当前位置:首页 » 中学校园 » 中学奥数题

中学奥数题

发布时间: 2021-04-01 12:22:46

① 初中奥数题

1、解:例如,其中8个被9除都余1,另8个数被9整除.这样的16个数中,任何9个都不能被9整除.
由于任取5个数,其中一定有3个数其和为3的倍数,取这5个数被3除的余数,只能是1,2,0.若5个数被3除的余数中,这三种2都有,则每种余数的数各取一个,其和是3的倍数,如果这5个数被3除只有2种余数,则由抽屉原理知,必有3个数被3除的余数相同.取此3个数,其和是3的倍数.
于是,17个数一定能组成5组,每组3个数,其和是3的倍数.
把这5组数的和为3a,3b,3c,3d,3e.考虑a、b、c、d、e这5个数,由上证,其中必有3个数的和为3的倍数,不妨设a+b+c是3的倍数.于是3a+3b+3c是9的倍数,此时,取和为3a、3b、3c的9个数,其和为9的倍数.即任取17个整数,其中一定可以找到9个数,其和为9的倍数.因此找不到17个满足上述要求的正整数.
2、解:由题意不难推出x、y分别与m的关系
即: 5x=-35-3m 5y=2m+15
x=-7-3m/5 y=2m/5+3
又因为-18<m<-10时有整数解,即知m能被5整除,所以m=-15
所以x=2 y=-3
则x^2+xy+y^2的值等于2^2+2*3+(-3)^2=4+6+9=19
3、解:因为x※y=2(2xy-x-y),所以
4、解:S△OAD=S△OBC=152
S△AEC=S△BED,S△OEC=S△OED
设S△AEC=x,S△OEC=y
则xy =23 2y=3x
又2y+x=152 ,∴4x=152 ,x=158
S△ABE=S△ABC-S△AEC=5-158 =258
∴填258
5、

② 初中奥数题及答案讲解

初一奥数复习题
初一奥数复习题
作者:佚名 文章来源:初中数学竞赛辅导 点击数:1005 更新时间:2006-2-4

2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.

3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n, 求x的取值范围.

4.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.

5.已知方程组

有解,求k的值.

6.解方程2|x+1|+|x-3|=6.

7.解方程组

8.解不等式||x+3|-|x-1||>2.

9.比较下面两个数的大小:

10.x,y,z均是非负实数,且满足:

x+3y+2z=3,3x+3y+z=4,

求u=3x-2y+4z的最大值与最小值.

11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.

19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.

20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?

21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).

22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有

23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?

24.求不定方程49x-56y+14z=35的整数解.

25.男、女各8人跳集体舞.

(1)如果男女分站两列;

(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.

问各有多少种不同情况?

26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?

27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.

28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?

29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.

30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?

31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?

32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?

33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?

34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?

35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.

(1)试用新合金中第一种合金的重量表示第二种合金的重量;

(2)求新合金中含第二种合金的重量范围;

(3)求新合金中含锰的重量范围.

2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以

原式=-b+(a+b)-(c-b)-(a-c)=b.

3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,

|x+m|+|x-n|=x+m-x+n=m+n.

4.分别令x=1,x=-1,代入已知等式中,得

a0+a2+a4+a6=-8128.

5.②+③整理得

x=-6y, ④

④代入①得 (k-5)y=0.

当k=5时,y有无穷多解,所以原方程组有无穷多组解;当k≠5时, y=0,代入②得(1-k)x=1+k,因为x=-6y=0,所以1+k=0,所以k=-1.

故k=5或k=-1时原方程组有解.

<x≤3时,有2(x+1)-(x-3)=6,所以x=1;当x>3时,有

,所以应舍去.

7.由|x-y|=2得

x-y=2,或x-y=-2,

所以

由前一个方程组得

|2+y|+|y|=4.

当y<-2时,-(y+2)-y=4,所以 y=-3,x=-1;当-2≤y<0时,(y+1)-y=4,无解;当y≥0时,(2+y)+y=4,所以y=1,x=3.

同理,可由后一个方程组解得

所以解为

解①得x≤-3;解②得

-3<x<-2或0<x≤1;

解③得x>1.

所以原不等式解为x<-2或x>0.9.令a=99991111,则

于是

显然有a>1,所以A-B>0,即A>B.

10.由已知可解出y和z

因为y,z为非负实数,所以有

u=3x-2y+4z

11.

所以商式为x2-3x+3,余式为2x-4.



S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,

所以 S△EFGD=3S△BFD.

设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以

S△CEG=S△BCEE,

从而

所以

SEFDC=3x+2x=5x,

所以

S△BFD∶SEFDC=1∶5.

由已知AC‖KL,所以S△ACK=S△ACL,所以

即 KF=FL.

+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!

20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.

21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以, p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).

22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有

(α+1)(β+1)(γ+1)=75.

于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时

(α+1)(β+1)=25.

所以

故(α,β)=(0,24),或(α,β)=(4,4),即n=20·324·52

23.设凳子有x只,椅子有y只,由题意得

3x+4y+2(x+y)=43,

即 5x+6y=43.

所以x=5,y=3是唯一的非负整数解.从而房间里有8个人.

24.原方程可化为

7x-8y+2z=5.

令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是

而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是

把t的表达式代到x,y的表达式中,得到原方程的全部整数解是

25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有

8×7×6×5×4×3×2×1=40320

种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.

(2)逐个考虑结对问题.

与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有

2×8×7×6×5×4×3×2×1=80640

种不同情况.

26.万位是5的有

4×3×2×1=24(个).

万位是4的有

4×3×2×1=24(个).

万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:

34215,34251,34512,34521.

所以,总共有

24+24+6+4=58

个数大于34152.

27.两车错过所走过的距离为两车长之总和,即

92+84=176(米).

设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有

解之得

解之得x=9(天),x+3=12(天).

解之得x=16(海里/小时).

经检验,x=16海里/小时为所求之原速.

30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得

解之得

故甲车间超额完成税利

乙车间超额完成税利

所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).

31.设甲乙两种商品的原单价分别为x元和y元,依题意可得

由②有

0.9x+1.2y=148.5, ③

由①得x=150-y,代入③有

0. 9(150-y)+1.2y=148. 5,

解之得y=45(元),因而,x=105(元).

32.设去年每把牙刷x元,依题意得

2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,



2×1.68+2×1.3+2×1.3x=5x+2.6,

即 2.4x=2×1.68,

所以 x=1.4(元).

若y为去年每支牙膏价格,则y=1.4+1=2.4(元).

33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则

y=(4-x)(400+200x)

=200(4-x)(2+x)

=200(8+2x-x2)

=-200(x2-2x+1)+200+1600

=-200(x-1)2+1800.

所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.

34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以

0.4(25+x)=0.6x,

解之得x=50分钟.于是

左边=0.4(25+50)=30(千米),

右边= 0.6×50=30(千米),

即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.

35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有

(2)当x=0时,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最大500克.

(3)新合金中,含锰重量为:

x·40%+y·10%+z·50%=400-0.3x,

而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克.

我知道很混乱,所以就当我是凑热闹的。希望有点帮助,可以从里面挑出来几题吧

中学奥数题

1、一个小数的小数点分别向右,左边移动一位所得两数之差为2.2,则这个小数用分数表示为 。
2、某种皮衣标价为1650元,若以8折降价出售仍可盈利10%(相对于进价)那么若以标价1650元出售,可盈利 元。
3、求多位数111……11(2000个)222……22(2000个)333……33(2000个)被多位数333……33(2000个)除所得商的各个数上的数字的和为 。
4、计算(1/(1×2)+2/(1×2×3)+3/(1×2×3×4)+……+9/(1×2×3×……×10)的值为 。
5、一只船顺流而行的航速为30千米/小时,已知顺水航行3小时和逆水航行5小时的航程相等,则此船顺水漂流1小时的航程为( )千米。
6、某电视机厂计划15天生产1500台,结果生产5天后,由于引进新的生产线生产效率提高25%,则这个电视机厂会提前( )天完成计划。
7、从1,2,3,4,5,6,7,8,9中任意选出三个数,使它们的和为偶数,则共有( )种不同的选法。
8、某书的页码是连续的自然数1,2,3,4,…9,10…当将这些页码相加时,某人把其中一个页码错加了两次,结果和为2001,则这书共有( )页。
9、现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得( )朵鲜花。
10、三名工人师傅张强、李辉和王充分别加工200个零件。他们同时开始工作,当李辉加工200个零件的任务全部完成时,张强才加工了160个,王充还有48个没有加工。当张强加工200个零件的任务全部完成时,王充还有__个零件没有加工。
11、有一块表在10月29日零点比标准时间慢4分半,一直到11月5日上午7时,这块表比标准时间快了3分钟,那么这块表正好指向正确的时间是在11月 日 时。
12、一个水箱中的水以等速流出箱外,观察到上午9:00时,水箱中的水是2/3满,到11点,水箱中只剩下1/6的水,那么到什么时间水箱中的水刚好流完?( )
13、清华大学附中共有学生1800名,若每个学生每天要上8节课,每位教师每天要上4节课,每节课有45名学生和1位教师,据此请推出清华大学附中共有教师 名?
14、某班45人参加一次数学比赛,结果有35人答对了第一题,有27人答对了第二题,有41人答对了第三题,有38人答对了第四题,则这个班四道题都对的同学至少有 人?
15、一个数先加3,再除以3,然后减去5,再乘以4,结果是56,这个数是_______。
16、一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积是_________cm³。

17、六年级某班学生中有的学生年龄为13岁,有的学生年龄为12岁,其余学生年龄为11岁,这个班学生的平均年龄是__________岁。
18、将25克白糖放入空杯中,倒入100克白开水,充分搅拌后,喝去一半糖水。又加入36克白开水,若使杯中的糖水和原来的一样甜,需要加入_______克白糖。
19、六年级一班的所有同学都分别参加了课外体育小组和唱歌小组,有的同学还同时参加了两个小组。若参加两个小组的人数是参加体育小组人数的,是参加歌唱小组人数的,这个班只参加体育小组与参加唱歌小组的人数之比是________。
20、熊猫他*的小宝宝——小熊猫今年2岁了,过若干年以后,当小熊猫和熊猫妈妈当年年龄一样大时,熊猫妈妈已经18岁了。熊猫妈妈今年是_______岁。
21、果园收购一批苹果,按质量分为三等,最好的苹果为一等,每千克售价3.6元;其次是尔等苹果。每千克售价2.8元;最次的是三等苹果每千克售价2.1元。这三种苹果的数量之比为2:3:1。若将这三种苹果混在一起出售,每千克定价________元比较适宜。
22、某班学生不超过60,在一次数学测验中,分数不低于90分的人数占,得80----89分的人数占,得70-----79分的人数占,那么得70分以下的有______人。
23、有一列数,按照下列规律排列:1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,7,……这列数的第200个数是__________.
24、某个五位数加上20万并且3倍以后,其结果正好与该五位数的右端增加一个数字2的得数相等,这个五位数是___________。
25、从3、13、17、29、31这五个自然数中,每次取两个数分别作一个分数的分子和分母,一共可组成__个最简分数。
26、北京一零一中学由于近年生源质量不断提高,特别是师生们的共同努力,使得高考成绩逐年上升。在2001年高考中有59%的考生考上重点大学;2002年高考中有68%的考生考上重点大学;2003年预计将有74%的考生考上重点大学,这三年一零一中学考上重点大学的年平均增长率是____________。
27、右图,过平行四边形ABCD内一点P画一条直线,将平行四边形分成面积相等的两部分(画图并说明方法)。

28、某学校134名学生到公园租船,租一条大船需60元可乘坐6人;租一条小船需45元可积坐4人,请设计一种租船方案,使租金最省。

29、一列火车驶过长900米的铁路桥,从车头上桥到车尾离桥共用1分25秒钟,紧接着列车又穿过一条长1800米的隧道,从车头进隧道到车尾离开隧道用了2分40秒钟,求火车的速度及车身的长度。

30、有一个六位数,它的二倍、三倍、四倍、五倍、六倍还是六位数,并且它们的数字和原来的六位数的数字完全相同只是排列的顺序不一样,求这个六位数。

31、50枚棋子围成圆圈,编上号码1、2、3、4、……50,每隔一枚棋子取出一枚,要求最后留下的枚棋子的号码是42号,那么该从几号棋子开始取呢?

32、计算(1.6-1.125 + 8(3/4))÷37(1/6) + 52.3×(3/41)

33、 1999年2月份,我国城乡居民储蓄存款月末余额是56767亿元,&127;比月初余额增长18%,那么我国城乡居民储蓄存款2月份初余额是( )亿元 (精确到亿元)。
34、 环形跑道周长400米,甲乙两名运动员同时顺时针自起点出发,甲速度是 400米/分,乙速度是375米/分。( )分后甲乙再次相遇。
35、 2个整数的最小公倍数是1925,这两个整数分别除以它们的最大公约数, 得到2个商的和是16,这两个整数分别是( )和( )。
36、 数学考试有一题是计算4个分数(5/3) ,(3/2) ,(13/8) ,(8/5)的平均值,小明很粗心,把其中1个分数的分子和分母抄颠倒了。抄错后的平均值和正确的答案 最大相差( )。
37、果品公司购进苹果5.2万千克,每千克进价是0.98元,付运费等开支1840 元,预计损耗为1%,。如果希望全部进货销售后能获利17%。每千克苹果 零售价应当定为( )元。
38、计算:19+199+1999+……+19999…99
└1999个9┘

39、《新新》商贸服务公司,为客户出售货物收取3%的服务费,代客户购物 品收取2%服务费。今有一客户委托该公司出售自产的某种物品和代为 购置新设备。已知该公司共扣取了客户服务费264元,客户恰好收支平衡,问所购置的新设备花费了多少元?

40、一列数,前3个是1,9,9以后每个都是它前面相邻3个数字之和除以3所得 的余数,求这列数中的第1999个数是几?

41、一根长方体木料,体积是0.078立方米。已知这根木料长1.3米,宽为3分米,高该是多少分米?孙健同学把高错算为3分米。这样,这根木料的体积要比0.078立方米多多少?

42、有一大一小两个正方形,它们的周长相差20厘米,面积相差55平方厘米。小正方形的面积是多少平方厘米?

43、有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形的面积是45平方厘米,求这个大长方形的周长。

44、 77×13+255×999+510

45、a=8.8+8.98+8.998+8.9998+8.99998,a的整数部分是____。
46、1995的约数共有____。
47、等式“学学×好好+数学=1994”,表示两个两位数的乘积,再加上一个两位数,所得的和是1994。式中的“学、好、数”3个汉字各代表3个不同数字,其中“数”代表____。
48、如图1,“好、伙、伴、助、手、参、谋”这7个汉字代表1~7这7个数字。已知3条直线上的3个数相加、2个圆圈上3个数相加所得的5个和都相等。图中间的“好”代表____。

49、农民叔叔阿根想用20块长2米、宽1.2米的金属网建一个*墙的长方形鸡窝(如图2)。为了防止鸡飞出,所建鸡窝高度不得低于2米。要使所建的鸡窝面积最大,BC的长应是 米。

50、小胡和小涂计算甲、乙两个两位数的乘积,小胡看错了甲数的个位数字,计算结果为1274;小涂看错了甲数的十位数字,计算结果为819。甲数是____。
51、1994年“世界杯”足球赛中,甲、乙、丙、丁4支队分在同一小组。在小组赛中,这4支队中的每支队都要与另3支队比赛一场。根据规定:每场比赛获胜的队可得3分;失败的队得0分;如果双方踢平,两队各得1分。已知:
(1)这4支队三场比赛的总得分为4个连续奇数;
(2)乙队总得分排在第一;
(3)丁队恰有两场同对方踢平,其中有一场是与丙队踢平的。
根据以上条件可以推断:总得分排在第四的是____队。

④ 初中数学奥数题

我这有57道

1.水果超市运来苹果2500千克,比运来的梨的2倍少250千克。这个超市运来梨多少千克?

2.A、B两地相距300千米,甲车从A地出发24千米后,乙车才从B地相向而行。已知甲车每小时行40千米,乙车每小时行52千米,若甲车是上午8时出发,两车相遇

时是几时几分?

3.家店商场运来一批洗衣机和彩电,彩电的台数是洗衣机的3倍,现在每天平均售出10台洗衣机和15台彩电,洗衣机售完后,彩电还剩下120台没有售出,运来洗

衣机、彩电各多少台?

4.小民以每小时20千米的速度行使一。段路程后,立即沿原路以每小时30千的速度返回原出发地,这样往返一次的平均速度是多少?

5.粮店运来大米,面粉共3700千克,已知运来的面粉比大米的2倍多100千克,运来大米、面粉各多少千克?

6.一队少先队员乘船过河,如果每船坐15人,还剩9人,如果每船坐18人,则剩余1只船,求有多少只船?

7.学校举办的美术展览中,有50幅水彩画、80画幅蜡笔画。蜡笔画比水彩画多几分之几?水彩画比蜡笔画少几分之几?

8.某校航空模型小组在飞机模型比赛中,第一架模型飞机比第二架模型飞机少飞行480米.已知第一架模型飞机的速度比第二架模型飞机的速度快1米/秒,两架模型

飞机在空中飞行的时间分别为12分和16分,这两架模型飞机各飞行了多少距离?

9.一条环形跑道长400米,甲每分钟行80米,乙每分钟行120米.甲乙两人同时同地通向出发,多少分钟后他们第一次相遇?若反向出发,多少时间后相遇?

10.甲乙两人同时从A,B两地出发,相向而行,3小时后两人在途中相遇已知A,B两地相距24千米,甲乙两人的行进速度之比是2:3.问甲乙两人每小时各行多少千米.

11.已知甲,乙两地相距290千米,现有一汽车以每小时40千米的速度从甲地开往乙地,出发30分钟后,另有一辆摩托车以每小时50千米的速度从乙地开往甲地.问摩托

车出发后几小时与汽车相遇?

12.小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?

13.甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?

14.甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时

,求乙的速度。

15.一个三角形的底边长4.3厘米,面积是17.2厘米。它的高是多少厘米?

16.去年小明比他爸爸小28岁,今年爸爸的年龄是小明的8倍。小明今年多少岁?

17.果园里梨树和桃树共有365棵,桃树的棵树比梨树的2倍多5棵。果园里梨树和桃树各有多少棵?

18.一辆汽车第一天行了3小时,第二天行了5小时,第一天比第二天少行90千米。平均每小时行多少千米?

19.甲、乙两地相距1000米,小华从甲地、小明从乙地同时相向而行,小华每分钟走80米,小明每分钟走45米。两人几分相遇?

20.两地间的路程是210千米,甲、乙两辆汽车同时从两地相向开出,3.5小时相遇,甲车每小时行28千米。乙车每小时行多少千米?

21.甲、乙两地相距189千米,一列快车从甲地开往乙地每小时行72千米,一列慢车从乙地去甲地每小时行54千米。若两车同时发车,几小时后两车相距31.5千米



22.一个筑路队要筑1680米长的路。已经筑了15天,平均每天筑60米。其余的12天筑完,平均每天筑多少米?

23.学校买来6张桌子和12把椅子,共付215.40元,每把椅子7.5元。每张桌子多少元?

24.菜场运来萝卜25筐,黄瓜32筐,共重1870千克。已知每筐萝卜重30千克,黄瓜每筐重多少千克?

25.用两段布做相同的套装,第一段布长75米,第二段长100米,第一段布比第二段布少做10套。每套服装用布多少米?

26.红光农具厂五月份生产农具600件,比四月份多生产25%,四月份生产农具多少件?

27.红星纺织厂有女职工174人,比男职工人数的3倍少6人,全厂共有职工多少人?

28.蓓蕾小学三年级有学生86人,比二年级学生人数的2倍少4人,二年级有学生多少人?

29.某校有男生630人,男、女生人数的比是7∶8,这个学校女生有多少人?

30.张华看一本故事书,第一天看了全书的15%少4页,这时已看的页数与剩下页数的比是1∶7。这本故事书共有多少页?

31.一个书架有两层,上层放书的本数是下层的3倍;如果把上层的书取30本放到下层,那么两层书的本数正好相等。原来两层书架上各有书多少本?

32.第一层书架放有89本书,比第二层少放了16本,第三层书架上放有的书是一、二两层和的1.5倍,第三层放有多少本书?

艺书的本数与其他两种书的本数的比是1∶5,工具书和文艺书共有180本。图书箱里共有图书多少本?

33.有甲、乙两个同学,甲同学积蓄了27元钱,两人各为灾区人民捐款15元后,甲、乙两个同学剩下的钱的数量比是3∶4,乙同学原来有积蓄多少元?

34.小红和小芳都积攒了一些零用钱。她们所攒钱的比是5∶3,在“支援灾区”捐款活动中小红捐26元,小芳捐10元,这时她们剩下的钱数相等。小红原来有多少

钱?

35.学校买回315棵树苗,计划按3∶4分给中、高年级种植,高年级比中年级多植树多少棵?

36.三、四、五年级共植树180棵,三、四、五年级植树的棵树比是3∶5∶7。那么三个年级各植树多少棵?

37.学校计划把植树任务按5∶3分给六年级和其它年级。结果六年级植树的棵数占全校的75%,比计划多栽了20棵。学校原计划栽树多少棵?

38.一杯80克的盐水中,有盐4克,现在要使这杯盐水中盐与水的比变为1∶9,需加多少克盐或蒸发多少克水?

39.水果店运来苹果和梨共540千克,苹果和梨重量的比是12∶15。运来梨多少千克?

40.水果店运来橘子300千克,运来的葡萄比橘子多50千克,运来苹果的重量是葡萄的2倍,苹果比橘子多运来多少千克?

41.把960千克的饲料按7∶5分给甲、乙两个养鸡专业户。甲专业户比乙专业户多分得饲料多少千克?

42.甲、乙两个仓库原存放的稻谷相等。现在甲仓运出稻谷14吨,乙仓运出稻谷26吨,这时甲仓剩下的稻谷比乙仓剩下的稻谷多40%。甲、乙两个仓库原来各存放

稻谷多少吨?

43.学校操场是一个长方形,周长是280米,长、宽的比是4∶3,这个操场的长、宽各是多少米?

44.碧波幼儿园内有一块巧而美的长方形花坛,周长是64米,长与宽的比是5∶3,这块花坛占地多少平方米?

45.在一幅比例尺是 的地图上,量得甲、乙两地的距离是5厘米,甲、乙两地的实际距离是多少千米?

46.某玩具厂生产一批儿童玩具,原计划每天生产120件,75天完成。为了迎接“六一”儿童节,实际只用60天就完成了任务。实际每天生产玩具多少件?

47.甲、乙两个家具厂生产同一规格的单人课桌、椅,甲可以生产1800张桌子,乙可以生产1500个椅子一共可生产1500套课桌椅。现在两厂联合生产,经过合理安

排,尽量发挥各自特长。现在两厂每月比过去可多生产课桌椅多少套?

48.建筑工地要运122吨水泥,用一辆载重4吨的汽车运了18次后,余下的用一辆载重2.5吨的汽车运,还要运多少次?

49.空调机厂四月份生产空调机1800台,五月份比四月份增产10%。四、五月份共生产空调机多少台?

50.师徒两人合作生产一批零件,师傅每小时生产40个,徒弟每小时生产30个,如完成任务时徒弟正好生产了450个,这批零件共几个?

51.甲每小时加工48个零件,乙每小时加工 36个零件,两人共同工作 8小时后,检验出64个废品。两人平均每小时共加工多少个合格的零件?

弟生产了540个,这批零件有多少个?

52.某化肥厂第一季度平均每月生产化肥2.4万吨,前两个月生产化肥的总量比三月份多0.8万吨,三月份生产化肥多少万吨?

这批水泥共有多少吨?

53.红星乡今年收玉米3600吨,比去年增产二成,去年收玉米多少吨?

54.买6个排球和8个篮球共用去249.6元。已知排球的单价是15.6元。篮球的单价是多少元?

的和没修的就同样多。这段公路长多少米?

55.筑路队第一天筑路55米,第二天筑的路是第一天的3倍,第三天筑的比前两天的总数少30米,第三天筑路多少米?

4700米没有铺。这条公路全长多少米?

56.工程队铺运动场,4天铺了200平方米。照这样的进度,32天铺好了运动场,求这运动场的面积。

57.时新手表厂原计划每天生产75块手表,12天完成任务。实际比计划每天多生产15块,实际多少天完成任务?

⑤ 小学数学升初中奥数题及答案

奥数题很多,分小学各年级、初中各年级和高中各年级,到网上收一下,全都出来了。但从没见过“小学升初中奥数题”。根据你的意思,可能是“小学六年级奥数”内容,这很简单,你就在网上收这个“小学六年级奥数”,收出来的题目和答案足够你看10年。

⑥ 初中数学奥数题10道(有答案)

从课堂到奥数(朱华伟、齐世萌)
培优辅导(学而思)
探究应用新思维(黄东坡)

⑦ 初中奥数题10题及答案

1`已知:x=[1991^(1/n)-1991^(-1/n)]/2,n是自然数

求 [x-(1+x^2)^(1/2)]^n 的值
解:结果是 1991^(n-1)
x=[1991^(1/n)-1991^(-1/n)]/2 分母有理化
对其化简可得 x=[1990*1991^(1/n)]/1991
再设y=1991^(1/n) 则1991^(-1/n)=1/y
则可变为 (y^2+1)/2y 将其代入下式
[x-(1+x^2)^(1/2)]^n
可得[(2xy+y^2+1)/2y]^n
再将y=1991^(1/n) x=[1990*1991^(1/n)]/1991

2`证明任意7个连续自然数中,必有一个与其它6个都互质

自然数都大于1,不能是1-7吧!
相邻的自然数(>1)都互质;差为2的两个自然数唯一的非1正公约数只能是2,或者没有;差为3的两个自然数唯一的非1正公约数只能是3,或者没有;差为4的两个自然数的非1正公约数只能是2,4,或者没有;差为5的两个自然数的唯一非1正公约数只能是5,或者没有;差为6的两个自然数的唯一非1正公约数只能是2,3,6,或者没有.
若必有一个与其它6个都互质,这个数定是奇数。
n 到 n+6七个数
若n为奇数,则n+4,n+2中,必定有一个不能被3整除。
a.若n+4不能被3整除时,它与n+3,n+5,相邻互质,与n,n+2,n+6奇数相差2,4,质因子只可能是2,因为是奇数,互质,与n+1,有因子3不可能。
n+4与其它6个都互质。
b.若n+2不能被3整除时,它与n+1,n+3,相邻互质,与n,n+4,n+6奇数相差2,4,质因子只可能是2,因为是奇数,互质,与n+5,有因子3不可能。
n+2与其它6个都互质
故以奇数开始的七个连续自然数,必有一个与其它6个都互质
在以上证明中,把+改为-,得:
n 到 n-6七个数
若n为奇数,则n-4,n-2中,必定有一个不能被3整除。
c.若n-4不能被3整除时,它与n-3,n-5,相邻互质,与n,n-2,n-6奇数相差2,4,质因子只可能是2,因为是奇数,互质,与n-1,有因子3不可能。
n-4与其它6个都互质。
d.若n-2不能被3整除时,它与n-1,n-3,相邻互质,与n,n-4,n-6奇数相差2,4,质因子只可能是2,因为是奇数,互质,与n-5,有因子3不可能。
n-2与其它6个都互质
故以奇数结尾的七个连续自然数,必有一个与其它6个都互质
由于7个连续自然数必定以奇数开始或者以奇数结尾,从a、b、c、d的证明中,可知任意7个连续自然数(>1)中,必有一个与其它6个都互质

3`三角形ABC,AB=2根2,AC=根2,BC=2,点P 是BC边上任一点,则
PA^2 和PB*PC 的大小关系是什么

余弦定理:
cosA=[(2√2)^2+(√2)^2-2^2]/(2*2√2*√2)=1/2
A=30°
取BC中点N
BP*PC<=BN*NC=BC^2/4
过A做AM垂直AB交BC延长线M,过A做BC垂线AQ垂足Q
则有:
AP>AQ,
AP^2>AQ^2=BQ*QM>BC^2/4>=BP*PC

4`正方形OPQR内接于三角形ABC,已知三角形AOR,BOP,CRQ面积分别是 1,3,1.则正方形OPQR的面积是多少?
图形很简单,就是普通的三角形,和内接正方形
设正方形的边长为a,三角形AOR的OR边上的高为h,
根据三角形的面积公式可知
h=2/a,BP=6/a,QC=2/a,
三角形ABC的BC边上的高H=a+h=a+2/a,
BC=6/a+a+2/a;
将三角形ABC的面积分解成四部分(三角形AOR,BOP,CRQ和正方形OPQR)
列方程得
1/2(6/a+a+2/a)(a+2/a)=3+1+1+a^2
解得a^2=4,即正方形OPQR的面积是4。
若A,C,D 是整数,B是正整数,且 A+B=C,B+C=D,C+D=A,那么
A+B+C+D 的最大值是多少?

因为a+b=c, b+c=d, c+d=a,
把3式加起来可以得a+2b+2c+d=c+d+a, 得到c=-2b,
带入其它等式,得到a=-3b, d=-b, 所以a+b+c+d=-5b
b>0的整数,所以a+b+c+d<0, 所以当b=1最小时,a+b+c+d=-5最大

5`若1*2*3*...*100=M*12^n,其中M是自然数,n是使得等式成立的最大自然数,
则M, (1)是2的倍数吗(2)是3的倍数吗 (3)是4的倍数吗

100/3=33 100/9=11 100/27=4 则n=33+11+4=48
100/2=50,100/4=25 100/8=12 100/16=6 100/32=3 100/64=1
50+25+12+6+3+1=99
刚原式=n*2^99*3^48=8n*12^48 8n=m
故,m是2\4的倍数,不是3的倍数.

6`已知一个凸四边形的各边长都是整数,并且任何一边的长都能整除其余三边长度之和,求证:这个四边形必有两边相等.

证:设凸四边形各边的整数长度分别为:a、b、c、d,则
a<b+c+d,
b<a+c+d,
c<a+b+d,
d<b+c+a,
设k为整数,k≥2,已知任何一边的长都能整除其余三边长度之和,设(a+b+c)/d=k,则
a+b+c=kd
讨论:
一、设a+b=d
则d+c=kd
c=(k-1)d
(1)k=2,c=d
(2)k=3,c=2d,
但a+c+d=2d,a+c+d=c,与c<a+b+d矛盾,
故k=2,c=d,
二、如a+b=2d,则a=b,
三、a+b=3d,则a=2d,b=d或b=2d,a=d,
四、a+b=4d,
(1)a=d,b=3d,a=3d.b=d
(2)a=2d,b=2d,c=(k-4)d,a=b
五、a+b=5d,
(1)a=4d,b=d,c=d.a=b+c+d,与c<a+b+d矛盾,
(2)a=3d,b=2d,c=(k-5)d,
k=6,c=d,
k=7,c=2d,b=c
k=8,c=3d,a=c
k=9,c=4d,c+b+d=4d+2d+d=7d,(c+b+d)/a=7d/3d不是整数,不合题意;
k=10,c=5d,不合题意;
k>10不合题意;
六、a+b=6d,
(1)a=4d,b=2d,c=(k-6)d.
k=7,c=d,
k=8,c=2d,b=c
k=9,c=3d,
a+b+d=4d+2d+d=7d,(a+b+d)/c=7d/3d不是整数,不合题意;
k=10,c=4d,a=c
k=11,c=5d,不合题意;
k>11不合题意;
(2)a=3d,b=3d,a=b
(3)a=d,b=5d,a=d
七、a+b=7d,
(1)a=6d,b=d,
(2)a=3d,b=4d,c=(k-7)d
k=8,c=d,
k=9,c=2d,(c+b+d)/c=7d/3d不是整数,不合题意;
k=10,c=3d,,(c+b+d)/c=8d/3d不是整数,不合题意;
k>10不合题意;
(3)a=2d,b=5d,c=(k-7)d
k=8,c=d
k=9,c=2d,a=c
k=10,c=3d,a+b+d=8d,(a+b+d)/c=8d/3d,不合题意;
k=11,c=4d不合题意;
k=12,c=5d,a=c
k=13,c=6d,不合题意;
(4)a=3d,b=4d,,c=(k-7)d
k=8,c=d
k=9,c=2d,不合题意
k=10,c=3d,a=c
k=11,c=4d,b=c
k=12,c=5d,不合题意
k>12不合题意
可知如果一个凸四边形的各边长都是整数,并且任何一边的长都能整除其余三边长度之和,则这个四边形必有两边相等.

7`关于x的不等式组 x²-x-2>0 ①
{ 的 整数解只有x=-2,则实数k的取
2x²+(2k×5)x+5k<0 ②
值范围是:

有第一个不等式的x>2或x<-1
第二个不等式可以写作(2x+5)(x+k)<0
所以第二个不等式有两种情况:
当k>2.5时,则解为-k<x<-2.5,此种情况显然不符合题意
当k<2.5时,则解为-2.5<x<-k,此时又有四种情况
第一种:k大于等于2小于2.5,此时方程组的解为-2.5<x<-k,不合题意
第二种:k大于等于-2小于2,此时方程组的解为-2.5<x<-1,即整数解只有-2
第三种:k大于等于-3小于-2,此时方程组的解为-2.5<x<-1或2<x<k,此时解也只为-2
第四种:k小于-3时,接的形势与第三种情况相似,但整数解却有了3,故不符合题意
综上所述:k的取值范围为k大于等于-3小于2

8`若a,b,c,d是四个正数,且abcd=1,求a/(abc+ab+a+1)+b/(bcd+bc+b+1)+c/(cda+cd+c+1)+d/(dab+da+d+1)的值?

a/(abc+ab+a+1)+b/(bcd+bc+b+1)+c/(cda+cd+c+1)+d/(dab+da+d+1)
=a/(1/d+ab+a+1)+b/(bcd+bc+b+1)+c/(1/b+cd+c+1)+d/(dab+da+d+1)
=ad/(abd+ad+d+1)+b/(bcd+bc+b+1)+bc/(bcd+bc+b+1)+d/(dab+da+d+1)
=(ad+d)/(abd+ad+d+1)+(b+bc)/(bcd+bc+b+1)
=(ad+d)/(abd+ad+d+abcd)+(b+bc)/(bcd+bc+b+abcd)
=(a+1)/(ab+a+1+abc)+(1+c)/(cd+c+1+acd)
=(a+1)/[(a+1)+ab(c+1)]+(c+1)/[(c+1)+cd(a+1)]
=1/[1+ab(c+1)/(a+1)]+1/[1+cd(a+1)/(c+1)]
=1/{1+(c+1)/[cd(a+1)]}+1/[1+cd(a+1)/(c+1)]
令(c+1)/[cd(a+1)]=x
则cd(a+1)/(c+1)=1/x
所以原式=1/(1+x)+1/(1+1/x)
=1/(1+x)+x/(1+x)
=(1+x)/(1+x)
=1

9`观察下面一列数的规律:0,3,8,15,24……则它的第2008个数为几?
那么数列0,2,6,12,20,30……的第2008个数呢?

3-0=3 ----------式子1
8-3=5 ------------式子2
15-8=7 --------式子3
24-15=9 --------式子4
.
.
.
X(第2008项)-Y(2007项)=3+2乘(2008-2)----式子2006

观察,式子1加式子2加式子3加到式子2006,等号左边为X-0即X
等号右边是等差数列,求下和就行了.

方法二:平方减一法,观察出来的
按规律,每个数等与n的平方减1.
0=1^2 -1
3=2^2 -1
8=3^2 -1
15=4^2 -1
...

第2002 个数就是2002的平方减1
2002^2-1=4008003
所以答案为4008003

10`已知实数x,y满足x^3+y^3=2则x+y的最大值是多少?

因为 x^3+y^3 = (x+y)(x^2+xy+y^2)
又 x^2+xy+y^2 = x^2+2xy+y^2-xy = (x+y)^2 - xy
所以 x^3+y^3 = (x+y)[(x+y)^2 - xy]=2 (1)

因为 (x+y)^2>=2xy
所以 [(x+y)^2]/2>=xy
上式两边同时*(-1) 得 -[(x+y)^2]/2 <= -xy

所以(1)式可以化为
(x+y)[(x+y)^2 -[(x+y)^2]/2] <= 2
所以 (x+y)* [(x+y)^2]/2 <= 2
所以 x+y <= 3√4

热点内容
教学课件ppt模板免费 发布:2025-09-19 14:32:50 浏览:169
成都最美教师 发布:2025-09-19 13:09:19 浏览:871
写作教学 发布:2025-09-19 09:54:54 浏览:485
初三数学动点题 发布:2025-09-19 09:23:23 浏览:958
高考制度历史 发布:2025-09-19 08:57:08 浏览:69
小学师德考核登记表 发布:2025-09-19 07:44:03 浏览:662
生物材料报告 发布:2025-09-19 05:12:45 浏览:413
语文老师总结 发布:2025-09-19 04:58:43 浏览:352
感恩教育词 发布:2025-09-19 01:46:11 浏览:26
江北语文网 发布:2025-09-19 00:51:35 浏览:370