当前位置:首页 » 教学教育 » 有理数的乘法教学反思

有理数的乘法教学反思

发布时间: 2022-03-05 13:20:22

1. 有理数的乘法!急!

=8*(-7/8)+8*3/4-8*0.5
=-7+6-4
=-5

2. 有理数的乘法

有理数的乘法

湖北兴山高阳中学 张佰祥

一、 学情分析:

在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。

二、 课前准备

把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。

三、 教学目标

1、 知识与技能目标

掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

2、 能力与过程目标

经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3、 情感与态度目标

通过学生自己探索出法则,让学生获得成功的喜悦。

四、 教学重点、难点

重点:运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

五、 教学过程

1、 创设问题情景,激发学生的求知欲望,导入新课。

教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

学生:26米。

教师:能写出算式吗?

学生:……

教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)

2、 小组探索、归纳法则

(1)教师出示以下问题,学生以组为单位探索。

以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

a. 2 ×3

2看作向东运动2米,×3看作向原方向运动3次。

结果:向 运动 米

2 ×3=

b. -2 ×3

-2看作向西运动2米,×3看作向原方向运动3次。

结果:向 运动 米

-2 ×3=

c. 2 ×(-3)

2看作向东运动2米,×(-3)看作向反方向运动3次。

结果:向 运动 米

2 ×(-3)=

d. (-2) ×(-3)

-2看作向西运动2米,×(-3)看作向反方向运动3次。

结果:向 运动 米

(-2) ×(-3)=

e.被乘数是零或乘数是零,结果是人仍在原处。

(2)学生归纳法则

a.符号:在上述4个式子中,我们只看符号,有什么规律?

(+)×(+)=( ) 同号得

(-)×(+)=( ) 异号得

(+)×(-)=( ) 异号得

(-)×(-)=( ) 同号得

b.积的绝对值等于 。

c.任何数与零相乘,积仍为 。

(3)师生共同用文字叙述有理数乘法法则。

3、 运用法则计算,巩固法则。

(1)教师按课本P75 例1板书,要求学生述说每一步理由。

(2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为 。

(3)学生做 P76 练习1(1)(3),教师评析。

(4)教师引导学生做P75 例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由 决定,当负因数个数有 ,积为 ; 当负因数个数有 ,积为 ;只要有一个因数为零,积就为 。

4、 讨论对比,使学生知识系统化。

有理数乘法
有理数加法

同号
得正
取相同的符号

把绝对值相乘

(-2)×(-3)=6
把绝对值相加

(-2)+(-3)=-5

异号
得负
取绝对值大的加数的符号

把绝对值相乘

(-2)×3= -6
(-2)+3=1

用较大的绝对值减小的绝对值

任何数与零
得零
得任何数

5、 分层作业,巩固提高。

六、 教学反思:

本节课由情景引入,使学生迅速进入角色,很快投入到探究有理数乘法法则上来,提高了本节课的教学效率。在本节课的教学实施中自始至终引导学生探索、归纳,真正体现了以学生为主体的教学理念。本节课特别注重过程教学,有利于培养学生的分析归纳能力。教学效果令人比较满意。如果是在法则运用时,编制一些训练符号法则的口算题,把例2放在下一课时处理,效果可能更好。

【点评】:本节课张老师首先创设了一个密切社会生活的问题情景—抗旱,由此引入新课,并利用学生熟悉的数轴去探究有理数的乘法法则,充分体现了课程源于生活,服务于生活,学生的学习是在原有知识上的自我建构的过程等理念,教学要面向学生的生活世界和社会实践,教学活动必须尊重学生已有的知识与经验,学生原有的知识和经验是学习的基础,学生的学习是在原有知识和经验基础上的自我生成的过程。

探索有理数乘法法则是本节课的重点,同时它又是一个具有探索性又有挑战性的问题,因此张老师在这一教学环节花了大量的时间,精心设计了问题训练单,将学生按组间同质、组内异质的原则分学习小组开展学习合作学习,使学生经历了法则的探索过程,获得了深层次的情感体验,建构知识,获得了解决问题的方法,培养了学生的探索精神和创新能力。

为了让学生将获得的新知识纳入到原有的认知结构中去,便于记忆和提取,在教学的最后环节,张老师组织学生对有理数的乘法和有理数的加法进行对比,通过讨论、比较使知识系统化、条理化,从而使自己的认知结构不断地得以优化。学生自己建构知识,是建构主义学习观的基本观点,当新知识获得之后,必须按一定方式加以组织,为新知识找到“家”,并为新知识“安家落户”。

学生是一个活生生的人,是一个发展中的人,学生间的发展是极不平衡的,为了尊重学生的差异,以学生个体发展为本,张老师在教学中利用学生的个人性格不同,采用异质分组,使不同性格的学生组对交流、互换角色,达到了性格互补的目的。采取分层作业的方式,让不同的人在数学学习中得到了不同的发展,使每个人的认识都得到完善,这正是新课程发展的核心理念——为了每一位学生的发展的具体体现。

本节课我们也同时看到在新课引入和法则探究两个教学环节中,张老师的设计与教材完全不同,充分体现了教师是用教材,而不是教教材,这也是新课程所倡导的教学理念。教师“教教科书”是传统的“教书匠”的表现,“用教科书教”才是现代教师应有的姿态。我们教师应从学生实际出发,因材施教,创造性地使用教材,大胆对教材内容进行取舍、深加工、再创造,设计出活生生的、丰富多彩的课来,充分有效地将教材的知识激活,形成有教师个性的教材知识。既要有能力把问题简明地阐述清楚,同时也要有能力引导学生去探索、去自主学习。

3. 有理数乘法!

4. 关于有理数的乘法

5. 有理数乘法教后反思

六、 教学反思: 本节课由情景引入,使学生迅速进入角色,很快投入到探究有理数乘法法则上来,提高了本节课的教学效率。在本节课的教学实施中自始至终引导

6. 有理数乘法

有理数
有理数(rational number):能精确地表示为两个整数之比的数.

如3,-98.11,5.72727272……,7/22都是有理数.

整数和通常所说的分数都是有理数.有理数还可以划分为正有理数,0和负有理数.

在数的十进制小数表示系统中,有理数就是可表示为有限小数或无限循环小数的数.这一定义在其他进位制下(如二进制)也适用.

全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示.

有理数集是实数集的子集.相关的内容见数系的扩张.

有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a,b,c等都表示任意的有理数)



①加法的交换律 a+b=b+a;

②加法的结合律 a+(b+c)=(a+b)+c;

③存在数0,使 0+a=a+0=a;

④对任意有理数a,存在一个加法逆元,记作-a,使a+(-a)=(-a)+a=0;

⑤乘法的交换律 ab=ba;

⑥乘法的结合律 a(bc)=(ab)c;

⑦分配律 a(b+c)=ab+ac;

⑧存在乘法的单位元1≠0,使得对任意有理数a,1a=a1=a;

⑨对于不为0的有理数a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1.

此外,有理数是一个序域,即在其上存在一个次序关系≤.

有理数还是一个阿基米德域,即对有理数a和b,a≥0,b>0,必可找到一个自然数n,使nb>a.由此不难推知,不存在最大的有理数.

值得一提的是有理数的名称.“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”.事实上,这似乎是一个翻译上的失

误.有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”.中国在近代翻译西方科学著作,依据日语

中的翻译方法,以讹传讹,把它译成了“有理数”.但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同).所以这个词的意义也很显豁,就是整数的“比”.与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理.

7. 有理数乘法法则

法则1:两数相乘,若把一个因数换成它的相反数,则所得的积是原来的积的相反数.
法则2:两数相乘,同号得正,异号得负,并把绝对值相乘;
法则3:任何数与零相乘,都得零.
法则4:几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数的个数有奇数个时,积为负;当负因数的个数有偶数个时,积为正.

8. 有理数的乖方教学反思

有理数的加、假、乘、除和乘方运算是建立在小学算术运算的基础上。有关有理数运算的教学,在性质上属于定义教学,历来是一个难点课题,教师难教,学生难理解。有一个比较省事的做法是,略举简单的事例,尽早出现法则,然后用较多的时间去练法则,背法则。但新课程提倡让学生体验知识的形成过程。本单元教学设计上尽量考虑有利于基础知识、基础技能的掌握和学生的创新能力的培养,能最大限度地使教学面向全体学生,充分照顾不同层次的学生,使设计的思路符合新课程倡导的理念。
反思本单元课,成功之处在于:
1、创设情境,引入课题,体现了数学来源于生活又服务于生活的理念。例如:在教学“有理数的乘法”时,首先由学生口答有理数加法的练习入手,自然地过度到有理数的乘法,找准了新知识的生长点,为学习新知识做准备。然后,让学生举例说明两个加法算式的在实际生活中意义。再提出生活中的另一些实际问题又可以用怎样的数学知识去解决的问题。
2、精心设计的现实模型“水位变化,日期前后”使有理数的乘法法则的“规定合理性”与“规定必要性”都得到了事实的说明。新课程标准强调,教师的有效教学应指向学生有意义的数学学习,而有意义的数学学习又必须建立在学生的主观愿望和知识经验基础之上.在此背景下,本节课的引入部分通过幻灯片形象直观地展示学生熟悉的水库水位变化情况,创设了真实的问题情境。意在诱发同学们进行探索与解决问题,这样既激发了学生的学习兴趣,又弘扬了滩坑移民精神,对学生进行德育教育,同时让学生体会到数学问题来源于实际生活。
3、练习设计,让学生体验到成功的乐趣。本单元内容安排紧凑,由浅入深,循序渐进地突破难点。根据七年级学生的思维特点和年龄特征,设计了“试
一试”、“练一练”、 “合作学习”等环节,激发学生的好奇心,并在教学中尽量用激励性和导向性的语言来鼓励学生大胆发言,面向全体学生,让学生在比较轻松和谐的课堂氛围中较好地完成了学习任务。
尽管最初的设计能体现一些新的理念,但经过课堂实践后,仍感到有许多不足。
1、课堂引入化时间太多。有理数的加法对本节课的作用不是很大,直接从水位变化的实例引出可以节省一些时间用于合作学习的环节。
2、“巩固训练”这一环节的题目有时设计的较难,对中下学生一时难以接受。重点应该是练习有理数运算的法则,计算量不易太大。应按由易到难的顺序进行,学生会容易接受。
3、教学中感觉教师启发引导的较多,给学生自主探索思考的空间较少。这样不利于学生思维的发展,不利于学生主体作用的发挥。

热点内容
科高教育 发布:2025-05-15 04:51:38 浏览:764
人教版二年级语文试卷 发布:2025-05-15 03:39:22 浏览:833
叶开语文 发布:2025-05-15 03:38:08 浏览:879
北京假体隆鼻多少钱 发布:2025-05-15 02:49:41 浏览:117
年度师德师风自查报告 发布:2025-05-15 02:16:35 浏览:334
是在下输了是什么梗 发布:2025-05-15 01:59:54 浏览:289
教育课 发布:2025-05-15 00:39:16 浏览:887
笔画视频教学 发布:2025-05-15 00:06:14 浏览:99
小班幼儿英语 发布:2025-05-15 00:00:31 浏览:854
思教育网 发布:2025-05-14 22:14:17 浏览:988