高中數學必修4
必修四相當重要,三角函數和平面向量常考大題。
公式一定要熟記並且會靈活運用;常考的題型就那幾種, 把錯題或者典型的題目抄在專門的錯題本上,到了高三一定會有很大幫助;不建議做太多習題,適量就好;可以每天做一道難題,或者幾道選擇填空,慢慢積累。
每天學的知識點一有不會就要問,積累得多了,後面就跟聽天書似的了....
❷ 人教版高中數學必修4和必修5是高幾的書本
主要是看學校進度的安排,可以是高一也可以是高二。
人教版文科數學需要學習7本。必修有5本(必修1、2、3、4、5),選修有2本(選修1-1、1-2)。至於進度,每個學校的教學計劃都不一樣。
《高中數學》是由人民教育出版社出版的圖書,該書由人民教育出版社、課程教材研究所、數學課程教材研究開發中心共同編制,內容包括《集合與函數》《三角函數》《不等式》《數列》《復數》《排列、組合、二項式定理》《立體幾何》《平面解析幾何》等部分。
(2)高中數學必修4擴展閱讀
數學中有許多概念都有著密切的聯系,如平行線段與平行向量、平面角與空間角、方程與不等式、映射與函數、對立事件與互斥事件等等,在教學中應善於尋找、分析其聯系與區別,有利於學生掌握概念的本質。
再如,函數概念有兩種定義,一種是初中給出的定義,是從運動變化的觀點出發,其中的對應關系是將自變數的每一個取值,與唯一確定的函數值對應起來:另一種是高中給出的定義,是從集合、對應的觀點出發,其中的對應關系是將原象集合中的每一個元素與象集合中唯一確定的元素對應起來。
❸ 高中數學必修4有多少節課
高中數學必修4有多少節課?
半學期的課程大約45左右。
❹ 高一數學必修四
三角函數公式 兩角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半形公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 積化和差 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) 和差化積 sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgB=sin(A+B)/sinAsinB -ctgA+ctgB=sin(A+B)/sinAsin 集合與函數概念 一,集合有關概念 1,集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素. 2,集合的中元素的三個特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無序性 說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素. (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素. (3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣. (4)集合元素的三個特性使集合本身具有了確定性和整體性. 一)兩角和差公式 (寫的都要記) sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA ? cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) 二)用以上公式可推出下列二倍角公式 tan2A=2tanA/[1-(tanA)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 (上面這個餘弦的很重要) sin2A=2sinA*cosA 三)半形的只需記住這個: tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA) 四)用二倍角中的餘弦可推出降冪公式 (sinA)^2=(1-cos2A)/2 (cosA)^2=(1+cos2A)/2 五)用以上降冪公式可推出以下常用的化簡公式 1-cosA=sin^(A/2)*2 1-sinA=cos^(A/2)*2 + 一)兩角和差公式 (寫的都要記) sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA ? cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) 二)用以上公式可推出下列二倍角公式 tan2A=2tanA/[1-(tanA)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 (上面這個餘弦的很重要) sin2A=2sinA*cosA 三)半形的只需記住這個: tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA) 四)用二倍角中的餘弦可推出降冪公式 (sinA)^2=(1-cos2A)/2 (cosA)^2=(1+cos2A)/2 五)用以上降冪公式可推出以下常用的化簡公式 1-cosA=sin^(A/2)*2 1-sinA=cos^(A/2)*2 3,集合的表示:{ … } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:a={我校的籃球隊員},b={1,2,3,4,5} 2.集合的表示方法:列舉法與描述法. 注意啊:常用數集及其記法: 非負整數集(即自然數集) 記作:n 正整數集 n*或 n+ 整數集z 有理數集q 實數集r 關於"屬於"的概念 集合的元素通常用小寫的拉丁字母表示,如:a是集合a的元素,就說a屬於集合a 記作 a∈a ,相反,a不屬於集合a 記作 a(a 列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上. 描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法.用確定的條件表示某些對象是否屬於這個集合的方法. ①語言描述法:例:{不是直角三角形的三角形} ②數學式子描述法:例:不等式x-3]2的解集是{x(r| x-3]2}或{x| x-3]2} 4,集合的分類: 1.有限集 含有有限個元素的集合 2.無限集 含有無限個元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5} 二,集合間的基本關系 1."包含"關系—子集 注意:有兩種可能(1)a是b的一部分,;(2)a與b是同一集合. 反之: 集合a不包含於集合b,或集合b不包含集合a,記作ab或ba 2."相等"關系(5≥5,且5≤5,則5=5) 實例:設 a={x|x2-1=0} b={-1,1} "元素相同" 結論:對於兩個集合a與b,如果集合a的任何一個元素都是集合b的元素,同時,集合b的任何一個元素都是集合a的元素,我們就說集合a等於集合b,即:a=b ① 任何一個集合是它本身的子集.a(a ②真子集:如果a(b,且a( b那就說集合a是集合b的真子集,記作ab(或ba) ③如果 a(b, b(c ,那麼 a(c ④ 如果a(b 同時 b(a 那麼a=b 3. 不含任何元素的集合叫做空集,記為φ 規定: 空集是任何集合的子集, 空集是任何非空集合的真子集. 三,集合的運算 1.交集的定義:一般地,由所有屬於a且屬於b的元素所組成的集合,叫做a,b的交集. 記作a∩b(讀作"a交b"),即a∩b={x|x∈a,且x∈b}. 2,並集的定義:一般地,由所有屬於集合a或屬於集合b的元素所組成的集合,叫做a,b的並集.記作:a∪b(讀作"a並b"),即a∪b={x|x∈a,或x∈b}. 3,交集與並集的性質:a∩a = a, a∩φ= φ, a∩b = b∩a,a∪a = a,a∪φ= a ,a∪b = b∪a. 4,全集與補集 (1)補集:設s是一個集合,a是s的一個子集(即),由s中所有不屬於a的元素組成的集合,叫做s中子集a的補集(或余集) 記作: csa 即 csa ={x ( x(s且 x(a} (2)全集:如果集合s含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集.通常用u來表示. (3)性質:⑴cu(c ua)=a ⑵(c ua)∩a=φ ⑶(cua)∪a=u
❺ 高中數學必修4難嗎
你問這樣的問題,首先你在思想上,已經傾向於怕數學了,其實數學這門課程,只要你花點心思做題,並不難的啊。
必修四,主要是學三角函數和平面向量,要花點時間的,三角函數里有些東西是要記的,這兩塊內容,都是基礎知識,很重要的。
❻ 高中數學必修4(B版)第一章目錄
第一章復 基本初等函數(Ⅱ制)
1.1 任意角的概念與弧度制
1.1.1 角的概念的推廣
1.1.2 弧度制和弧度制與角度制的換算
1.2 任意角的三角函數
1.2.1 三角函數的定義
1.2.2 單位圓與三角函數線
1.2.3 同角三角函數的基本關系式
1.2.4 誘導公式
1.3 三角函數的圖象與性質
1.3.1 正弦函數的圖象與性質
1.3.2 餘弦函數、正切函數的圖象與性質
1.3.3 已知三角函數值求角
教學建模活動
本章小結
閱讀與欣賞
三角學的發展
❼ 高中數學必修四的全部公式整理
公式一:
設α為任意角,終邊相同的角的同一三角函數的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α與 -α的三角函數值之間的關系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函數值之間的關系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
誘導公式記憶口訣
※規律總結※
上面這些誘導公式可以概括為:
對於k·π/2±α(k∈Z)的個三角函數值,
①當k是偶數時,得到α的同名函數值,即函數名不改變;
②當k是奇數時,得到α相應的余函數值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇變偶不變)
然後在前面加上把α看成銳角時原函數值的符號。
(符號看象限)
例如:
sin(2π-α)=sin(4·π/2-α),k=4為偶數,所以取sinα。
當α是銳角時,2π-α∈(270°,360°),sin(2π-α)<0,符號為「-」。
所以sin(2π-α)=-sinα
上述的記憶口訣是:
奇變偶不變,符號看象限。
公式右邊的符號為把α視為銳角時,角k·360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函數值的符號可記憶
水平誘導名不變;符號看象限。
各種三角函數在四個象限的符號如何判斷,也可以記住口訣「一全正;二正弦;三為切;四餘弦」.
這十二字口訣的意思就是說:
第一象限內任何一個角的四種三角函數值都是「+」;
第二象限內只有正弦是「+」,其餘全部是「-」;
第三象限內切函數是「+」,弦函數是「-」;
第四象限內只有餘弦是「+」,其餘全部是「-」.
其他三角函數知識:
同角三角函數基本關系
⒈同角三角函數的基本關系式
倒數關系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的關系:
sinα /cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數關系六角形記憶法
六角形記憶法:(參看圖片或參考資料鏈接)
構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
(1)倒數關系:對角線上兩個函數互為倒數;
(2)商數關系:六邊形任意一頂點上的函數值等於與它相鄰的兩個頂點上函數值的乘積。
(主要是兩條虛線兩端的三角函數值的乘積)。由此,可得商數關系式。
(3)平方關系:在帶有陰影線的三角形中,上面兩個頂點上的三角函數值的平方和等於下面頂點上的三角函數值的平方。
兩角和差公式
⒉兩角和與差的三角函數公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
這樣,我們就得到了積化和差的四個公式:
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
好,有了積化和差的四個公式以後,我們只需一個變形,就可以得到和差化積的四個公式.
我們把上述四個公式中的a+b設為x,a-b設為y,那麼a=(x+y)/2,b=(x-y)/2
把a,b分別用x,y表示就可以得到和差化積的四個公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
向量的運算
加法運算
AB+BC=AC,這種計演算法則叫做向量加法的三角形法則。
已知兩個從同一點O出發的兩個向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,則以O為起點的對角線OC就是向量OA、OB的和,這種計演算法則叫做向量加法的平行四邊形法則。
對於零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法滿足所有的加法運算定律。
減法運算
與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
數乘運算
實數λ與向量a的積是一個向量,這種運算叫做向量的數乘,記作λa,|λa|=|λ||a|,當λ > 0時,λa的方向和a的方向相同,當λ < 0時,λa的方向和a的方向相反,當λ = 0時,λa = 0。
設λ、μ是實數,那麼:(1)(λμ)a = λ(μa)(2)(λ + μ)a = λa + μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。
向量的加法運算、減法運算、數乘運算統稱線性運算。
向量的數量積
已知兩個非零向量a、b,那麼|a||b|cos θ叫做a與b的數量積或內積,記作a•b,θ是a與b的夾角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數量積為0。
a•b的幾何意義:數量積a•b等於a的長度|a|與b在a的方向上的投影|b|cos θ的乘積。
兩個向量的數量積等於它們對應坐標的乘積的和
❽ 高中數學必修4的介紹
《高中數學必修4》是2007年人民教育出版社出版圖書,新課標教材,必修系列中第4本,普通高中課程標准實驗教科書數學必修4 A版。數學4(必修)的內容包括三角函數、平面向量、三角恆等變換。三角函數是描述周期現象的重要數學模型,在數學和其他領域中具有重要的作用。這是學生在高中階段學習的最後一個基本初等函數。向量是近代數學中重要和基本的數學概念之一,它是溝通代數、幾何與三角函數的一種工具,有著極其豐富的實際背景,在數學和物理中都有廣泛的應用。三角恆等變換在數學中有一定的應用。
❾ 高一數學必修4公式,要全!
同角三角函數間的基本關系式:
·平方關系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·積的關系:
sinα=tanα*cosα cosα=cotα*sinα
tanα=sinα*secα cotα=cosα*cscα
secα=tanα*cscα cscα=secα*cotα
·倒數關系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
三角函數恆等變形公式
·兩角和與差的三角函數:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·輔助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
·半形公式:
sin(α/2)=正負√((1-cosα)/2)
cos(α/2)=正負√((1+cosα)/2)
tan(α/2)=正負√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降冪公式
sin^2(α)=(1-cos(2α))/2
cos^2(α)=(1+cos(2α))/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
·萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
·其他:
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
❿ 數學必修四的目錄
必修四
第一章 三角函數…………………………………………………………………………………
1.1任意角和弧度制…………………………………………………………………………………
1.1.1任意角(1課時)…………………………………………………………………………
1.1.2弧度制(1課時)…………………………………………………………………………
1.2任意角的三角函數………………………………………………………………………………
1.2.1任意角的三角函數(2課時)……………………………………………………………
1.2.2同角三角函數的基本關系(1課時)………………………………………………………
1.3三角函數的誘導公式(2課時)………………………………………………………………
1.4三角函數的圖像與性質…………………………………………………………………………
1.4.1正弦函數、餘弦函數的圖像(1課時)……………………………………………………
1.4.1正弦函數、餘弦函數的性質(2課時)……………………………………………………
1.4.3正切函數的性質與圖像(1課時)…………………………………………………………
1.5函數)Asin(ωx+Φ)的圖象(2課時)……………………………………………………
1.6三角函數模型的簡單應用(1課時)…………………………………………………………
本章復習(2課時)…………………………………………………………………………………
第二章 平面向量…………………………………………………………………………………
2.1平面向量的實際背景及基本概念(1課時)……………………………………………………
2.2平面向量的線性運算……………………………………………………………………………
2.2.1向量加法運算及其幾何意義(1課時)……………………………………………………
2.2.2向量減法運算及其幾何意義(1課時)……………………………………………………
2.2.2向量數乘運算及其幾何意義(1課時)……………………………………………………
2.3平面向量的基本定理及坐標表示(2課時)……………………………………………………
2.3.1平面向量基本定理…………………………………………………………………………
2.3.2平面向量的正交分解及坐標表示…………………………………………………………
2.3.3平面向量的坐標運算………………………………………………………………………
2.3.4平面向量共線的坐標表示…………………………………………………………………
2.4平面向量的數量積………………………………………………………………………………
2.4.1平面向量數量積的物理背景及其含義(1課時)…………………………………………
2.4.2平面向量積的坐標表示、模、夾角(1課時)……………………………………………
2.5平面向量應用舉例………………………………………………………………………………
2.5.1平面幾何中的向量法(1課時)……………………………………………………………
2.5.2向量在物理中的應用舉例(1課時)………………………………………………………
本章復習(2課時)…………………………………………………………………………………
第三章 三角恆等變換……………………………………………………………………………
3.1兩角和與差的正弦、餘弦和正切公式…………………………………………………………
3.1.1兩角差的餘弦公式(1課時)………………………………………………………………
3.1.2兩角和與差的正弦、餘弦、正切公式(2課時)…………………………………………
3.1.3二倍角的正弦、餘弦、正切公式(1課時)………………………………………………
3.2簡單的三角恆等變換(2課時)………………………………………………………………
本章復習(2課時)………………………………………………………