪的欧洲,自然哲学家逐渐展开了一场针对中世纪经院哲学的进攻,他们持有的观点是,从力学和天文学研究抽象出的数学模型将适用于描述整个宇宙中的运动。被誉为“现代自然科学之父”的意大利(或按当时地理为托斯卡纳大公国)物理学家、数学家、天文学家伽利略·伽利莱就是这场转变中的领军人物。伽利略所处的时代正值思想活跃的文艺复兴之后,在此之前列奥纳多·达芬奇所进行的物理实验、尼古拉斯·哥白尼的日心说以及弗朗西斯·培根提出的注重实验经验的科学方法论都是促使伽利略深入研究自然科学的重要因素,哥白尼的日心说更是直接推动了伽利略试图用数学对宇宙中天体的运动进行描述。伽利略意识到这种数学性描述的哲学价值,他注意到哥白尼对太阳、地球、月球和其他行星的运动所作的研究工作,并认为这些在当时看来相当激进的分析将有可能被用来证明经院哲学家们对自然界的描述与实际情形不符。伽利略进行了一系列力学实验阐述了他关于运动的一系列观点,包括借助斜面实验和自由落体实验批驳了亚里士多德认为落体速度和重量成正比的观点,还总结出了自由落体的距离与时间平方成正比的关系,以及著名的斜面理想实验来思考运动的问题。他在1632年出版的著作《关于托勒密和哥白尼两大世界体系的对话》中提到:“只要斜面延伸下去,球将无限地继续运动,而且不断加速,因为此乃运动着的重物的本质。”,这种思想被认为是惯性定律的前身。但真正的惯性概念则是由笛卡尔于1644年所完成,他明确地指出了“除非物体受到外因作用,否则将永远保持静止或运动状态”,而“所有的运动本质都是直线的”。
伽利略在天文学上最著名的贡献是于1609年改良了折射式望远镜,并借此发现了木星的四颗卫星、太阳黑子以及金星类似于月球的相。伽利略对自然科学的杰出贡献体现在他对力学实验的兴趣以及他用数学语言描述物体运动的方法,这为后世建立了一个基于实验研究的自然哲学传统。这个传统与培根的实验归纳的方法论一起,深刻影响了一批后世的自然科学家,包括意大利的埃万杰利斯塔·托里拆利、法国的马林·梅森和布莱兹·帕斯卡、荷兰的克里斯蒂安·惠更斯、英格兰的罗伯特·胡克和罗伯特·波义耳。 三大定律和万有引力定律
艾萨克·牛顿
1687年,英格兰物理学家、数学家、天文学家、自然哲学家艾萨克·牛顿出版了《自然哲学的数学原理》一书,这部里程碑式的著作标志着经典力学体系的正式建立。牛顿在人类历史上首次用一组普适性的基础数学原理——牛顿三大运动定律和万有引力定律——来描述宇宙间所有物体的运动。牛顿放弃了物体的运动轨迹是自然本性的观点(例如开普勒认为行星运动轨道本性就是椭圆的),相反,他指出,任何现在可观测到的运动、以及任何未来将发生的运动,都能够通过它们已知的运动状态、物体质量和外加作用力并使用相应原理进行数学推导计算得出。
伽利略、笛卡尔的动力学研究(“地上的”力学),以及开普勒和法国天文学家布里阿德在天文学领域的研究(“天上的”力学)都影响着牛顿对自然科学的研究。(布里阿德曾特别指出从太阳发出到行星的作用力应当与距离成平方反比关系,虽然他本人并不认为这种力真的存在)。1673年惠更斯独立提出了圆周运动的离心力公式(牛顿在1665年曾用数学手段得到类似公式),这使得在当时科学家能够普遍从开普勒第三定律推导出平方反比律。罗伯特·胡克、爱德蒙·哈雷等人由此考虑了在平方反比力场中物体运动轨道的形状,1684年哈雷向牛顿请教了这个问题,牛顿随后在一篇9页的论文(后世普遍称作《论运动》)中做了解答。在这篇论文中牛顿讨论了在有心平方反比力场中物体的运动,并推导出了开普勒行星运动三定律。其后牛顿发表了他的第二篇论文《论物体的运动》,在这篇论文中他阐述了惯性定律,并详细讨论了引力与质量成正比、与距离平方成反比的性质以及引力在全宇宙中的普遍性。这些理论最终都汇总到牛顿在1687年出版的《原理》一书中,牛顿在书中列出了公理形式的三大运动定律和导出的六个推论(推论1、2描述了力的合成和分解、运动叠加原理;推论3、4描述了动量守恒定律;推论5、6描述了伽利略相对性原理)。由此,牛顿统一了“天上的”和“地上的”力学,建立了基于三大运动定律的力学体系。
牛顿的原理(不包括他的数学处理方法)引起了欧洲大陆哲学家们的争议,他们认为牛顿的理论对物体运动和引力缺乏一个形而上学的解释从而是不可接受的。从1700年左右开始,大陆哲学和英国传统哲学之间产生的矛盾开始升级,裂痕开始增大,这主要是根源于牛顿与莱布尼兹各自的追随者就谁最先发展了微积分所展开的唇枪舌战。起初莱布尼兹的学说在欧洲大陆更占上风(在当时的欧洲,除了英国以外,其他地方都主要使用莱布尼兹的微积分符号),而牛顿个人则一直为引力缺乏一个哲学意义的解释而困扰,但他在笔记中坚持认为不再需要附加任何东西就可以推论出引力的实在性。十八世纪之后,大陆的自然哲学家逐渐接受了牛顿的这种观点,对于用数学描述的运动,开始放弃作出本体论的形而上学解释。 牛顿的理论体系是建立在他的绝对时间和绝对空间的假设之上的,牛顿对时间和空间有着如下的理解: “ 绝对的、真正的和数学的时间自身在流逝着,而且由于其本性而在均匀地、与任何外界事物无关地流逝着。 ” “ 绝对空间,就其本性而言,是与外界任何事物无关而永远是相同的和不动的。 ” —牛顿, 《自然哲学的数学原理》 牛顿从绝对时空的假设进一步定义了“绝对运动”和“绝对静止”的概念,为了证明绝对运动的存在性,牛顿还在1689年构思了一个理想实验,即著名的水桶实验。在水桶实验中,一个注水的水桶起初保持静止。当它开始发生转动时,水桶中的水最初仍保持静止,但随后也会随着水桶一起转动,于是可以看到水渐渐地脱离其中心而沿桶壁上升形成凹状,直到最后和水桶的转速一致,水面相对静止。牛顿认为水面的升高显示了水脱离转轴的倾向,这种倾向不依赖于水相对周围物体的任何移动。牛顿的绝对时空观作为他理论体系的基础假设,却在其后的两百年间倍受质疑。特别是到了十九世纪末,奥地利物理学家恩斯特·马赫在他的《力学史评》中对牛顿的绝对时空观做出了尖锐的批判。
新课标高考:高中物理学史汇总,本专题肯定会在2013年高考理综物理试题中出现,一般小题形式出现。大家一定要注意了解这方面的内容。这个比较简单,背熟就可以了!I.必考部分:(必修1、必修2、选修3-1、3-2)一、力学:1.1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快。并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的)。2.1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验。3.1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。4.17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去。得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。5.英国物理学家胡克对物理学的贡献:胡克定律 。经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6.1638年,伽利略在《两种新科学的对话》一书中,运用观察 ——假设——数学推理的方法,详细研究了抛体运动。7.人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表。而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。8.17世纪,德国天文学家开普勒提出开普勒三大定律。9.牛顿于 1687年正式发表万有引力定律 。1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量。10.1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星。1930年,美国天文学家汤苞用同样的计算方法发现冥王星。11.我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同。但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比)。俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。12.1957年10月,苏联发射第一颗人造地球卫星。1961年4月,世界第一艘载人宇宙飞船 “东方1号”带着尤里加加林第一次踏入太空。13.20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。二、电磁学:13.1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律 --库仑定律,并测出了静电力常量k的值。14.1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。15.1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。16.1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。17.1826年德国物理学家欧姆(1787~1854)通过实验得出欧姆定律。18.1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象--超导现象。19.19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳--楞次定律。20.1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。21.法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说。并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。22.荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹力)的观点。23.英国物理学家汤姆孙发现电子,并指出:阴极射线是高速运动的电子流。24.汤姆孙的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。25.1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。最大动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同 。但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。26.1831年,英国物理学家法拉第发现了由磁场产生电流的条件和规律 ——电磁感应定律。27.1834年,俄国物理学家楞次发表确定感应电流方向的定律--楞次定律。28.1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一,双绕线法制精密电阻为消除其影响应用之一。Ⅱ.选考部分:(选修3-3、3-4、3-5)三、热学(3-3选考):29.1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象--布朗运动。30.19世纪中叶,由德国医生迈尔 。英国物理学家焦尔。德国学者亥姆霍兹最后确定能量守恒定律。31.1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。32.1848年,开尔文提出热力学温标,指出绝对零度( -273.15℃)是温度的下限。热力学温标与摄氏温度转换关系为T=t+273.15 K。热力学第三定律:热力学零度不可达到。四、波动学、光学、相对论(3-4选考):33.17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。34.1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律--惠更斯原理。35.奥地利物理学家多普勒(1803~1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象--多普勒效应(相互接近,f增大。相互远离,f减少)。36.1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波。37.1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。38.1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。39.1800年,英国物理学家赫歇耳发现红外线。1801年,德国物理学家里特发现紫外线。1895年,德国物理学家伦琴发现x射线(伦琴射线),并为他夫人的手拍下世界上第一张x射线的人体照片。40.1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律--折射定律。41.1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象。42.1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射--泊松亮斑。43.1864年,英国物理学家麦克斯韦预言了电磁波的存在,并指出光是一种电磁波。1887年,赫兹用实验证实了电磁波的存在,光是一种电磁波。44.1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理--不同的惯性参考系中,一切物理规律都是相同的。②光速不变原理--不同的惯性参考系中,光在真空中的速度一定是c不变。45.爱因斯坦还提出了相对论中的一个重要结论——质能方程式E=mc2。46.公元前 468~前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播。影的形成。光的反射。平面镜和球面镜成像等现象,为世界上最早的光学著作。47.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。(注意其测量方法)48.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒。另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。49.物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验一相对论(高速运动世界);②热辐射实验一一量子论(微观世界)。50.19世纪和20世纪之交,物理学的三大发现:x射线的发现,电子的发现,放射性 同位素的发现。51.1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理--不同的惯性参考系中,一切物理规律都是相同的。②光速不变原理--不同的惯性参考系中,光在真空中的速度一定是c不变。52.1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子。53.激光--被誉为20世纪的“世纪之光”。五、动量、波粒二象性、原子物理(3-5选考):54.1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界。受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。55.1922年,美国物理学家康普顿在研究石墨中的电子对x射线的散射时--康普顿效应,证实了光的粒子性(说明动量守恒定律和能量守恒定律同时适用于微观粒子)。56.1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。57.1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性。58.1927年美。英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。59.1858年,德国科学家普里克发现了一种奇妙的射线--阴极射线(高速运动的电子流)。60.1906年,英国物理学家汤姆生发现电子,获得诺贝尔物理学奖。61.1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。62.1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。63.1909~1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10m~15m。1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。64.1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。65.1913年,丹麦物理学家波尔最先得出氢原子能级表达式。66.1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ 射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。67.1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素--钋(Po)镭(Ra)。68.1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子——中子。69.1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。70.1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。71.1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。72.1942年,在费米。西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、中子减速剂、水泥防护层、热交换器等组成)。73.1952年,美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。74.1932年发现了正电子,1964年提出夸克模型。粒子分三大类:媒介子——传递各种相互作用的粒子,如:光子。轻子——不参与强相互作用的粒子,如:电子。中微子。强子——参与强相互作用的粒子,如:重子(质子、中子、超子)和介子,强子由更基本的粒子夸克组成,夸克带电量可能为元电荷。
C. 物理学史
1.没上过这课,不过光从那句话来看的话——
科学是对人类探索世界的成果的一种体系总结,历史记录的是人与社会的发展历程。
从科学中学到的是固有的知识,但这些是建立在一定时期的社会背景之下的。当时的社会、经济、文化、宗教等都会对该科学的建立产生影响。孤立的看待一门科学所得到的仅仅是现有的成果。这虽然在一定程度上对当时的社会发展起到推动作用但也只是暂时的。
历史是用动态的发展的眼光看问题。从历史中看到的不仅是个别时间片断上的事物状态,更重要的是看到了事物发展变化的过程。
就科学而言,从历史中能够了解到该科学的建立、发展的整个过程,从中总结出发展规律,据此可以大致的推测出科学今后的发展方向。这在科学的创新上具有十分重要的意义。
在历史中,前人的经验和教训都能够给我们以启示,让我们在今后的发展中少走弯路。
总而言之,科学史就是从历史的角度看待科学的整个发展变化过程,总结科学成果和科学方法,使我们对现有科学的来源有清楚的了解,并从中得到经验和启示。
D. 常考的物理学史有哪些
1、1638年,意大利物理学家伽利略 论证重物体不会比轻物体下落得快;
2、英国科学家牛顿 1683年,提出了三条运动定律。 1687年,发表万有引力定律;
3、17世纪,伽利略理想实验法指出: 在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;
4、20爱因斯坦提出的狭义相对论,经典力学不适用于微观粒子和高速运动物体。
5、17世纪德国天文学家开普勒 提出开普勒三定律;。
6、1798年英国物理学家卡文迪许 利用扭秤装置比较准确地测出了引力常量。
7、奥地利物理学家多普勒(1803-1853) 发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。
8、1827年英国植物学家布朗 悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。
9、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。
10、1752年,富兰克林利用风筝实验验证闪电是电的一种形式,把天电与地电统一起来,并发明避雷针。
11、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。
12、1911年荷兰科学家昂尼斯,大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。
13、1841~1842年 焦耳和楞次,先后各自独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律。
14、1820年,丹麦物理学家奥斯特电流可以使周围的磁针偏转的效应,称为电流的磁效应。
15、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。
16、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应现象;
17、1834年,楞次确定感应电流方向的定律。
18、1832年,亨利发现自感现象。
19、1864年英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。
20、1887年德国物理学家赫兹用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。
21、公元前468-前376,我国的墨翟在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。
22、1621年荷兰数学家斯涅耳入射角与折射角之间的规律——折射定律。
23、关于光的本质有两种学说:一种是牛顿主张的微粒说认为光是光源发出的一种物质微粒;
一种是荷兰物理学家惠更斯提出的波动说认为光是在空间传播的某种波。
24、1801年,英国物理学家托马斯•杨观察到了光的干涉现象 。
25、1818年,法国科学家泊松 观察到光的圆板衍射——泊松亮斑。
26、1887年由赫兹 证实了电磁理的存在。
27、1895年,德国物理学家伦琴 发现X射线(伦琴射线)。
28、1900年,德国物理学家普朗克解释物体热辐射规律提出电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界。
29、1905年爱因斯坦提出光子说,成功地解释了光电效应规律。
30、1913年,丹麦物理学家玻尔提出了原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱。
31、1924年,法国物理学家德布罗意预言了实物粒子的波动性。
32、1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。
33、1909年-1911年,英国物理学家卢瑟福 进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15 m 。
34、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核也有复杂的内部结构。
35、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。
36、1932年查德威在α粒子轰击铍核时发现中子,由此人们认识到原子核的组成。
E. 物理学史有什么作用
物理学史是研究人类对自然界各种物理现象的认识史,它的基本任务就是描述物理概念、定律、理论和研究方法的脉络,提示物理学观念、方法和内容的发生、发展的原因和规律性。今天是昨天的延续,了解历史是为了更好地把握未来。所以在物理教学中,物理学史理应成为一种珍贵的教学资源。但由于受应试教育观念的影响及物理教材本身的因素,物理教师很难把物理学中丰富多彩的内容引人入胜地传达给学生,使得学生对物理基本概念、规律的由来只知其一不知其二,物理知识在学生看来是深奥、难懂的,因而学生对学习物理越来越觉得乏味、难学,越来越缺乏热情。这与物理学在科技与社会发展中越来越重要的地位是相矛盾的。而研究学习物理学史,在教学中必将为物理教学注入新的活力,还“历史”真像与学生,让他们一同与人类探索自然的历史,与科学家追求科学、追求真理、勇于实践、艰苦卓越的奋斗足迹,共悲同喜。这将赋予物理知识于生命意义,有利于激发学生学习物理、攀登科学高峰的热情,下面就几个方面谈谈物理学史在物理教学中的作用。一、利用物理学史的丰富材料,可以对学生进行科学理想教育,激励学生的科学创造精神。物理教学的基本任务除了向学生传授物理基本知识和基本技能外,还应发展学生的认识能力,培养学生的科学理想和科学创造精神。物理教师熟悉物理学史,就可以在教学中利用生动的事例进行这方面的教育和培养。熟知著名科学家的创造实践,了解历史上重大科学发现和发明产生的历史背景和突破过程,可以开阔眼界,加深学生对科学的理解,坚定他们进行科学创造,推进科学发展的信心和理想。例如在学习电学时,可向学生介绍电流的发现和电磁感应现象的发现过程,在介绍阿基米德原理时,可以向学生讲王冠的故事。在学习生活用电时,可向学生说明爱迪生发明电灯的过程……。了解科学家的生平和伟大贡献,从中获得启示,往往可以使青年学生受益终生。介绍杰出科学家的至理名言,可以使学生感受科学家勇于追求真理,献身科学事业,知难而进,愈挫愈奋、谦虚、严谨、无私奉献的高贵品质。如力学之父——牛顿,从不居功自傲,在生命快要结束时,向世人说了这样二句话:“我不知世人是怎样看我,但是我自己看来,我只是象一个在海滨玩耍的孩子,一会儿找到一颗特别光滑的卵石,一会儿发现一只异常美丽的贝壳。就这样使自己娱乐、消遣;而与此同时,真理的汪洋大海在我眼前还未被认识、被发现。”“如果我比别人看得远些,那是因为我站在巨人们的肩膀上的缘故。”被誉为电磁学的带路人——法拉第,一生中得到的荣誉不计其数,但他从不喜形于色,拿出来炫耀,人们不解地问,他憨然一笑,答道:“我不能说这些荣誉不珍贵,不过我从来不是为了追求这些荣誉而工作的。”电学中的牛顿——安培,一天,他在路上边走边思考问题时,由于过于专心竟然把马车的后背当成黑板,演算起来;镭的发现者——居里夫人,宁愿失去成为富人的机会,公开了自己发明镭的全部秘密和它的制造方法。……这些活生生的事例,可以成为青年学生努力的路标、行动的指南,有助于学生树立正确的世界观、人生观和价值观。结合教材介绍物理学史,还可使学生认识到:追求真理造福人类的志向,是科学伟人们献身科学事业并取得重大成就的重要动力。科学成就来自科学家的勤奋钻研和专心致志的忘我劳动。科学工作是不断提示和发现客观规律的工作,是一种复杂的脑力劳动,只有专心致志、不屈不挠、长期奋斗才能见效。敢于突破传统偏见,大胆进行科学探索的精神,是科学伟人们取得科学成效的重要思想基础。认识真理除了要克服科学实验上的困难和危险以外,还要克服传统观念的束缚。因此,要推动科学发展,不仅要尊重权威,虚心学习继承前人的正确理论知识,还要破除迷信和固守传统观念的思想,要敢于探索,创造力是属于爱追根究底、独立思考的人。简言之,在物理教学中,介绍物理学史,能够帮助学生掌握科学发展规律,了解科学的社会功能,认识社会实践和物理学发展的关系,学习物理研究方法,继承科学研究的优良传统,扩大知识视野,活跃科学思想,激励科学创造精神。二、了解物理学发展的历史,可以加深对物理学基本概念、基本原理和定律的本质的理解。 对于物理学中各个基本概念、基本原理和定律,只有了解它们如何产生、形成和发展的过程,即了解它们是如何得来的,又如何演变发展成为现在这个样的,才能真正懂得它们的本质,在教学中也才能深入浅出,讲深讲透。一个基本概念,它是根据哪些客观现象,由于何种研究的需要被引进物理学的呢?其原始意义是什么?随着物理学的发展,它又得到哪些补充和修正?……这一切,只从一般教科书上难以全面了解。教科书往往只以一个定义的出现,可能完全掩盖了它在发展过程中所蕴含的丰富内容。这容易使学生断章取义,对物理概念、规律进行片面性的理解,抹杀了学生的创造性思维,使学生错失了进行探究学习的机会。因为一个基本概念、规律的形成及发展过程,本身就是使学生进行探究学习的不可多得的良好素材。教师在教学中,如果只重结论、只给结论,不重过程。教学中就会缺少悬念,教学就会成为简单重复课本知识的过程,课堂将会失去生机与活力,缺少意外的“惊喜”,直接造成的后果是学生只会记结论、背结论,而不会真正理解结论,学生的综合思维能力和创造能力也不能得到充分地发展。三、了解物理学发展的真实历史,可以破除科学创造的“偶然性”和“神秘感”。教学任务之一,是传授前人经获得的理论知识,反映在现在课本中的物理学习理论,都是人们根据教学的需要经过多次编辑整理,形成的严密的理论逻辑体系。教师在讲课中,也往往只注意理论本身的逻辑结构,习惯于从少数几个基本假设或定律出发,运用数学方法推导出结论,这就掩盖了科学认识:由感性到理性、由现象到本质、由个别联系到普遍联系的具体发展过程。这样就会使学生对这些知识的来源、理论体系的形成,感到深奥莫测,认为各个物理学概念、原理和定律的获得都是一蹴而就的,只是历史上哪些智慧超人的科学伟人们的“灵感”创造,是历史的巧合和偶然的机遇,是常人的不能及的。这种认识是十分错误的。事实上熟悉科学创造历史过程的人都知道,任何一点物理知识的获得,都是一个动态的、历史的过程,是经过“试探——除错”的多次选择而得到的。都有一个从感性到理性、低级到高级、片面到全面、粗糙到严格的产生、发展和演变的过程,它决不是任何天才头脑的人偶然性所创造的。在教学中,适当地做一些必要的历史回顾,将会使学生了解各种理论建立的实验基础,了解各种抽象模型所依据的客观实际,了解假设、观点和物理学思想的演变,使学生在课堂上“亲身经历”一下物理学基本概念、原理和理论的产生、形成和发展的“系统发音过程”,这种做法的本身,就有助于消除学生对物理学知识来源的偶然性和神秘感。使学生认识到,发明创造,不是某些人的特权,但成功只会属于哪些用百分之九九的汗水,敢于实践、勇于实践、善于实践的人。同时使学生意识到,物理是一门以实验为基础的学科,实践出真知,学好物理必须重视实验、学会观察、体验生活。四、了解物理学理论的发展性和近似性,可以克服僵化的认识和绝对论的真理观。在物理学的发展史上,经常发生着以下各种形式的理论变迁:以比较正确的认识代替错误的认识,例如以热之唯动说代替热质说;以比较全面的认识代替片面的认识,例如光的波粒二象性代替原先的粒子说和波动说;以更深入的认识代替表面的认识,例如从哥白尼学说到开普勒说,再到牛顿万有引力定律的提出,就是一个不断深化的过程;以更加普遍、精确的认识代替局部的近似的认识,例如相对论和量子力学的建立,提示了牛顿力学的局限性和近似性,把它作为一种极限情况概括在新理论之中……。这生动地表明,没有任何一个物理学理论可以被看成是最终完美的,因为它的内容的有限性总是和可能观察到的无限丰富多样是相对立的。人们在一定条件下获得的物理学知识只能是近似性的、相对的真理。 如果物理教师是有较丰富的物理学史知识,就会在教学中自觉地对学生进行辩证唯物主义真理观的教育,以帮助学生克服对物理知识绝对化、僵化的理解,防止学生不能限制地、不讲条件地机械搬用物理定律、公式来解决问题。
F. 高中阶段物理学史总结
高中物理学史及物理思想方法
必修部分:(必修1、必修2 )
物理学史
一、力学:
1.1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体不会比轻物体下落得快;他研究自由落体运动程序如下:
提出假说:自由落体运动是一种对时间均匀变化的最简单的变速运动;
数学推理:由初速度为零、末速度为v的匀变速运动平均速度和得出;再应用从上式中消去v,导出即。
实验验证:由于自由落体下落的时间太短,直接验证有困难,伽利略用铜球在阻力很小的斜面上滚下,上百次实验表明:;换用不同质量的小球沿同一斜面运动,位移与时间平方的比值不变,说明不同质量的小球沿同一斜面做匀变速直线运动的情况相同;不断增大斜面倾角,重复上述实验,得出该比值随斜面倾角的增大而增大,说明小球做匀变速运动的加速度随斜面倾角的增大而变大。
合理外推:把结论外推到斜面倾角为90°的情况,小球的运动成为自由落体,伽利略认为这时小球仍保持匀变速运动的性质。(用外推法得出的结论不一定都正确,还需经过实验验证)
伽利略对自由落体的研究,开创了研究自然规律的一种科学方法。
2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;
3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)
6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它
原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
8、17世纪,德国天文学家开普勒提出开普勒三定律;牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量(体现放大和转换的思想);
9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。
11、1957年10月,苏联发射第一颗人造地球卫星;
1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。
12、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。
13.17世纪荷兰物理学家惠更斯确定了单摆的周期公式。周期是2s的单摆叫秒摆。
14.奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。(相互接近,f增大;相互远离,f减少)
选修部分:(选修3-1、3-2、3-3、3-4、3-5)
二、电磁学:(选修3-1、3-2)
1、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。
2、1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。
3、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。
4、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。
5、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。
6、1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。
7、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳——楞次定律。
8、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。
9、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说;并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。
10、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。
11、英国物理学家汤姆生发现电子,并指出:阴极射线是高速运动的电子流。
12、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。
13、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同;但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。
14、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。
15、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。
16、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一,双绕线法制精密电阻为消除其影响应用之一。
17.1864年英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场的基本方程组,后称为麦克斯韦方程组,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波。
1887年德国物理学家赫兹用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。
三、热学(3-3选做):
1、1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。
2、19世纪中叶,由德国医生迈尔、英国物理学家焦尔、德国学者亥姆霍兹最后确定能量守恒定律。
3、1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。
4、1848年开尔文提出热力学温标,指出绝对零度是温度的下限。指出绝对零度(-273.15℃)是温度的下限。 T=t+273.15K 热力学第三定律:热力学零度不可达到。
5.瓦特在1782年研制成功了具有连杆、飞轮和离心调速器的双向蒸汽机。
四、波动学(3-4选做):
1、17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。
2、1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律——惠更斯原理。
3、奥地利物理学家多普勒(1803-1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。【相互接近,f增大;相互远离,f减少】
4、1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波
5、1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。
6、1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。
7、1800年,英国物理学家赫歇耳发现红外线;
1801年,德国物理学家里特发现紫外线;
1895年,德国物理学家伦琴发现X射线(伦琴射线),并为他夫人的手拍下世界上第一张X射线的人体照片。
五、光学(3-4选做):
1.公元140年,古希腊天文学家托勒玫认为入射角与折射角之间是简单地的正比关系(实际上这个结果只对以比较小角入射才大致成立),1621年荷兰数学家斯涅耳找到了入射角与折射角之间的规律——入射角的正弦与折射角的正弦成正比,这就是折射定律。
2.公元前468-前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。
3、1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象。
4、1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射—泊松亮斑。
5、1864年,英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波;
1887年,赫兹证实了电磁波的存在,光是一种电磁波
6、1905年,爱因斯坦提出了狭义相对论,有两条基本原理:
①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;
②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。
1915 年,爱因斯坦提出了广义相对论,有两条基本原理:
①广义相对性原理——在任何参考系中(包括惯性参考系),物理过程和物理规律都是相同的;
②等效原理——一个均匀引力场与一个加速运动的参考系等价。
7、爱因斯坦还提出了相对论中的一个重要结论——质能方程式:。
8.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。(注意其测量方法)
9.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。
六、量子论(3-5选做):
1、物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界), ②热辐射实验——量子论(微观世界);
2、19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。
3、1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子;
4、激光——被誉为20世纪的“世纪之光”;
5、1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。
6、1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。(说明动量守恒定律和能量守恒定律同时适用于微观粒子)
7、1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。
8、1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;
9、1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。
七、原子物理学(3-5选做):
1、1858年,德国科学家普里克发现了一种奇妙的射线——阴极射线(高速运动的电子流)。
2、1906年,英国物理学家汤姆生发现电子,获得诺贝尔物理学奖。
3、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。
4、1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。
5、1909-1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10 -15m。
1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。
6、1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。
7、1913年,丹麦物理学家波尔最先得出氢原子能级表达式;
8、1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。
天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。
9、1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素——钋(Po)镭(Ra)。
10、1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,
并预言原子核内还有另一种粒子——中子。
11、1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。
12、1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。
13、1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。14、1942年,在费米、西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、减速剂、水泥防护层等组成)。
15、1952年美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。
16、1932年发现了正电子,1964年提出夸克模型;
粒子分三大类:媒介子-传递各种相互作用的粒子,如:光子;
轻子-不参与强相互作用的粒子,如:电子、中微子;
强子-参与强相互作用的粒子,如:重子(质子、中子、超子)和介子,强子由更基本的粒子夸克组成,夸克带电量可能为元电荷的或。
物理学史专题
★伽利略(意大利物理学家)
对物理学的贡献:
①发现摆的等时性
②物体下落过程中的运动情况与物体的质量无关
③伽利略的理想斜面实验:将实验与逻辑推理结合在一起探究科学真理的方法为物理学的研究开创了新的一页(发现了物体具有惯性,同时也说明了力是改变物体运动状态的原因,而不是使物体运动的原因)
经典题目
伽利略根据实验证实了力是使物体运动的原因(错)
伽利略认为力是维持物体运动的原因(错)
伽俐略首先将物理实验事实和逻辑推理(包括数学推理)和谐地结合起来(对)
伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去(对)
★胡克(英国物理学家)
对物理学的贡献:胡克定律
经典题目
胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)
★牛顿(英国物理学家)
对物理学的贡献
①牛顿在伽利略、笛卡儿、开普勒、惠更斯等人研究的基础上,采用归纳与演绎、综合与分析的方法,总结出一套普遍适用的力学运动规律——牛顿运动定律和万有引力定律,建立了完整的经典力学(也称牛顿力学或古典力学)体系,物理学从此成为一门成熟的自然科学
②经典力学的建立标志着近代自然科学的诞生
经典题目
牛顿发现了万有引力,并总结得出了万有引力定律,卡文迪许用实验测出了引力常数(对)
牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动(对)
牛顿提出的万有引力定律奠定了天体力学的基础(对)
★卡文迪许
贡献:测量了万有引力常量
典型题目
牛顿第一次通过实验测出了万有引力常量(错)
卡文迪许巧妙地利用扭秤装置,第一次在实验室里测出了万有引力常量的数值(对)
★亚里士多德(古希腊)
观点:
①重的物理下落得比轻的物体快
②力是维持物体运动的原因
经典题目
亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动(对)
★开普勒(德国天文学家)
对物理学的贡献 开普勒三定律
经典题目
开普勒发现了万有引力定律和行星运动规律(错)
托勒密(古希腊科学家)
观点:发展和完善了地心说
哥白尼(波兰天文学家) 观点:日心说
第谷(丹麦天文学家) 贡献:测量天体的运动
威廉?赫歇耳(英国天文学家)
贡献:用望远镜发现了太阳系的第七颗行星——天王星
汤苞(美国天文学家)
贡献:用“计算、预测、观察和照相”的方法发现了太阳系第九颗行星——冥王星
泰勒斯(古希腊)
贡献:发现毛皮摩擦过的琥珀能吸引羽毛、头发等轻小物体
★库仑(法国物理学家)
贡献:发现了库仑定律——标志着电学的研究从定性走向定量
典型题目
库仑总结并确认了真空中两个静止点电荷之间的相互作用(对)
库仑发现了电流的磁效应(错)
富兰克林(美国物理学家)
贡献:
①对当时的电学知识(如电的产生、转移、感应、存储等)作了比较系统的整理
②统一了天电和地电
密立根 贡献:密立根油滴实验——测定元电荷
昂纳斯(荷兰物理学家)发现超导
欧姆: 贡献:欧姆定律(部分电路、闭合电路)
★奥斯特(丹麦物理学家)
电流的磁效应(电流能够产生磁场)
经典题目
奥斯特最早发现电流周围存在磁场(对)
法拉第根据小磁针在通电导线周围的偏转而发现了电流的磁效应(错)
★法拉第
贡献:
①用电场线的方法表示电场
②发现了电磁感应现象
③发现了法拉第电磁感应定律(E=n△Φ/△t)
经典题目
奥斯特发现了电流的磁效应,法拉第发现了电磁感应现象(对)
法拉第发现了磁场产生电流的条件和规律(对)
奥斯特对电磁感应现象的研究,将人类带入了电气化时代(错)
法拉第发现了磁生电的方法和规律(对)
★安培(法国物理学家)
①磁场对电流可以产生作用力(安培力),并且总结出了这一作用力遵循的规律
②安培分子电流假说
经典题目
安培最早发现了磁场能对电流产生作用(对)
安培提出了磁场对运动电荷的作用力公式(错)
狄拉克(英国物理学家)
贡献:预言磁单极必定存在(至今都没有发现)
★洛伦兹(荷兰物理学家)
贡献:1895年发表了磁场对运动电荷的作用力公式(洛伦兹力)
阿斯顿
贡献:
①发现了质谱仪②发现非放射性元素的同位素
劳伦斯(美国) 发现了回旋加速器
★楞次 发现了楞次定律(判断感应电流的方向)
★汤姆生(英国物理学家)
贡献:
①发现了电子(揭示了原子具有复杂的结构)
②建立了原子的模型——枣糕模型
经典题目
汤姆生通过对阴极射线的研究发现了电子(对)
★卢瑟福(英国物理学家)
指导助手进行了α粒子散射实验(记住实验现象)
提出了原子的核式结构(记住内容)
发现了质子
经典题目
汤姆生提出原子的核式结构学说,后来卢瑟福用粒子散射实验给予了验证(错)
卢瑟福的原子核式结构学说成功地解释了氢原子的发光现象(错)
卢瑟福的a粒子散射实验可以估算原子核的大小(对)
卢瑟福通过对α粒子散射实验的研究,揭示了原子核的组成(对)
★波尔(丹麦物理学家)
贡献:波尔原子模型(很好的解释了氢原子光谱)
经典题目
玻尔把普朗克的量子理论运用于原子系统上,成功解释了氢原子光谱规律(对)
玻尔理论是依据a粒子散射实验分析得出的(错)
玻尔氢原子能级理论的局限性是保留了过多的经典物理理论(对)
★贝克勒尔(法国物理学家)
发现天然放射现象(揭示了原子核具有复杂结构)
经典题目
天然放射性是贝克勒尔最先发现的(对)
贝克勒尔通过对天然放射现象的研究发现了原子的核式结构(错)
★伦琴 贡献:发现了伦琴射线(X射线)
★查德威克 贡献:发现了中子
★约里奥?居里和伊丽芙?居里夫妇
①发现了放射性同位素
②发现了正电子
经典题目
居里夫妇用α粒子轰击铝箔时发现电子(错)
约里奥?居里夫妇用α粒子轰击铝箔时发现正电子(对)
★普朗克 贡献:量子论
★爱因斯坦
贡献:
①用光子说解释了光电效应
②相对论
经典题目
爱因斯坦提出了量子理论,普朗克提出了光子说(错)
爱因斯坦用光子说很好地解释了光电效应(对)
是爱因斯坦发现了光电效应现象,普朗克为了解释光电效应的规律,提出了光子说(错)
爱因斯坦创立了举世瞩目的相对论,为人类利用核能奠定了理论基础;普朗克提出了光子说,深刻地揭示了微观世界的不连续现象(错)
★麦克斯韦
贡献:
①建立了完整的电磁理论
②预言了电磁波的存在,并且认为光是一种电磁波(赫兹通过实验证实电磁波的存在)
经典题目
普朗克在前人研究电磁感应的基础上建立了完整的电磁理论(对)
麦克斯韦从理论上预言了电磁波的存在,赫兹用实验方法给予了证实(对)
麦克斯韦通过实验证实了电磁波的存在(错)
G. 物理学史属于什么史
物理学史是研究人类对自然界各种物理现象的认识史,它的基本任务就是描述物理概念、定律、理论和研究方法的脉络,提示物理学观念、方法和内容的发生、发展的原因和规律性。今天是昨天的延续,了解历史是为了更好地把握未来。所以在物理教学中,物理学史理应成为一种珍贵的教学资源。但由于受应试教育观念的影响及物理教材本身的因素,物理教师很难把物理学中丰富多彩的内容引人入胜地传达给学生,使得学生对物理基本概念、规律的由来只知其一不知其二,物理知识在学生看来是深奥、难懂的,因而学生对学习物理越来越觉得乏味、难学,越来越缺乏热情。这与物理学在科技与社会发展中越来越重要的地位是相矛盾的。而研究学习物理学史,在教学中必将为物理教学注入新的活力,还“历史”真像与学生,让他们一同与人类探索自然的历史,与科学家追求科学、追求真理、勇于实践、艰苦卓越的奋斗足迹,共悲同喜。这将赋予物理知识于生命意义,有利于激发学生学习物理、攀登科学高峰的热情。