當前位置:首頁 » 語數英語 » 數學歷史故事

數學歷史故事

發布時間: 2020-11-21 08:50:18

數學史上有哪些著名的經典故事

尼爾斯·亨利克·阿貝爾(1802年8月5日-1829年4月6日),挪威數學家,在很多數學領域做出了開創性的工作。他最著名的一個結果是首次完整給出了高於四次的一般代數方程沒有一般形式的代數解的證明。這個問題是他那時最著名的未解決問題之一,懸疑達250多年。他也是橢圓函數領域的開拓者,阿貝爾函數的發現者。盡管阿貝爾成就極高,卻在生前沒有得到認可,他的生活非常貧困。

在1828年冬天,阿貝爾的病逐漸嚴重起來。在他聖誕節去芬羅蘭(Froland)探他的未婚妻克萊利·肯姆普(Crelly Kemp)期間,病情便更惡化。到1829年1月時,他已知自己壽命不長,出血的症狀已無法否認。直至1829年4月6日凌晨,阿貝爾去世了,他的未婚妻堅持不要他人之助照顧阿貝爾,「單獨佔有這最後的時刻」。







㈡ 數學史上有哪些關於名人的故事

1—「數學王子」高斯的故事

7歲那年,小高斯上小學了。教師名字叫布特納,是當地小有名氣的「數學家」。這位來自城市的青年教師,總認為鄉下的孩子都是笨蛋,自己的才華無法施展。三年級的一次數學課上,布特納對孩子們又發了一通脾氣,然後,在黑板上寫下了一個長長的算式:81297+81495+81693+……+100701+100899=?

「哇!這是多少個數相加呀?怎麼算呀?」學生們害怕極了,越是緊張越是想不出怎麼計算。

布特納很得意。他知道,像這樣後一個數都比前一個數大198的100個數相加,這些調皮的學生即使整個上午都乖乖地計算,也不會算出結果。

不料,不一會兒,小高斯卻拿著寫有答案的小石板過來了,說:「老師,我算完了。」布特納連頭都沒抬,生氣地說:「去去,不要胡鬧。誰想胡亂寫一個數交差,可得小心!」說完,揮動了一下他那鐵錘似的拳頭。

可是小高斯卻堅持不走,說:「老師,我沒有胡鬧。」並把小石板輕輕地放在講台上。布特納看了一眼,驚訝得說不出話來,沒想到,這個10歲的孩子居然這么快就算出了正確的答案。

原來,小高斯不是像其他孩子那樣一個數一個數地加,而是細心地觀察,動腦筋,找規律。他發現一頭一尾兩個數依次相加,每次加得的和都是182196,求50個182196的和可以用乘法很快算出。

小高斯的難以置信的數學天賦,使布特納既佩服,又內疚。從此,他再也不輕視窮人的孩子了。他給小高斯買來了許多數學書,並讓他的年輕的助手巴蒂爾幫助小高斯學數學。2、國王讓金匠做了一頂新的

。但他懷疑金匠在金冠中摻假了。可是,做好的
無論從重量上、外形上都看不出問題。國王把這個難題交給了


日思夜想。一天,他去澡堂洗澡,當他慢慢坐進澡堂時,水從盆邊溢了出來,他望著溢出來的水,突然大叫一聲:「我知道了!」竟然
地跑回家中。原來他想出辦法了。

把金
放進一個裝滿水的缸中,一些水溢出來了。他取了王冠,把水裝滿,再將一塊同
樣重的金子放進水裡,又有一些水溢出來。他把兩次的水加以比較,發現第一次溢出的水多於第二次。於是他斷定金冠中摻了銀了。經過一翻試驗,他算出銀子的重量。當他宣布他的發現時,金匠

這次試驗的意義遠遠大過查出金匠欺騙國王。阿基米德從中發現了一條原理:即物體在液體中減輕的重量,等於他所排出液體的重量。這條原理後人以阿基米德的名字命名。一直到現代,人們還在利用這個原理測定
等。

3、

隊攻入敘
,並闖入阿基米德的住宅,看見一位老人在地上埋頭作
,士兵將圖踩壞。阿基米德怒斥士兵:『不要弄壞我的圖!』士兵拔出
,刺死了這位曠世絕倫的大科學家,阿基米德竟死在愚蠢無知的羅
手裡。以上是我搜索參考後提供的。滿意請採納

㈢ 數學發展史上的小故事

八歲的高斯發現了數學定理

德國著名大科學家高斯(1777~1855)出生在一個貧窮的家庭。高斯在還不會講話就自己學計算,在三歲時有一天晚上他看著父親在算工錢時,還糾正父親計算的錯誤。

長大後他成為當代最傑出的天文學家、數學家。他在物理的電磁學方面有一些貢獻,現在電磁學的一個單位就是用他的名字命名。數學家們則稱呼他為「數學王子」。

他八歲時進入鄉村小學讀書。教數學的老師是一個從城裡來的人,覺得在一個窮鄉僻壤教幾個小猢猻讀書,真是大材小用。而他又有些偏見:窮人的孩子天生都是笨蛋,教這些蠢笨的孩子念書不必認真,如果有機會還應該處罰他們,使自己在這枯燥的生活里添一些樂趣。

這一天正是數學教師情緒低落的一天。同學們看到老師那抑鬱的臉孔,心裡畏縮起來,知道老師又會在今天捉這些學生處罰了。

「你們今天替我算從1加2加3一直到100的和。誰算不出來就罰他不能回家吃午飯。」老師講了這句話後就一言不發的拿起一本小說坐在椅子上看去了。

教室里的小朋友們拿起石板開始計算:「1加2等於3,3加3等於6,6加4等於10……」一些小朋友加到一個數後就擦掉石板上的結果,再加下去,數越來越大,很不好算。有些孩子的小臉孔漲紅了,有些手心、額上滲出了汗來。

還不到半個小時,小高斯拿起了他的石板走上前去。「老師,答案是不是這樣?」

老師頭也不抬,揮著那肥厚的手,說:「去,回去再算!錯了。」他想不可能這么快就會有答案了。

可是高斯卻站著不動,把石板伸向老師面前:「老師!我想這個答案是對的。」

數學老師本來想怒吼起來,可是一看石板上整整齊齊寫了這樣的數:5050,他驚奇起來,因為他自己曾經算過,得到的數也是5050,這個8歲的小鬼怎麼這樣快就得到了這個數值呢?

高斯解釋他發現的一個方法,這個方法就是古時希臘人和中國人用來計算級數1+2+3+…+n的方法。高斯的發現使老師覺得羞愧,覺得自己以前目空一切和輕視窮人家的孩子的觀點是不對的。他以後也認真教起書來,並且還常從城裡買些數學書自己進修並借給高斯看。在他的鼓勵下,高斯以後便在數學上作了一些重要的研究了。

㈣ 數學史小故事

德國著名大科學家高斯(1777~1855)出生在一個貧窮的家庭。高斯在還不會講話就自己學計算,在三歲時有一天晚上他看著父親在算工錢時,還糾正父親計算的錯誤。

長大後他成為當代最傑出的天文學家、數學家。他在物理的電磁學方面有一些貢獻,現在電磁學的一個單位就是用他的名字命名。數學家們則稱呼他為「數學王子」。

他八歲時進入鄉村小學讀書。教數學的老師是一個從城裡來的人,覺得在一個窮鄉僻壤教幾個小猢猻讀書,真是大材小用。而他又有些偏見:窮人的孩子天生都是笨蛋,教這些蠢笨的孩子念書不必認真,如果有機會還應該處罰他們,使自己在這枯燥的生活里添一些樂趣。

這一天正是數學教師情緒低落的一天。同學們看到老師那抑鬱的臉孔,心裡畏縮起來,知道老師又會在今天捉這些學生處罰了。

「你們今天替我算從1加2加3一直到100的和。誰算不出來就罰他不能回家吃午飯。」老師講了這句話後就一言不發的拿起一本小說坐在椅子上看去了。

教室里的小朋友們拿起石板開始計算:「1加2等於3,3加3等於6,6加4等於10……」一些小朋友加到一個數後就擦掉石板上的結果,再加下去,數越來越大,很不好算。有些孩子的小臉孔漲紅了,有些手心、額上滲出了汗來。

還不到半個小時,小高斯拿起了他的石板走上前去。「老師,答案是不是這樣?」

老師頭也不抬,揮著那肥厚的手,說:「去,回去再算!錯了。」他想不可能這么快就會有答案了。

可是高斯卻站著不動,把石板伸向老師面前:「老師!我想這個答案是對的。」

數學老師本來想怒吼起來,可是一看石板上整整齊齊寫了這樣的數:5050,他驚奇起來,因為他自己曾經算過,得到的數也是5050,這個8歲的小鬼怎麼這樣快就得到了這個數值呢?

高斯解釋他發現的一個方法,這個方法就是古時希臘人和中國人用來計算級數1+2+3+…+n的方法。高斯的發現使老師覺得羞愧,覺得自己以前目空一切和輕視窮人家的孩子的觀點是不對的。他以後也認真教起書來,並且還常從城裡買些數學書自己進修並借給高斯看。在他的鼓勵下,高斯以後便在數學上作了一些重要的研究了。

㈤ 數學歷史上100字的小故事

1、庫默爾屈就為一個中學教師時,有一天上課,在黑板上運算卻忘了七和九的乘積!他猶豫很久講不下去時,有學生說答案是61,他依著寫下了。

怎知另一聲音說他應該寫69。庫默爾當然曉得正確答案只有一個,至於是61、69或其他數目,他不能決定了。於是他開始分析,高聲說61是質數,不會是一個乘積,65是5的倍數,67也是質數69看來太大,所以答案是63吧!

2、公元前46年,羅馬統帥儒略·愷撒指定歷法。由於他出生在7月,為了表示他的偉大,決定將7月改為「儒略月」,連同所有的單月都規定為31天,雙月為30天。這樣一年多出一天,2月是古羅馬處死犯人的月份,為了減少處死的人數,將2月減少1天,為29天。

3、敘拉古的亥厄洛王叫金匠造一頂純金的皇冠,因懷疑裡面摻有銀,便請阿基米德鑒定。當他進入浴盆洗澡時,水漫溢到盆外,於是悟得不同質料的物體,雖然重量相同,但因體積不同,排去的水也必不相等。根據這一道理,就可以判斷皇冠是否摻假。

4、華羅庚上中學時,在一次數學課上,老師給同學們出了一道著名的難題:「有一個數,3個3個地數,還餘2;5個5個地數,還餘3;7個7個地數,還餘2,請問這個得數是多少?」大家正在思考時,華羅庚站起來說:「23」他的回答使老師驚喜不已,並得到老師的表揚。

5、公元前500年,古希臘畢達哥拉斯(Pythagoras)學派的弟-子希勃索斯(Hippasus)發現了一個驚人的事實,一個正方形的對角線與其一邊的長度是不可公度的(若正方形邊長是1,則對角線的長不是一個有理數)這一不可公度性與畢氏學派「萬物皆為數」(指有理數)的哲理大相徑庭。

這一發現使該學派領導人惶恐、惱怒,認為這將動搖他們在學術界的統治地位。希勃索斯因此被囚禁,受到百般折磨,最後競遭到沉舟身亡的懲處。

不可通約的本質是什麼?長期以來眾說紛壇,得不到正確的解釋,兩個不可通約的比值也一直被認為是不可理喻的數。15世紀義大利著名畫家達.芬奇稱之為「無理的數」,17世紀德國天文學家開普勒稱之為「不可名狀」的數。

然而,真理畢竟是淹沒不了的,畢氏學派抹殺真理才是「無理」。人們為了紀念希勃索斯這位為真理而獻身的可敬學者,就把不可通約的量取名為「無理數」——這便是「無理數」的由來。

同時它導致了第一次數學危機。

㈥ 歷史上數學家的小故事,越多越好

瑞士數學家歐拉早年曾受過良好的神學教育,成為數學家後在俄國宮廷供職。

有一次,俄國女皇邀請法國哲學家狄德羅訪問她的宮廷。狄德羅試圖通過使朝臣改信無神論來證明他是值得被邀請的。女皇厭倦了,她命令歐拉去讓這位哲學家閉嘴。於是,狄德羅被告知,一個有學問的數學家用代數證明了上帝的存在,要是他想聽的話,這位數學家將當著所有朝臣的面給出這個證明。狄德羅高興地接受了挑戰。

第二天,在宮廷上,歐拉朝狄德羅走去,用一種非常肯定的聲調一本正經地說:「先生,,因此上帝存在。請回答!」對狄德羅來說,這聽起來好像有點道理,他困惑得不知說什麼好。周圍的人報以縱聲大笑,使這個可憐的人覺得受了羞辱。他請求女皇答應他立即返回法國,女皇神態自若地答應了。

就這樣,一個偉大的數學家用欺騙的手段「戰勝」了一個偉大的哲學家。

拉普拉斯和拉格朗日是19世紀初法國的兩位數學家。拉普拉斯在數學上十分偉大,在政治上卻是一個十足的小人,每次政權更迭,他都能夠見風使舵,毫無政治操守可言。拉普拉斯曾把他的巨著《天體力學》獻給拿破崙。拿破崙想惹惱拉普拉斯,責備他犯了一個明顯的疏忽:「你寫了一本關於世界體系的書,卻一次也沒有提到宇宙的創造者——上帝。」

拉普拉斯反駁說:「陛下,我不需要這樣一個假設。」

當拿破崙向拉格朗日復述這句話時,拉格朗日說:「啊,但那是一個很好的假設,它說明了許多問題。」

兩個神童19世紀初,在大西洋兩岸出現了兩個神童:一個是英國少年哈密頓,另一個是美國孩子科爾伯恩哈密頓的天才表現在語言學上,他8歲時就已經掌握了英文、拉丁文、希臘文和希伯萊文;12歲時已熟練地掌握了波斯語、阿拉伯語、馬來語和孟加拉語,只是由於沒有教科書,他才沒有學習漢語。科爾伯恩則在數學上表現出神奇的天才,小時候,有人問他4294967297是否是素數時,他立刻回答不是,因為它有641作為除數。類似的例子多得不勝枚舉,但他不能解釋他得出正確結論的過程。

人們把兩個神童帶到一起,這次會面是奇妙的,現在已經無法確知他們交談了什麼,但結果卻是完全出人意料的:科爾伯恩的數學天賦完全「移植」給了哈密頓;哈密頓放棄了語言學,投身數學,成為愛爾蘭歷史上最偉大的數學家。

至於科爾伯恩,他的天才漸漸消失了。

數學家之死挪威數學家阿貝爾22歲的時候就對數學的發展做出了重大的貢獻,但並不為當時的數學界所接受。他過著窮困潦倒的生活,這嚴重地影響了他的健康,他得了肺結核,這在當時是絕症。在最後的幾個星期,他一直在考慮他的未婚姐的未來。他寫信給他最好的朋友基爾豪:「她並不美麗,有著一頭紅發和雀斑,但她是一個可愛的女子。」雖然基爾豪和肯普從未見過面,但阿貝爾希望他們兩個能夠結婚。

肯普小姐照料阿貝爾度過了生命的最後時刻。在葬禮上,她與專程趕來的基爾豪相遇了。基爾豪幫助她克服了悲傷,他們相愛並結了婚。正如阿貝爾所希望的那樣,基爾豪和肯普婚後十分幸福,他們經常到阿貝爾墓前去懷念他。隨著歲月的流逝,他們發現越來越多的人從各地趕來,為阿貝爾在數學上的貢獻向他表達他們遲到的敬意,而他們只是這一朝聖隊伍中的一對普通的朝聖者。

1832年5月29日,法國年輕氣盛的伽羅瓦為了所謂的「愛情與榮譽」打算和另外一個人決斗。他知道對手的槍法很好,自己獲勝的希望很小,很可能會死去。他問自己,如何度過這最後的夜晚?在這之前,他曾寫過兩篇數學論文,但都被權威輕蔑地拒絕了:一次是被偉大的數學家柯西;另一次是被神聖的法蘭西科學院他頭腦中的東西是有價值的。整個晚上,他把飛逝的時間用來焦躁地一氣寫出他在科學上的遺言。在死亡之前盡快地寫,把他豐富的思想中那些偉大的東西盡量寫出來。他不時中斷,在紙邊空白處寫上「我沒有時間,我沒有時間」,然後又接著寫下一個極其潦草的大綱。

他在天亮之前那最後幾個小時寫出的東西,一勞永逸地為一個折磨了數學家們幾個世紀的問題找到了真正的答案,並且開創了數學的一個極為重要的分支——群論。

第二天上午,在決斗場上,他被打穿了腸子。死之前,他對在他身邊哭泣的弟弟說:「不要哭,我需要足夠的勇氣在20歲的時候死去。」他被埋葬在公墓的普通壕溝內,所以今天他的墳墓已無蹤跡可尋。他不朽的紀念碑是他的著作,由兩篇被拒絕的論文和他在死前那個不眠之夜寫下的潦草手稿組成。

數學家的問題費馬是17世紀法國圖盧茲議會的議員,一個誠實而勤奮的人,同時也是歷史上最傑出的數學業余愛好者。在其一生中,他給後代留下了大量極其美妙的定理;同時,由於一時的疏忽,也向後世的數學家們提出了嚴峻的挑戰。

費馬有一個習慣,他在讀書的時候喜歡把思考的結果簡略。有一次,他在閱讀時寫下了這樣的話:「……將一個高於2次的冪分為兩個同次的冪,這是不可能的。關於此,我確信已發現一種美妙的證法,可惜這里空白的地方太小,寫不下。」這個定理現在被命名為「費馬大定理」,即:不可能有滿足xn+yn=zn這就是費馬對後世的挑戰。為了尋找這個定理的證明,後世無數的數學家發起了一次又一次的沖鋒,但都敗下陣來。1908年,一位德國富翁曾經懸賞10萬馬克的巨款,獎勵第一個對「費馬大定理」完全證明的人。自此定理提出後,數學家們奮鬥了300多年,還是沒有證出來。但這個定理肯定存在,費馬知道它。

在數學上,「費馬大定理」已成為一座比珠穆朗瑪峰更高的山峰,人類的數學智慧只有一次達到過這樣的高度,從那以後,再也沒有達到過。

㈦ 數學歷史上重大事件

第一次數學危機

起因
00畢達哥拉斯學派主張「數」是萬物的本原、始基,而宇宙中一切現象都可歸結為整數或整數之比。在希帕索斯悖論發現之前,人們僅認識到自然數和有理數,有理數理論成為占統治地位的數學規范,希帕索斯發現的無理數,暴露了原有數學規范的局限性。由此看來,希帕索斯悖論是由於主觀認識上的錯誤而造成的。
經過
00公元前5世紀,畢達哥拉斯學派的成員希帕索斯(470B.C.前後)發現:等腰直角三角形斜邊與一直角邊是不可公度的,它們的比不能歸結為整數或整數之比。這一發現不僅嚴重觸犯了畢達哥拉斯學派的信條,同時也沖擊了當時希臘人的普遍見解,因此在當時它就直接導致了認識上的「危機」。希帕索斯的這一發現,史稱「希帕索斯悖論」,從而觸發了數學史上的第一次危機。
影響
00希帕索斯的發現,促使人們進一步去認識和理解無理數。但是,基於生產和科學技術的發展水平,畢達哥拉斯學派及以後的古希臘的數學家們沒有也不可能建立嚴格的無理數理論,他們對無理數的問題基本上採取了迴避的態度,放棄對數的算術處理,代之以幾何處理,從而開始了幾何優先發展的時期,在此後兩千年間,希臘的幾何學幾乎成了全部數學的基礎。當然,這種將整個數學捆綁在幾何上的狹隘作法,對數學的發展也產生了不利的影響。
00希帕索斯的發現,說明直覺和經驗不一定靠得住,而推理和證明才是可靠的,這就導致了亞里士多德的邏輯體系和歐幾里德幾何體系的建立。
編輯本段
第二次數學危機

起因
00十七世紀末,牛頓和萊布尼茲創立的微積分理論在實踐中取得了成 第二次數學危機功的應用,大部分數學家對於這一理論的可靠性深信不移。但是,當時的微積分理論主要是建立在無窮小分析之上的,而無窮小分析後來證明是包含邏輯矛盾的。
經過
001734年,英國大主教貝克萊發表了《分析學者,或致一個不信教的數學家。其中審查現代分析的對象、原則與推斷是否比之宗教的神秘與教條,構思更為清楚,或推理更為明顯》一書,對當時的微積分學說進行了猛烈的抨擊。他說牛頓先認為無窮小量不是零,然後又讓它等於零,這違背了背反律,並且所得到的流數實際上是0/0,是「依靠雙重錯誤你得到了雖然不科學卻是正確的結果」,這是因為錯誤互相抵償的緣故。在數學史上,稱之為「貝克萊悖論」。這一悖論的發現,在當時引起了一定的思想混亂,導致了數學史上的第二次危機,引起了持續200多年的微積分基礎理論的爭論。
00貝克萊攻擊「無窮小」,其目的是為宗教神學作論證,而作為「貝克萊悖論」本身,則是一個思想方法問題。因為數學要按照形式邏輯的不矛盾律來思維,不能在同一思維過程中既承認不等於零,又承認等於零。但是,事物的運動以其終點為極限,運動的結果在量上等於零,而在起點上則不等於零,這是事物運動的兩個方面,不應納入同一思維過程,如果把它們機械地聯結起來,必然會導致思維中的悖論。貝克萊悖論產生的原因在於無窮小量的辨證性與數學方法的形式特性的矛盾。
影響
00第二次數學危機的產物——分析基礎理論的嚴密化與集合論的創立。
00「貝克萊悖論」提出以後,許多著名數學家從各種不同的角度進行研究、探索,試圖把微積分重新建立在可靠的基礎之上。法國數學家柯西是數學分析的集大成者,通過《分析教程》(1821)、《無窮小計算講義》(1823)、《無窮小計算在幾何中的應用》(1826)這幾部著作,柯西建立起以極限為基礎的現代微積分體系。但柯西的體系仍有尚待改進之處。比如:他關於極限的語言尚顯模糊,依靠了運動、幾何直觀的東西;缺乏實數理論。德國數學家魏爾斯特拉斯是數學分析基礎的主要奠基者之一,他改進了波爾查諾、阿貝爾、柯西的方法,首次用「ε—δ」方法敘述了微積分中一系列重要概念如極限、連續、導數和積分等,建立了該學科的嚴格體系。「ε—δ」方法的提出和應用於微積分,標志著微積分算術化的完成。為了建立極限理論的基本定理,不少數學家開始給出無理數的嚴格定義。1860年,魏爾斯特拉斯提出用遞增有界數列來定義無理數;1872年,戴德金提出用分割來定義無理數;1883年,康托爾提出用基本序列來定義無理數;等等。這些定義,從不同的側面深刻揭示了無理數的本質,從而建立了嚴格的實數理論,徹底消除了希帕索斯悖論,把極限理論建立在嚴格的實數理論的基礎上,並進而導致集合論的誕生。
編輯本段
第三次數學危機

起因
00魏爾斯特拉斯用排除無窮小量的辦法來解決貝克萊悖論,而在上世紀60年代,魯濱遜又把無窮小量請了回來,引進了超實數的概念,從而建立了非標准分析,同樣也能精確地描述微積分,進而也解決了貝克萊悖論。但必須注意到,貝克萊悖論只是在相對意義下得到了解決,因為實數理論的無矛盾性歸結為集合論的無矛盾性,而集合論的無矛盾性至今仍未徹底解決。
經過
00經過第一、二次數學危機,人們把數學基礎理論的無矛盾性,歸結為集 第三次數學危機合論的無矛盾性,集合論已成為整個現代數學的邏輯基礎,數學這座富麗堂皇的大廈就算竣工了。看來集合論似乎是不會有矛盾的,數學的嚴格性的目標快要達到了,數學家們幾乎都為這一成就自鳴得意。法國著名數學家龐加萊(1854—1912)於1900年在巴黎召開的國際數學家會議上誇耀道:「現在可以說,(數學)絕對的嚴密性是已經達到了」。然而,事隔不到兩年,英國著名數理邏輯學家和哲學家羅素(1872—1970)即宣布了一條驚人的消息:集合論是自相矛盾的,並不存在什麼絕對的嚴密性!史稱「羅素悖論」。1918年,羅素把這個悖論通俗化,成為理發師悖論。羅素悖論的發現,無異於晴天劈靂,把人們從美夢中驚醒。羅素悖論以及集合論中其它一些悖論,深入到集合論的理論基礎之中,從而從根本上危及了整個數學體系的確定性和嚴密性。於是在數學和邏輯學界引起了一場軒然大波,形成了數學史上的第三次危機。
00產生集合論悖論的原因在於集合的辨證性與數學方法的形式特性或者形而上學的思維方法的矛盾。如產生羅素悖論的原因,就在於概括原則造集的任意性與生成集合的客觀規則的非任意性之間的矛盾。
影響
00第三次數學危機的產物——數理邏輯的發展與一批現代數學的產生。
00為了解決第三次數學危機,數學家們作了不同的努力。由於他們解決問題的出發點不同,所遵循的途徑不同,所以在本世紀初就形成了不同的數學哲學流派,這就是以羅素為首的邏輯主義學派、以布勞威爾(1881—1966)為首的直覺主義學派和以希爾伯特為首的形式主義學派。這三大學派的形成與發展,把數學基礎理論研究推向了一個新的階段。三大學派的數學成果首先表現在數理邏輯學科的形成和它的現代分支——證明論等——的形成上。
00為了排除集合論悖論,羅素提出了類型論,策梅羅提出了第一個集合論公理系統,後經弗倫克爾加以修改和補充,得到常用的策梅羅——弗倫克爾集合論公理體系,以後又經伯奈斯和哥德爾進一步改進和簡化,得到伯奈斯——哥德爾集合論公理體系。希爾伯特還建立了元數學。作為對集合論悖論研究的直接成果是哥德爾不完全性定理。
00美國傑出數學家哥德爾於本世紀30年代提出了不完全性定理。他指出:一個包含邏輯和初等數論的形式系統,如果是協調的,則是不完全的,亦即無矛盾性不可能在本系統內確立;如果初等算術系統是協調的,則協調性在算術系統內是不可能證明的。哥德爾不完全性定理無可辯駁地揭示了形式主義系統的局限性,從數學上證明了企圖以形式主義的技術方法一勞永逸地解決悖論問題的不可能性。它實際上告訴人們,任何想要為數學找到絕對可靠的基礎,從而徹底避免悖論的種種企圖都是徒勞無益的,哥德爾定理是數理邏輯、人工智慧、集合論的基石,是數學史上的一個里程碑。美國著名數學家馮·諾伊曼說過:「哥德爾在現代邏輯中的成就是非凡的、不朽的——它的不朽甚至超過了紀念碑,它是一個里程碑,在可以望見的地方和可以望見的未來中永遠存在的紀念碑」。
00時至今日,第三次數學危機還不能說已從根本上消除了,因為數學基礎和數理邏輯的許多重要課題還未能從根本上得到解決。然而,人們正向根本解決的目標逐漸接近。可以預料,在這個過程中還將產生許多新的重要成果。
00發現和提出悖論並加以研究,對於數學基礎、邏輯學和哲學都有重要意義。正如塔斯基(1901— )所指出的:「必須強調的是,悖論在建立現代演繹科學的基礎上佔有一個特別重要的地位。正如集合論的悖論,特別是羅素悖論成為邏輯和數學相容性形式化的起點一樣,撒謊者悖論及其語義學悖論導致了理論語義學的發展。」
http://ke..com/view/29395.htm

㈧ 誰有關於數學的歷史的故事

數學奇才、計算機之父——馮·諾依曼20世紀即將過去,21世紀就要到來.我們站在世紀之交的大門檻,回顧20世紀科學技術的輝煌發展時,不能不提及20世紀最傑出的數學家之一的馮·諾依曼.眾所周知,1946年發明的電子計算機,大大促進了科學技術的進步,大大促進了社會生活的進步.鑒於馮·諾依曼在發明電子計算機中所起到關鍵性作用,他被西方人譽為"計算機之父".約翰·馮·諾依曼(JohnVonNouma,1903-1957),美藉匈牙利人,1903年12月28日生於匈牙利的布達佩斯,父親是一個銀行家,家境富裕,十分注意對孩子的教育.馮·諾依曼從小聰穎過人,興趣廣泛,讀書過目不忘.據說他6歲時就能用古希臘語同父親閑談,一生掌握了七種語言.最擅德語,可在他用德語思考種種設想時,又能以閱讀的速度譯成英語.他對讀過的書籍和論文.能很快一句不差地將內容復述出來,而且若干年之後,仍可如此.1911年一1921年,馮·諾依曼在布達佩斯的盧瑟倫中學讀書期間,就嶄露頭角而深受老師的器重.在費克特老師的個別指導下並合作發表了第一篇數學論文,此時馮·諾依曼還不到18歲.1921年一1923年在蘇黎世大學學習.很快又在1926年以優異的成績獲得了布達佩斯大學數學博士學位,此時馮·諾依曼年僅22歲.1927年一1929年馮·諾依曼相繼在柏林大學和漢堡大學擔任數學講師。1930年接受了普林斯頓大學客座教授的職位,西渡美國.1931年成為該校終身教授.1933年轉到該校的高級研究所,成為最初六位教授之一,並在那裡工作了一生.馮·諾依曼是普林斯頓大學、賓夕法尼亞大學、哈佛大學、伊斯坦堡大學、馬里蘭大學、哥倫比亞大學和慕尼黑高等技術學院等校的榮譽博士.他是美國國家科學院、秘魯國立自然科學院和義大利國立林且學院等院的院土.1954年他任美國原子能委員會委員;1951年至1953年任美國數學會主席.1954年夏,馮·諾依曼被使現患有癌症,1957年2月8日,在華盛頓去世,終年54歲.馮·諾依曼在數學的諸多領域都進行了開創性工作,並作出了重大貢獻.在第二次世界大戰前,他主要從事運算元理論、鼻子理論、集合論等方面的研究.1923年關於集合論中超限序數的論文,顯示了馮·諾依曼處理集合論問題所特有的方式和風格.他把集會論加以公理化,他的公理化體系奠定了公理集合論的基礎.他從公理出發,用代數方法導出了集合論中許多重要概念、基本運算、重要定理等.特別在1925年的一篇論文中,馮·諾依曼就指出了任何一種公理化系統中都存在著無法判定的命題.1933年,馮·諾依曼解決了希爾伯特第5問題,即證明了局部歐幾里得緊群是李群.1934年他又把緊群理論與波爾的殆周期函數理論統一起來.他還對一般拓撲群的結構有深刻的認識,弄清了它的代數結構和拓撲結構與實數是一致的.他對其子代數進行了開創性工作,並莫定了它的理論基礎,從而建立了運算元代數這門新的數學分支.這個分支在當代的有關數學文獻中均稱為馮·諾依曼代數.這是有限維空間中矩陣代數的自然推廣.馮·諾依曼還創立了博奕論這一現代數學的又一重要分支.1944年發表了奠基性的重要論文《博奕論與經濟行為》.論文中包含博奕論的純粹數學形式的闡述以及對於實際博奕應用的詳細說明.文中還包含了諸如統計理論等教學思想.馮·諾依曼在格論、連續幾何、理論物理、動力學、連續介質力學、氣象計算、原子能和經濟學等領域都作過重要的工作.馮·諾依曼對人類的最大貢獻是對計算機科學、計算機技術和數值分析的開拓性工作.現在一般認為ENIAC機是世界第一台電子計算機,它是由美國科學家研製的,於1946年2月14日在費城開始運行.其實由湯米、費勞爾斯等英國科學家研製的"科洛薩斯"計算機比ENIAC機問世早兩年多,於1944年1月10日在布萊奇利園區開始運行.ENIAC機證明電子真空技術可以大大地提高計算技術,不過,ENIAC機本身存在兩大缺點:(1)沒有存儲器;(2)它用布線接板進行控制,甚至要搭接見天,計算速度也就被這一工作抵消了.ENIAC機研製組的莫克利和埃克特顯然是感到了這一點,他們也想盡快著手研製另一台計算機,以便改進.馮·諾依曼由ENIAC機研製組的戈爾德斯廷中尉介紹參加ENIAC機研製小組後,便帶領這批富有創新精神的年輕科技人員,向著更高的目標進軍.1945年,他們在共同討論的基礎上,發表了一個全新的"存儲程序通用電子計算機方案"--EDVAC(的縮寫).在這過程中,馮·諾依曼顯示出他雄厚的數理基礎知識,充分發揮了他的顧問作用及探索問題和綜合分析的能力.EDVAC方案明確奠定了新機器由五個部分組成,包括:運算器、邏輯控制裝置、存儲器、輸入和輸出設備,並描述了這五部分的職能和相互關系.EDVAC機還有兩個非常重大的改進,即:(1)採用了二進制,不但數據採用二進制,指令也採用二進制;(2建立了存儲程序,指令和數據便可一起放在存儲器里,並作同樣處理.簡化了計算機的結構,大大提高了計算機的速度.1946年7,8月間,馮·諾依曼和戈爾德斯廷、勃克斯在EDVAC方案的基礎上,為普林斯頓大學高級研究所研製IAS計算機時,又提出了一個更加完善的設計報告《電子計算機邏輯設計初探》.以上兩份既有理論又有具體設計的文件,首次在全世界掀起了一股"計算機熱",它們的綜合設計思想,便是著名的"馮·諾依曼機",其中心就是有存儲程序原則--指令和數據一起存儲.這個概念被譽為'計算機發展史上的一個里程碑".它標志著電子計算機時代的真正開始,指導著以後的計算機設計.自然一切事物總是在發展著的,隨著科學技術的進步,今天人們又認識到"馮·諾依曼機"的不足,它妨礙著計算機速度的進一步提高,而提出了"非馮·諾依曼機"的設想.馮·諾依曼還積極參與了推廣應用計算機的工作,對如何編製程序及搞數值計算都作出了傑出的貢獻.馮·諾依曼於1937年獲美國數學會的波策獎;1947年獲美國總統的功勛獎章、美國海軍優秀公民服務獎;1956年獲美國總統的自由獎章和愛因斯坦紀念獎以及費米獎.馮·諾依曼逝世後,未完成的手稿於1958年以《計算機與人腦》為名出版.他的主要著作收集在六卷《馮·諾依曼全集》中,1961年出版.數學奇才——伽羅華頁首1832年5月30日晨,在巴黎的葛拉塞爾湖附近躺著一個昏迷的年輕人,過路的農民從槍傷判斷他是決斗後受了重傷,就把這個不知名的青年抬到醫院。第二天早晨十點鍾,他就離開了人世。數學史上最年輕、最有創造性的頭腦停止了思考。人們說,他的死使數學發展推遲了好幾十年。這個青年就是死時不滿21歲的伽羅華。伽羅華生於離巴黎不遠的一個小城鎮,父親是學校校長,還當過多年市長。家庭的影響使伽羅華一向勇往直前,無所畏懼。1823年,12歲的伽羅華離開雙親到巴黎求學,他不滿足呆板的課堂灌輸,自己去找最難的數學原著研究,一些老師也給他很大幫助。老師們對他的評價是「只宜在數學的尖端領域里工作」。1828年,17歲的伽羅華開始研究方程論,創造了「置換群」的概念和方法,解決了幾百年來使人頭痛的方程來解決問題。伽羅華最重要的成就,是提出了「群」的概念,用群論改變了整個數學的面貌。1829年5月,伽羅華把他的成果寫成論文,遞交法國科學院,但伴隨著這篇傑作而來的是一連串的打擊和不幸。先是父親因不堪忍受教士誹謗而自殺,接著因他的答辯既簡捷又深奧令考官們不滿而未能進入著名的巴黎綜合技術學校。至於他的論文,先是被認為新概念太多又過於簡略而要求重寫;第二份推導詳盡的稿子又因審稿人病逝而下落不明;1831年1月提交的第三份論文又因評閱人不能全部看懂而被否定。青年伽羅華一方面追求數學的真知,另一方面又獻身於追求社會正義的事業。在1831年法國的「七月革命」中,作為高等師范學校新生,伽羅華率領群眾走上街頭,抗議國王的專制統治,不幸被捕。在獄中,他染上了霍亂。即使在這樣的惡劣條件下,伽羅華仍然繼續搞他的數學研究,並且寫成了論文,准備出獄後發表。出獄不久,因為捲入一場無聊的「愛情」糾葛而決斗身亡。伽羅華去世後16年,他留存下來的60頁手稿才得以發表,科學界才傳遍了他的名字。「數學之神」——阿基米德阿基米德公元前287年出生在義大利半島南端西西里島的敘拉古。父親是位數學家兼天文學家。阿基米德從小有良好的家庭教養,11歲就被送到當時希臘文化中心的亞歷山大城去學習。在這座號稱"智慧之都"的名城裡,阿基米德博閱群書,汲取了許多的知識,並且做了歐幾里得學生埃拉托塞和卡農的門生,鑽研《幾何原本》。後來阿基米德成為兼數學家與力學家的偉大學者,並且享有"力學之父"的美稱。其原因在於他通過大量實驗發現了杠桿原理,又用幾何演澤方法推出許多杠桿命題,給出嚴格的證明。其中就有著名的"阿基米德原理",他在數學上也有著極為光輝燦爛的成就。盡管阿基米德流傳至今的著作共只有十來部,但多數是幾何著作,這對於推動數學的發展,起著決定性的作用。《砂粒計算》,是專講計算方法和計算理論的一本著作。阿基米德要計算充滿宇宙大球體內的砂粒數量,他運用了很奇特的想像,建立了新的量級計數法,確定了新單位,提出了表示任何大數量的模式,這與對數運算是密切相關的。《圓的度量》,利用圓的外切與內接96邊形,求得圓周率π為:<π<,這是數學史上最早的,明確指出誤差限度的π值。他還證明了圓面積等於以圓周長為底、半徑為高的正三角形的面積;使用的是窮舉法。《球與圓柱》,熟練地運用窮竭法證明了球的表面積等於球大圓面積的四倍;球的體積是一個圓錐體積的四倍,這個圓錐的底等於球的大圓,高等於球的半徑。阿基米德還指出,如果等邊圓柱中有一個內切球,則圓柱的全面積和它的體積,分別為球表面積和體積的。在這部著作中,他還提出了著名的"阿基米德公理"。《拋物線求積法》,研究了曲線圖形求積的問題,並用窮竭法建立了這樣的結論:"任何由直線和直角圓錐體的截面所包圍的弓形(即拋物線),其面積都是其同底同高的三角形面積的三分之四。"他還用力學權重方法再次驗證這個結論,使數學與力學成功地結合起來。《論螺線》,是阿基米德對數學的出色貢獻。他明確了螺線的定義,以及對螺線的面積的計算方法。在同一著作中,阿基米德還導出幾何級數和算術級數求和的幾何方法。《平面的平衡》,是關於力學的最早的科學論著,講的是確定平面圖形和立體圖形的重心問題。《浮體》,是流體靜力學的第一部專著,阿基米德把數學推理成功地運用於分析浮體的平衡上,並用數學公式表示浮體平衡的規律。《論錐型體與球型體》,講的是確定由拋物線和雙曲線其軸旋轉而成的錐型體體積,以及橢圓繞其長軸和短軸旋轉而成的球型體的體積。丹麥數學史家海伯格,於1906年發現了阿基米德給厄拉托塞的信及阿基米德其它一些著作的傳抄本。通過研究發現,這些信件和傳抄本中,蘊含著微積分的思想,他所缺的是沒有極限概念,但其思想實質卻伸展到17世紀趨於成熟的無窮小分析領域里去,預告了微積分的誕生。正因為他的傑出貢獻,美國的E.T.貝爾在《數學人物》上是這樣評價阿基米德的:任何一張開列有史以來三個最偉大的數學家的名單之中,必定會包括阿基米德,而另外兩們通常是牛頓和高斯。不過以他們的宏偉業績和所處的時代背景來比較,或拿他們影響當代和後世的深邃久遠來比較,還應首推阿基米德。數學家的故事——祖沖之祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形,求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率,外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元.祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算.他們當時採用的一條原理是:"冪勢既同,則積不容異."意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理,但這是在祖氏以後一千多年才由卡氏發現的.為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為"祖暅原理".數學家的故事——蘇步青蘇步青1902年9月出生在浙江省平陽縣的一個山村裡。雖然家境清貧,可他父母省吃儉用,拚死拼活也要供他上學。他在讀初中時,對數學並不感興趣,覺得數學太簡單,一學就懂。可量,後來的一堂數學課影響了他一生的道路。那是蘇步青上初三時,他就讀浙江省六十中來了一位剛從東京留學歸來的教數學課的楊老師。第一堂課楊老師沒有講數學,而是講故事。他說:「當今世界,弱肉強食,世界列強依仗船堅炮利,都想蠶食瓜分中國。中華亡國滅種的危險迫在眉睫,振興科學,發展實業,救亡圖存,在此一舉。『天下興亡,匹夫有責』,在座的每一位同學都有責任。」他旁徵博引,講述了數學在現代科學技術發展中的巨大作用。這堂課的最後一句話是:「為了救亡圖存,必須振興科學。數學是科學的開路先鋒,為了發展科學,必須學好數學。」蘇步青一生不知聽過多少堂課,但這一堂課使他終身難忘。楊老師的課深深地打動了他,給他的思想注入了新的興奮劑。讀書,不僅為了擺脫個人困境,而是要拯救中國廣大的苦難民眾;讀書,不僅是為了個人找出路,而是為中華民族求新生。當天晚上,蘇步青輾轉反側,徹夜難眠。在楊老師的影響下,蘇步青的興趣從文學轉向了數學,並從此立下了「讀書不忘救國,救國不忘讀書」的座右銘。一迷上數學,不管是酷暑隆冬,霜晨雪夜,蘇步青只知道讀書、思考、解題、演算,4年中演算了上萬道數學習題。現在溫州一中(即當時省立十中)還珍藏著蘇步青一本幾何練習薄,用毛筆書寫,工工整整。中學畢業時,蘇步青門門功課都在90分以上。17歲時,蘇步青赴日留學,並以第一名的成績考取東京高等工業學校,在那裡他如飢似渴地學習著。為國爭光的信念驅使蘇步青較早地進入了數學的研究領域,在完成學業的同時,寫了30多篇論文,在微分幾何方面取得令人矚目的成果,並於1931年獲得理學博士學位。獲得博士之前,蘇步青已在日本帝國大學數學系當講師,正當日本一個大學准備聘他去任待遇優厚的副教授時,蘇步青卻決定回國,回到撫育他成長的祖任教。回到浙大任教授的蘇步青,生活十分艱苦。面對困境,蘇步青的回答是「吃苦算得了什麼,我甘心情願,因為我選擇了一條正確的道路,這是一條愛國的光明之路啊!」這就是老一輩數學家那顆愛國的赤子之心數學之父——塞樂斯塞樂斯生於公元前624年,是古希臘第一位聞名世界的大數學家。他原是一位很精明的商人,靠賣橄欖油積累了相當財富後,塞樂斯便專心從事科學研究和旅行。他勤奮好學,同時又不迷信古人,勇於探索,勇於創造,積極思考問題。他的家鄉離埃及不太遠,所以他常去埃及旅行。在那裡,塞樂斯認識了古埃及人在幾千年間積累的豐富數學知識。他游歷埃及時,曾用一種巧妙的方法算出了金字塔的高度,使古埃及國王阿美西斯欽羨不已。塞樂斯的方法既巧妙又簡單:選一個天氣晴朗的日子,在金字塔邊豎立一根小木棍,然後觀察木棍陰影的長度變化,等到陰影長度恰好等於木棍長度時,趕緊測量金字塔影的長度,因為在這一時刻,金字塔的高度也恰好與塔影長度相等。也有人說,塞樂斯是利用棍影與塔影長度的比等於棍高與塔高的比算出金字塔高度的。如果是這樣的話,就要用到三角形對應邊成比例這個數學定理。塞樂斯自誇,說是他把這種方法教給了古埃及人但事實可能正好相反,應該是埃及人早就知道了類似的方法,但他們只滿足於知道怎樣去計算,卻沒有思考為什麼這樣算就能得到正確的答案。在塞樂斯以前,人們在認識大自然時,只滿足於對各類事物提出怎麼樣的解釋,而塞樂斯的偉大之處,在於他不僅能作出怎麼樣的解釋,而且還加上了為什麼的科學問號。古代東方人民積累的數學知識,王要是一些由經驗中總結出來的計算公式。塞樂斯認為,這樣得到的計算公式,用在某個問題里可能是正確的,用在另一個問題里就不一定正確了,只有從理論上證明它們是普遍正確的以後,才能廣泛地運用它們去解決實際問題。在人類文化發展的初期,塞樂斯自覺地提出這樣的觀點,是難能可貴的。它賦予數學以特殊的科學意義,是數學發展史上一個巨大的飛躍。所以塞樂斯素有數學之父的尊稱,原因就在這里。塞樂斯最先證明了如下的定理:1.圓被任一直徑二等分。2.等腰三角形的兩底角相等。3.兩條直線相交,對頂角相等。4.半圓的內接三角形,一定是直角三角形。5.如果兩個三角形有一條邊以及這條邊上的兩個角對應相等,那麼這兩個三角形全等。這個定理也是塞樂斯最先發現並最先證明的,後人常稱之為塞樂斯定理。相傳塞樂斯證明這個定理後非常高興,宰了一頭公牛供奉神靈。後來,他還用這個定理算出了海上的船與陸地的距離。塞樂斯對古希臘的哲學和天文學,也作出過開拓性的貢獻。歷史學家肯定地說,塞樂斯應當算是第一位天文學家,他經常仰卧觀察天上星座,探窺宇宙奧秘,他的女僕常戲稱,塞樂斯想知道遙遠的天空,卻忽略了眼前的美色。數學史家Herodotus層考據得知Hals戰後之時白天突然變成夜晚(其實是日蝕),而在此戰之前塞樂斯曾對Delians預言此事。塞樂斯的墓碑上列有這樣一段題辭:「這位天文學家之王的墳墓多少小了一點,但他在星辰領域中的光榮是頗為偉大的。

㈨ 有關數學發展史的故事

畢達哥拉斯 (Pythagqras,約公元前885年至公元前400年間),從小就很聰明,一次他背著柴禾從街上走過,一位長者見他捆柴的方法與別人不同,便說:「這孩子有數學奇才,將來會成為一個大學者。」他聞聽此言,便摔掉柴禾南渡地中海到泰勒斯門下去求學。畢達哥拉斯本來就極聰明,經泰勒一指點,許多數學難題在他的手下便迎刃而解。其中,他證明了三角形的內角和等於180度;能算出你若要用瓷磚鋪地,則只有用正三角、正四角、正六角三種正多角磚才能剛好將地鋪滿,還證明了世界上只有五種正多面體,即:正4、6、8、12、20面體。他還發現了奇數、偶數、三角數、四角數、完全數、友數,直到畢達哥拉斯數。然而他最偉大的成就是發現了後來以他的名字命名的畢達哥拉斯定理(勾股弦定理),即:直角三角形兩直角邊為邊長的正方形的面積之和等於以斜邊為邊長的正方形的面積。據說,這是當時畢達哥拉斯在寺廟里見工匠們用方磚鋪地,經常要計算面積,於是便發明了此法。
畢達哥拉斯將數學知識運用得純熟之後,覺得不能只滿足於用來算題解題,於是他試著從數學領域擴大到哲學,用數的觀點去解釋一下世界。經過一番刻苦實踐,他提出「凡物皆數」的觀點,數的元素就是萬物的元素,世界是由數組成的,世界上的一切沒有不可以用數來表示的,數本身就是世界的秩序。畢達哥拉斯還在自己的周圍建立了一個青年兄弟會。在他死後大約200年,他的門徒們把這種理論加以研究發展,形成了一個強大的畢達哥拉斯學派。
一天,學派的成員們剛開完一個學術討論會,正坐著遊船出來領略山水風光,以驅散一天的疲勞。這天,風和日麗,海風輕輕的吹,盪起層層波浪,大家心裡很高興。一個滿臉鬍子的學者看著遼闊的海面興奮地說:「畢達哥拉斯先生的理論一點都不錯。你們看這海浪一層一層,波峰浪谷,就好像奇數、偶數相間一樣。世界就是數字的秩序。」「是的,是的。」這時一個正在搖槳的大個子插進來說:「就說這小船和大海吧。用小船去量海水,肯定能得出一個精確的數字。一切事物之間都是可以用數字互相表示的。」
「我看不一定。」這時船尾的一個學者突然提問了,他沉靜地說:「要是量到最後,不是整數呢?」
「那就是小數。」「要是小數既除不盡,又不能循環呢?」
「不可能,世界上的一切東西,都可以相互用數字直接准確地表達出來。」
這時,那個學者以一種不想再爭辯的口氣冷靜地說:「並不是世界上一切事物都可以用我們現在知道的數來互相表示,就以畢達哥拉斯先生研究最多的直角三角形來說吧,假如是等腰直角三角形,你就無法用一個直角邊准確地量出斜邊來。」
這個提問的學者叫希帕索斯(Hippasus),他在畢達哥拉斯學派中是一個聰明、好學、有獨立思考能力的青年數學家。今天要不是因為爭論,還不想發表自己這個新見解呢。那個搖槳的大個子一聽這話就停下手來大叫著:「不可能,先生的理論置之四海皆準。」希帕索斯眨了眨聰明的大眼,伸出兩手,用兩個虎口比成一個等腰直角三角形說:
「如果直邊是3,斜邊是幾?」
「4。」
「再准確些?」
「4.2。」
「再准確些?」
「4.24。」
「再准確些呢?」
大個子的臉漲得緋紅,一時答不上來。希帕索斯說:「你就再往後數上10位、20位也不能算是最精確的。我演算了很多次,任何等腰直角三角形的一邊與余邊,都不能用一個精確的數字表示出來。」這話像一聲晴天霹靂,全船立即響起一陣怒吼:「你敢違背畢達哥拉斯先生的理論,敢破壞我們學派的信條!敢不相信數字就是世界!」希帕索斯這時十分冷靜,他說:「我這是個新的發現,就是畢達哥拉斯先生在世也會獎賞我的。你們可以隨時去驗證。」可是人們不聽他的解釋,憤怒地喊著:「叛逆!先生的不肖門徒。」「打死他!批死他!」大鬍子沖上來,當胸給了他一拳。希帕索斯抗議著:「你們無視科學,你們竟這樣無理!」「捍衛學派的信條永遠有理。」這時大個子也沖了過來,猛地將他抱起:「我們給你一個最高的獎賞吧!」說著就把希帕索斯扔進了海里。藍色的海水很快淹沒了他的軀體,再也沒有出來。這時,天空飄過幾朵白雲,海面掠過幾只水鳥,一場風波過後,這地中海海濱又顯得那樣寧靜了。
一位很有才華的數學家就這樣被奴隸專制制度的學閥們毀滅了。但是這倒真使人們看清了希帕索斯的思想價值。這次事件後,畢達哥拉斯學派的成員們確實發現不但等腰直角三角形的直角邊無法去量准斜邊,而且圓的直徑也無法去量盡圓周,那個數字是3.1415926535897932384626……更是永遠也無法精確。慢慢地,他們感覺後悔了,後悔殺死希帕索斯的無理行動。他們漸漸明白了,明白了直覺並不是絕對可靠的,有的東西必須靠科學的證明;他們明白了,過去他們所認識的數字「0」,自然數等有理數之外,還有一些無限的不能循環的小數,這確實是一種新發現的數——應該叫它「無理數」。這個名字反映了數學的本來面貌,但也真實的記錄了畢達哥拉斯學派中學閥的蠻橫無理。
由無理數引發的數學危機一直延續到19世紀。1872年,德國數學家戴德金從連續性的要求出發,用有理數的「分割」來定義無理數,並把實數理論建立在嚴格的科學基礎上,從而結束了無理數被認為「無理」的時代,也結束了持續2000多年的數學史上的第一次大危機。

熱點內容
師德師風專業發展總結 發布:2025-07-21 06:32:21 瀏覽:357
四年級語文上冊期中測試卷 發布:2025-07-21 06:27:32 瀏覽:471
師德師風心得體會100篇 發布:2025-07-21 04:43:39 瀏覽:376
基礎課教學部 發布:2025-07-21 04:35:47 瀏覽:167
撫州市教育局電話 發布:2025-07-21 04:08:43 瀏覽:736
長沙素質教育 發布:2025-07-21 04:00:17 瀏覽:33
搓澡手法教學視頻 發布:2025-07-21 03:24:57 瀏覽:559
一年級上冊數學教案人教版 發布:2025-07-21 03:12:09 瀏覽:498
幼兒教育認識 發布:2025-07-21 03:11:37 瀏覽:953
吉他輪指教學 發布:2025-07-21 02:59:00 瀏覽:758