高三數學知識點
㈠ 高中數學所有知識點歸納
怎樣學好高中數學?首先要摘要答題技巧
現在數學這個科目也是必須學習的內容,但是現在還有很多孩子們都不喜歡這個科目,原因就是因為他們不會做這些題,導致這個科目拉他們的總分,該怎樣學好高中數學?對於數學題,他們都分為哪些類型?
高中數學試卷
怎樣學好高中數學這也是需要我們自己群摸索一些學習的技巧,找到自己適合的方法,這還是很關鍵的.
㈡ 高三數學知識點及其公式總結
這里的總結相當的齊全 實用 對你一定有用http://wenku..com/view/be1960d5360cba1aa811da6d.html這是一小部分截圖這是一小部分截圖
㈢ 高三數學有哪些重要知識點(主要是高考考哪些知識點分數多)
高考數學主要是考6大快,主要是以函數,立體幾何,數列,概率,集合,
㈣ 高考數學知識點有哪些
高考數學知識點,
這個題目太大了。
可上你省教育考試院官網,
查看高考各學科大綱。
最直接的是問你的數學老師。
㈤ 高考數學知識點
高中數學知識點總結
1. 對於集合,一定要抓住集合的代表元素,及元素的「確定性、互異性、無序性」。
中元素各表示什麼?
注重藉助於數軸和文氏圖解集合問題。
空集是一切集合的子集,是一切非空集合的真子集。
3. 注意下列性質:
(3)德摩根定律:
4. 你會用補集思想解決問題嗎?(排除法、間接法)
的取值范圍。
6. 命題的四種形式及其相互關系是什麼?
(互為逆否關系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
7. 對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的唯一性,哪幾種對應能構成映射?
(一對一,多對一,允許B中有元素無原象。)
8. 函數的三要素是什麼?如何比較兩個函數是否相同?
(定義域、對應法則、值域)
9. 求函數的定義域有哪些常見類型?
10. 如何求復合函數的定義域?
義域是_____________。
11. 求一個函數的解析式或一個函數的反函數時,註明函數的定義域了嗎?
12. 反函數存在的條件是什麼?
(一一對應函數)
求反函數的步驟掌握了嗎?
(①反解x;②互換x、y;③註明定義域)
13. 反函數的性質有哪些?
①互為反函數的圖象關於直線y=x對稱;
②保存了原來函數的單調性、奇函數性;
14. 如何用定義證明函數的單調性?
(取值、作差、判正負)
如何判斷復合函數的單調性?
∴……)
15. 如何利用導數判斷函數的單調性?
值是( )
A. 0 B. 1 C. 2 D. 3
∴a的最大值為3)
16. 函數f(x)具有奇偶性的必要(非充分)條件是什麼?
(f(x)定義域關於原點對稱)
注意如下結論:
(1)在公共定義域內:兩個奇函數的乘積是偶函數;兩個偶函數的乘積是偶函數;一個偶函數與奇函數的乘積是奇函數。
17. 你熟悉周期函數的定義嗎?
函數,T是一個周期。)
如:
18. 你掌握常用的圖象變換了嗎?
注意如下「翻折」變換:
19. 你熟練掌握常用函數的圖象和性質了嗎?
的雙曲線。
應用:①「三個二次」(二次函數、二次方程、二次不等式)的關系——二次方程
②求閉區間[m,n]上的最值。
③求區間定(動),對稱軸動(定)的最值問題。
④一元二次方程根的分布問題。
由圖象記性質! (注意底數的限定!)
利用它的單調性求最值與利用均值不等式求最值的區別是什麼?
20. 你在基本運算上常出現錯誤嗎?
21. 如何解抽象函數問題?
(賦值法、結構變換法)
22. 掌握求函數值域的常用方法了嗎?
(二次函數法(配方法),反函數法,換元法,均值定理法,判別式法,利用函數單調性法,導數法等。)
如求下列函數的最值:
23. 你記得弧度的定義嗎?能寫出圓心角為α,半徑為R的弧長公式和扇形面積公式嗎?
24. 熟記三角函數的定義,單位圓中三角函數線的定義
25. 你能迅速畫出正弦、餘弦、正切函數的圖象嗎?並由圖象寫出單調區間、對稱點、對稱軸嗎?
(x,y)作圖象。
27. 在三角函數中求一個角時要注意兩個方面——先求出某一個三角函數值,再判定角的范圍。
28. 在解含有正、餘弦函數的問題時,你注意(到)運用函數的有界性了嗎?
29. 熟練掌握三角函數圖象變換了嗎?
(平移變換、伸縮變換)
平移公式:
圖象?
30. 熟練掌握同角三角函數關系和誘導公式了嗎?
「奇」、「偶」指k取奇、偶數。
A. 正值或負值 B. 負值 C. 非負值 D. 正值
31. 熟練掌握兩角和、差、倍、降冪公式及其逆向應用了嗎?
理解公式之間的聯系:
應用以上公式對三角函數式化簡。(化簡要求:項數最少、函數種類最少,分母中不含三角函數,能求值,盡可能求值。)
具體方法:
(2)名的變換:化弦或化切
(3)次數的變換:升、降冪公式
(4)形的變換:統一函數形式,注意運用代數運算。
32. 正、餘弦定理的各種表達形式你還記得嗎?如何實現邊、角轉化,而解斜三角形?
(應用:已知兩邊一夾角求第三邊;已知三邊求角。)
33. 用反三角函數表示角時要注意角的范圍。
34. 不等式的性質有哪些?
答案:C
35. 利用均值不等式:
值?(一正、二定、三相等)
注意如下結論:
36. 不等式證明的基本方法都掌握了嗎?
(比較法、分析法、綜合法、數學歸納法等)
並注意簡單放縮法的應用。
(移項通分,分子分母因式分解,x的系數變為1,穿軸法解得結果。)
38. 用「穿軸法」解高次不等式——「奇穿,偶切」,從最大根的右上方開始
39. 解含有參數的不等式要注意對字母參數的討論
40. 對含有兩個絕對值的不等式如何去解?
(找零點,分段討論,去掉絕對值符號,最後取各段的並集。)
證明:
(按不等號方向放縮)
42. 不等式恆成立問題,常用的處理方式是什麼?(可轉化為最值問題,或「△」問題)
43. 等差數列的定義與性質
0的二次函數)
項,即:
44. 等比數列的定義與性質
46. 你熟悉求數列通項公式的常用方法嗎?
例如:(1)求差(商)法
解:
[練習]
(2)疊乘法
解:
(3)等差型遞推公式
[練習]
(4)等比型遞推公式
[練習]
(5)倒數法
47. 你熟悉求數列前n項和的常用方法嗎?
例如:(1)裂項法:把數列各項拆成兩項或多項之和,使之出現成對互為相反數的項。
解:
[練習]
(2)錯位相減法:
(3)倒序相加法:把數列的各項順序倒寫,再與原來順序的數列相加。
[練習]
48. 你知道儲蓄、貸款問題嗎?
△零存整取儲蓄(單利)本利和計算模型:
若每期存入本金p元,每期利率為r,n期後,本利和為:
△若按復利,如貸款問題——按揭貸款的每期還款計算模型(按揭貸款——分期等額歸還本息的借款種類)
若貸款(向銀行借款)p元,採用分期等額還款方式,從借款日算起,一期(如一年)後為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復利),那麼每期應還x元,滿足
p——貸款數,r——利率,n——還款期數
49. 解排列、組合問題的依據是:分類相加,分步相乘,有序排列,無序組合。
(2)排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一
(3)組合:從n個不同元素中任取m(m≤n)個元素並組成一組,叫做從n個不
50. 解排列與組合問題的規律是:
相鄰問題捆綁法;相間隔問題插空法;定位問題優先法;多元問題分類法;至多至少問題間接法;相同元素分組可採用隔板法,數量不大時可以逐一排出結果。
如:學號為1,2,3,4的四名學生的考試成績
則這四位同學考試成績的所有可能情況是( )
A. 24 B. 15 C. 12 D. 10
解析:可分成兩類:
(2)中間兩個分數相等
相同兩數分別取90,91,92,對應的排列可以數出來,分別有3,4,3種,∴有10種。
∴共有5+10=15(種)情況
51. 二項式定理
性質:
(3)最值:n為偶數時,n+1為奇數,中間一項的二項式系數最大且為第
表示)
52. 你對隨機事件之間的關系熟悉嗎?
的和(並)。
(5)互斥事件(互不相容事件):「A與B不能同時發生」叫做A、B互斥。
(6)對立事件(互逆事件):
(7)獨立事件:A發生與否對B發生的概率沒有影響,這樣的兩個事件叫做相互獨立事件。
53. 對某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常採用排列組合的方法,即
(5)如果在一次試驗中A發生的概率是p,那麼在n次獨立重復試驗中A恰好發生
如:設10件產品中有4件次品,6件正品,求下列事件的概率。
(1)從中任取2件都是次品;
(2)從中任取5件恰有2件次品;
(3)從中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),∴n=103
而至少有2件次品為「恰有2次品」和「三件都是次品」
(4)從中依次取5件恰有2件次品。
解析:∵一件一件抽取(有順序)
分清(1)、(2)是組合問題,(3)是可重復排列問題,(4)是無重復排列問題。
54. 抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數表法)常常用於總體個數較少時,它的特徵是從總體中逐個抽取;系統抽樣,常用於總體個數較多時,它的主要特徵是均衡成若幹部分,每部分只取一個;分層抽樣,主要特徵是分層按比例抽樣,主要用於總體中有明顯差異,它們的共同特徵是每個個體被抽到的概率相等,體現了抽樣的客觀性和平等性。
55. 對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。
要熟悉樣本頻率直方圖的作法:
(2)決定組距和組數;
(3)決定分點;
(4)列頻率分布表;
(5)畫頻率直方圖。
如:從10名女生與5名男生中選6名學生參加比賽,如果按性別分層隨機抽樣,則組成此參賽隊的概率為____________。
56. 你對向量的有關概念清楚嗎?
(1)向量——既有大小又有方向的量。
在此規定下向量可以在平面(或空間)平行移動而不改變。
(6)並線向量(平行向量)——方向相同或相反的向量。
規定零向量與任意向量平行。
(7)向量的加、減法如圖:
(8)平面向量基本定理(向量的分解定理)
的一組基底。
(9)向量的坐標表示
表示。
57. 平面向量的數量積
數量積的幾何意義:
(2)數量積的運演算法則
[練習]
答案:
答案:2
答案:
58. 線段的定比分點
※. 你能分清三角形的重心、垂心、外心、內心及其性質嗎?
59. 立體幾何中平行、垂直關系證明的思路清楚嗎?
平行垂直的證明主要利用線面關系的轉化:
線面平行的判定:
線面平行的性質:
三垂線定理(及逆定理):
線面垂直:
面面垂直:
60. 三類角的定義及求法
(1)異面直線所成的角θ,0°<θ≤90°
(2)直線與平面所成的角θ,0°≤θ≤90°
(三垂線定理法:A∈α作或證AB⊥β於B,作BO⊥棱於O,連AO,則AO⊥棱l,∴∠AOB為所求。)
三類角的求法:
①找出或作出有關的角。
②證明其符合定義,並指出所求作的角。
③計算大小(解直角三角形,或用餘弦定理)。
[練習]
(1)如圖,OA為α的斜線OB為其在α內射影,OC為α內過O點任一直線。
(2)如圖,正四稜柱ABCD—A1B1C1D1中對角線BD1=8,BD1與側面B1BCC1所成的為30°。
①求BD1和底面ABCD所成的角;
②求異面直線BD1和AD所成的角;
③求二面角C1—BD1—B1的大小。
(3)如圖ABCD為菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB與面PCD所成的銳二面角的大小。
(∵AB∥DC,P為面PAB與面PCD的公共點,作PF∥AB,則PF為面PCD與面PAB的交線……)
61. 空間有幾種距離?如何求距離?
點與點,點與線,點與面,線與線,線與面,面與面間距離。
將空間距離轉化為兩點的距離,構造三角形,解三角形求線段的長(如:三垂線定理法,或者用等積轉化法)。
如:正方形ABCD—A1B1C1D1中,棱長為a,則:
(1)點C到面AB1C1的距離為___________;
(2)點B到面ACB1的距離為____________;
(3)直線A1D1到面AB1C1的距離為____________;
(4)面AB1C與面A1DC1的距離為____________;
(5)點B到直線A1C1的距離為_____________。
62. 你是否准確理解正稜柱、正棱錐的定義並掌握它們的性質?
正稜柱——底面為正多邊形的直稜柱
正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。
正棱錐的計算集中在四個直角三角形中:
它們各包含哪些元素?
63. 球有哪些性質?
(2)球面上兩點的距離是經過這兩點的大圓的劣弧長。為此,要找球心角!
(3)如圖,θ為緯度角,它是線面成角;α為經度角,它是面面成角。
(5)球內接長方體的對角線是球的直徑。正四面體的外接球半徑R與內切球半徑r之比為R:r=3:1。
積為( )
答案:A
64. 熟記下列公式了嗎?
(2)直線方程:
65. 如何判斷兩直線平行、垂直?
66. 怎樣判斷直線l與圓C的位置關系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時,注意利用圓的「垂徑定理」。
67. 怎樣判斷直線與圓錐曲線的位置?
68. 分清圓錐曲線的定義
70. 在圓錐曲線與直線聯立求解時,消元後得到的方程,要注意其二次項系數是否為零?△≥0的限制。(求交點,弦長,中點,斜率,對稱存在性問題都在△≥0下進行。)
71. 會用定義求圓錐曲線的焦半徑嗎?
如:
通徑是拋物線的所有焦點弦中最短者;以焦點弦為直徑的圓與准線相切。
72. 有關中點弦問題可考慮用「代點法」。
答案:
73. 如何求解「對稱」問題?
(1)證明曲線C:F(x,y)=0關於點M(a,b)成中心對稱,設A(x,y)為曲線C上任意一點,設A'(x',y')為A關於點M的對稱點。
75. 求軌跡方程的常用方法有哪些?注意討論范圍。
(直接法、定義法、轉移法、參數法)
76. 對線性規劃問題:作出可行域,作出以目標函數為截距的直線,在可行域內平移直線,求出目標函數的最值。
㈥ 求高三數學知識點總結
高考數學基礎知識匯總
第一部分 集合
(1)含n個元素的集合的子集數為2^n,真子集數為2^n-1;非空真子集的數為2^n-2;
(2) 注意:討論的時候不要遺忘了 的情況。
(3)
第二部分 函數與導數
1.映射:注意 ①第一個集合中的元素必須有象;②一對一,或多對一。
2.函數值域的求法:①分析法 ;②配方法 ;③判別式法 ;④利用函數單調性 ;
⑤換元法 ;⑥利用均值不等式 ; ⑦利用數形結合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數有界性( 、 、 等);⑨導數法
3.復合函數的有關問題
(1)復合函數定義域求法:
① 若f(x)的定義域為〔a,b〕,則復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出② 若f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域。
(2)復合函數單調性的判定:
①首先將原函數 分解為基本函數:內函數 與外函數 ;
②分別研究內、外函數在各自定義域內的單調性;
③根據「同性則增,異性則減」來判斷原函數在其定義域內的單調性。
注意:外函數 的定義域是內函數 的值域。
4.分段函數:值域(最值)、單調性、圖象等問題,先分段解決,再下結論。
5.函數的奇偶性
⑴函數的定義域關於原點對稱是函數具有奇偶性的必要條件;
⑵ 是奇函數 ;
⑶ 是偶函數 ;
⑷奇函數 在原點有定義,則 ;
⑸在關於原點對稱的單調區間內:奇函數有相同的單調性,偶函數有相反的單調性;
(6)若所給函數的解析式較為復雜,應先等價變形,再判斷其奇偶性;
6.函數的單調性
⑴單調性的定義:
① 在區間 上是增函數 當 時有 ;
② 在區間 上是減函數 當 時有 ;
⑵單調性的判定
1 定義法:
注意:一般要將式子 化為幾個因式作積或作商的形式,以利於判斷符號;
②導數法(見導數部分);
③復合函數法(見2 (2));
④圖像法。
註:證明單調性主要用定義法和導數法。
7.函數的周期性
(1)周期性的定義:
對定義域內的任意 ,若有 (其中 為非零常數),則稱函數 為周期函數, 為它的一個周期。
所有正周期中最小的稱為函數的最小正周期。如沒有特別說明,遇到的周期都指最小正周期。
(2)三角函數的周期
① ;② ;③ ;
④ ;⑤ ;
⑶函數周期的判定
①定義法(試值) ②圖像法 ③公式法(利用(2)中結論)
⑷與周期有關的結論
① 或 的周期為 ;
② 的圖象關於點 中心對稱 周期為2 ;
③ 的圖象關於直線 軸對稱 周期為2 ;
④ 的圖象關於點 中心對稱,直線 軸對稱 周期為4 ;
8.基本初等函數的圖像與性質
⑴冪函數: ( ;⑵指數函數: ;
⑶對數函數: ;⑷正弦函數: ;
⑸餘弦函數: ;(6)正切函數: ;⑺一元二次函數: ;
⑻其它常用函數:
1 正比例函數: ;②反比例函數: ;特別的
2 函數 ;
9.二次函數:
⑴解析式:
①一般式: ;②頂點式: , 為頂點;
③零點式: 。
⑵二次函數問題解決需考慮的因素:
①開口方向;②對稱軸;③端點值;④與坐標軸交點;⑤判別式;⑥兩根符號。
⑶二次函數問題解決方法:①數形結合;②分類討論。
10.函數圖象:
⑴圖象作法 :①描點法 (特別注意三角函數的五點作圖)②圖象變換法③導數法
⑵圖象變換:
1 平移變換:ⅰ ,2 ———「正左負右」
ⅱ ———「正上負下」;
3 伸縮變換:
ⅰ , ( ———縱坐標不變,橫坐標伸長為原來的 倍;
ⅱ , ( ———橫坐標不變,縱坐標伸長為原來的 倍;
4 對稱變換:ⅰ ;ⅱ ;
ⅲ ; ⅳ ;
5 翻轉變換:
ⅰ ———右不動,右向左翻( 在 左側圖象去掉);
ⅱ ———上不動,下向上翻(| |在 下面無圖象);
11.函數圖象(曲線)對稱性的證明
(1)證明函數 圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明函數 與 圖象的對稱性,即證明 圖象上任意點關於對稱中心(對稱軸)的對稱點在 的圖象上,反之亦然;
註:
①曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
②曲線C1:f(x,y)=0關於直線x=a的對稱曲線C2方程為:f(2a-x, y)=0;
③曲線C1:f(x,y)=0,關於y=x+a(或y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
④f(a+x)=f(b-x) (x∈R) y=f(x)圖像關於直線x= 對稱;
特別地:f(a+x)=f(a-x) (x∈R) y=f(x)圖像關於直線x=a對稱;
⑤函數y=f(x-a)與y=f(b-x)的圖像關於直線x= 對稱;
12.函數零點的求法:
⑴直接法(求 的根);⑵圖象法;⑶二分法.
13.導數
⑴導數定義:f(x)在點x0處的導數記作 ;
⑵常見函數的導數公式: ① ;② ;③ ;
④ ;⑤ ;⑥ ;⑦ ;
⑧ 。
⑶導數的四則運演算法則:
⑷(理科)復合函數的導數:
⑸導數的應用:
①利用導數求切線:注意:ⅰ所給點是切點嗎?ⅱ所求的是「在」還是「過」該點的切線?
②利用導數判斷函數單調性:
ⅰ 是增函數;ⅱ 為減函數;
ⅲ 為常數;
③利用導數求極值:ⅰ求導數 ;ⅱ求方程 的根;ⅲ列表得極值。
④利用導數最大值與最小值:ⅰ求的極值;ⅱ求區間端點值(如果有);ⅲ得最值。
14.(理科)定積分
⑴定積分的定義:
⑵定積分的性質:① ( 常數);
② ;
③ (其中 。
⑶微積分基本定理(牛頓—萊布尼茲公式):
⑷定積分的應用:①求曲邊梯形的面積: ;
3 求變速直線運動的路程: ;③求變力做功: 。
第三部分 三角函數、三角恆等變換與解三角形
1.⑴角度制與弧度制的互化: 弧度 , 弧度, 弧度
⑵弧長公式: ;扇形面積公式: 。
2.三角函數定義:角 中邊上任意一點 為 ,設 則:
3.三角函數符號規律:一全正,二正弦,三兩切,四餘弦;
4.誘導公式記憶規律:「函數名不(改)變,符號看象限」;
5.⑴ 對稱軸: ;對稱中心: ;
⑵ 對稱軸: ;對稱中心: ;
6.同角三角函數的基本關系: ;
7.兩角和與差的正弦、餘弦、正切公式:①
② ③ 。
8.二倍角公式:① ;
② ;③ 。
9.正、餘弦定理:
⑴正弦定理: ( 是 外接圓直徑 )
註:① ;② ;③ 。
⑵餘弦定理: 等三個;註: 等三個。
10。幾個公式:
⑴三角形面積公式: ;
⑵內切圓半徑r= ;外接圓直徑2R=
11.已知 時三角形解的個數的判定:
第四部分 立體幾何
1.三視圖與直觀圖:註:原圖形與直觀圖面積之比為 。
2.表(側)面積與體積公式:
⑴柱體:①表面積:S=S側+2S底;②側面積:S側= ;③體積:V=S底h
⑵錐體:①表面積:S=S側+S底;②側面積:S側= ;③體積:V= S底h:
⑶台體:①表面積:S=S側+S上底S下底;②側面積:S側= ;③體積:V= (S+ )h;
⑷球體:①表面積:S= ;②體積:V= 。
3.位置關系的證明(主要方法):
⑴直線與直線平行:①公理4;②線面平行的性質定理;③面面平行的性質定理。
⑵直線與平面平行:①線面平行的判定定理;②面面平行 線面平行。
⑶平面與平面平行:①面面平行的判定定理及推論;②垂直於同一直線的兩平面平行。
⑷直線與平面垂直:①直線與平面垂直的判定定理;②面面垂直的性質定理。
⑸平面與平面垂直:①定義---兩平面所成二面角為直角;②面面垂直的判定定理。
註:理科還可用向量法。
4.求角:(步驟-------Ⅰ。找或作角;Ⅱ。求角)
⑴異面直線所成角的求法:
1 平移法:平移直線,2 構造三角形;
3 ②補形法:補成正方體、平行六面體、長方體等,4 發現兩條異面直線間的關系。
註:理科還可用向量法,轉化為兩直線方向向量的夾角。
⑵直線與平面所成的角:
①直接法(利用線面角定義);②先求斜線上的點到平面距離h,與斜線段長度作比,得sin 。
註:理科還可用向量法,轉化為直線的方向向量與平面法向量的夾角。
⑶二面角的求法:
①定義法:在二面角的棱上取一點(特殊點),作出平面角,再求解;
②三垂線法:由一個半面內一點作(或找)到另一個半平面的垂線,用三垂線定理或逆定理作出二面角的平面角,再求解;
③射影法:利用面積射影公式: ,其中 為平面角的大小;
註:對於沒有給出棱的二面角,應先作出棱,然後再選用上述方法;
理科還可用向量法,轉化為兩個班平面法向量的夾角。
5.求距離:(步驟-------Ⅰ。找或作垂線段;Ⅱ。求距離)
⑴兩異面直線間的距離:一般先作出公垂線段,再進行計算;
⑵點到直線的距離:一般用三垂線定理作出垂線段,再求解;
⑶點到平面的距離:
①垂面法:藉助面面垂直的性質作垂線段(確定已知面的垂面是關鍵),再求解;
5 等體積法;
理科還可用向量法: 。
⑷球面距離:(步驟)
(Ⅰ)求線段AB的長;(Ⅱ)求球心角∠AOB的弧度數;(Ⅲ)求劣弧AB的長。
6.結論:
⑴從一點O出發的三條射線OA、OB、OC,若∠AOB=∠AOC,則點A在平面∠BOC上的射影在∠BOC的平分線上;
⑵立平斜公式(最小角定理公式):
⑶正棱錐的各側面與底面所成的角相等,記為 ,則S側cos =S底;
⑷長方體的性質
①長方體體對角線與過同一頂點的三條棱所成的角分別為 則:cos2 +cos2 +cos2 =1;sin2 +sin2 +sin2 =2 。
②長方體體對角線與過同一頂點的三側面所成的角分別為 則有cos2 +cos2 +cos2 =2;sin2 +sin2 +sin2 =1 。
⑸正四面體的性質:設棱長為 ,則正四面體的:
1 高: ;②對棱間距離: ;③相鄰兩面所成角餘弦值: ;④內切2 球半徑: ;外接球半徑: ;
第五部分 直線與圓
1.直線方程
⑴點斜式: ;⑵斜截式: ;⑶截距式: ;
⑷兩點式: ;⑸一般式: ,(A,B不全為0)。
(直線的方向向量:( ,法向量(
2.求解線性規劃問題的步驟是:
(1)列約束條件;(2)作可行域,寫目標函數;(3)確定目標函數的最優解。
3.兩條直線的位置關系:
4.直線系
5.幾個公式
⑴設A(x1,y1)、B(x2,y2)、C(x3,y3),⊿ABC的重心G:( );
⑵點P(x0,y0)到直線Ax+By+C=0的距離: ;
⑶兩條平行線Ax+By+C1=0與 Ax+By+C2=0的距離是 ;
6.圓的方程:
⑴標准方程:① ;② 。
⑵一般方程: (
註:Ax2+Bxy+Cy2+Dx+Ey+F=0表示圓 A=C≠0且B=0且D2+E2-4AF>0;
7.圓的方程的求法:⑴待定系數法;⑵幾何法;⑶圓系法。
8.圓系:
⑴ ;
註:當 時表示兩圓交線。
⑵ 。
9.點、直線與圓的位置關系:(主要掌握幾何法)
⑴點與圓的位置關系:( 表示點到圓心的距離)
① 點在圓上;② 點在圓內;③ 點在圓外。
⑵直線與圓的位置關系:( 表示圓心到直線的距離)
① 相切;② 相交;③ 相離。
⑶圓與圓的位置關系:( 表示圓心距, 表示兩圓半徑,且 )
① 相離;② 外切;③ 相交;
④ 內切;⑤ 內含。
10.與圓有關的結論:
⑴過圓x2+y2=r2上的點M(x0,y0)的切線方程為:x0x+y0y=r2;
過圓(x-a)2+(y-b)2=r2上的點M(x0,y0)的切線方程為:(x0-a)(x-a)+(y0-b)(y-b)=r2;
⑵以A(x1,y2)、B(x2,y2)為直徑的圓的方程:(x-x1)(x-x2)+(y-y1)(y-y2)=0。
第六部分 圓錐曲線
1.定義:⑴橢圓: ;
⑵雙曲線: ;⑶拋物線:略
2.結論
⑴焦半徑:①橢圓: (e為離心率); (左「+」右「-」);
②拋物線:
⑵弦長公式:
;
註:(Ⅰ)焦點弦長:①橢圓: ;②拋物線: =x1+x2+p= ;(Ⅱ)通徑(最短弦):①橢圓、雙曲線: ;②拋物線:2p。
⑶過兩點的橢圓、雙曲線標准方程可設為: ( 同時大於0時表示橢圓, 時表示雙曲線);
⑷橢圓中的結論:
①內接矩形最大面積 :2ab;
②P,Q為橢圓上任意兩點,且OP 0Q,則 ;
③橢圓焦點三角形:<Ⅰ>. ,( );<Ⅱ>.點 是 內心, 交 於點 ,則 ;
④當點 與橢圓短軸頂點重合時 最大;
⑸雙曲線中的結論:
①雙曲線 (a>0,b>0)的漸近線: ;
②共漸進線 的雙曲線標准方程為 為參數, ≠0);
③雙曲線焦點三角形:<Ⅰ>. ,( );<Ⅱ>.P是雙曲線 - =1(a>0,b>0)的左(右)支上一點,F1、F2分別為左、右焦點,則△PF1F2的內切圓的圓心橫坐標為 ;
④雙曲線為等軸雙曲線 漸近線為 漸近線互相垂直;
(6)拋物線中的結論:
①拋物線y2=2px(p>0)的焦點弦AB性質:<Ⅰ>. x1x2= ;y1y2=-p2;
<Ⅱ>. ;<Ⅲ>.以AB為直徑的圓與准線相切;<Ⅳ>.以AF(或BF)為直徑的圓與 軸相切;<Ⅴ>. 。
②拋物線y2=2px(p>0)內結直角三角形OAB的性質:
<Ⅰ>. ; <Ⅱ>. 恆過定點 ;
<Ⅲ>. 中點軌跡方程: ;<Ⅳ>. ,則 軌跡方程為: ;<Ⅴ>. 。
③拋物線y2=2px(p>0),對稱軸上一定點 ,則:
<Ⅰ>.當 時,頂點到點A距離最小,最小值為 ;<Ⅱ>.當 時,拋物線上有關於 軸對稱的兩點到點A距離最小,最小值為 。
3.直線與圓錐曲線問題解法:
⑴直接法(通法):聯立直線與圓錐曲線方程,構造一元二次方程求解。
注意以下問題:
①聯立的關於「 」還是關於「 」的一元二次方程?
②直線斜率不存在時考慮了嗎?
③判別式驗證了嗎?
⑵設而不求(代點相減法):--------處理弦中點問題
步驟如下:①設點A(x1,y1)、B(x2,y2);②作差得 ;③解決問題。
4.求軌跡的常用方法:(1)定義法:利用圓錐曲線的定義; (2)直接法(列等式);(3)代入法(相關點法或轉移法);⑷待定系數法;(5)參數法;(6)交軌法。
第七部分 平面向量
⑴設a=(x1,y1),b=(x2,y2),則: ① a‖b(b≠0) a= b ( x1y2-x2y1=0;
② a⊥b(a、b≠0) a•b=0 x1x2+y1y2=0 .
⑵a•b=|a||b|cos<a,b>=x2+y1y2;
註:①|a|cos<a,b>叫做a在b方向上的投影;|b|cos<a,b>叫做b在a方向上的投影;
6 a•b的幾何意義:a•b等於|a|與|b|在a方向上的投影|b|cos<a,b>的乘積。
⑶cos<a,b>= ;
⑷三點共線的充要條件:P,A,B三點共線 ;
附:(理科)P,A,B,C四點共面 。
第八部分 數列
1.定義:
⑴等差數列 ;
⑵等比數列
;
2.等差、等比數列性質
等差數列 等比數列
通項公式
前n項和
性質 ①an=am+ (n-m)d, ①an=amqn-m;
②m+n=p+q時am+an=ap+aq ②m+n=p+q時aman=apaq
③ 成AP ③ 成GP
④ 成AP, ④ 成GP,
等差數列特有性質:
1 項數為2n時:S2n=n(an+an+1)=n(a1+a2n); ; ;
2 項數為2n-1時:S2n-1=(2n-1) ; ; ;
3 若 ;若 ;
若 。
3.數列通項的求法:
⑴分析法;⑵定義法(利用AP,GP的定義);⑶公式法:累加法( ;
⑷疊乘法( 型);⑸構造法( 型);(6)迭代法;
⑺間接法(例如: );⑻作商法( 型);⑼待定系數法;⑽(理科)數學歸納法。
註:當遇到 時,要分奇數項偶數項討論,結果是分段形式。
4.前 項和的求法:
⑴拆、並、裂項法;⑵倒序相加法;⑶錯位相減法。
5.等差數列前n項和最值的求法:
⑴ ;⑵利用二次函數的圖象與性質。
第九部分 不等式
1.均值不等式:
注意:①一正二定三相等;②變形, 。
2.絕對值不等式:
3.不等式的性質:
⑴ ;⑵ ;⑶ ;
;⑷ ; ;
;⑸ ;(6)
。
4.不等式等證明(主要)方法:
⑴比較法:作差或作比;⑵綜合法;⑶分析法。
第十部分 復數
1.概念:
⑴z=a+bi∈R b=0 (a,b∈R) z= z2≥0;
⑵z=a+bi是虛數 b≠0(a,b∈R);
⑶z=a+bi是純虛數 a=0且b≠0(a,b∈R) z+ =0(z≠0) z2<0;
⑷a+bi=c+di a=c且c=d(a,b,c,d∈R);
2.復數的代數形式及其運算:設z1= a + bi , z2 = c + di (a,b,c,d∈R),則:
(1) z 1± z2 = (a + b) ± (c + d)i;⑵ z1.z2 = (a+bi)•(c+di)=(ac-bd)+ (ad+bc)i;⑶z1÷z2 = (z2≠0) ;
3.幾個重要的結論:
;⑶ ;⑷
⑸ 性質:T=4; ;
(6) 以3為周期,且 ; =0;
(7) 。
4.運算律:(1)
5.共軛的性質:⑴ ;⑵ ;⑶ ;⑷ 。
6.模的性質:⑴ ;⑵ ;⑶ ;⑷ ;
第十一部分 概率
1.事件的關系:
⑴事件B包含事件A:事件A發生,事件B一定發生,記作 ;
⑵事件A與事件B相等:若 ,則事件A與B相等,記作A=B;
⑶並(和)事件:某事件發生,當且僅當事件A發生或B發生,記作 (或 );
⑷並(積)事件:某事件發生,當且僅當事件A發生且B發生,記作 (或 ) ;
⑸事件A與事件B互斥:若 為不可能事件( ),則事件A與互斥;
(6)對立事件: 為不可能事件, 為必然事件,則A與B互為對立事件。
2.概率公式:
⑴互斥事件(有一個發生)概率公式:P(A+B)=P(A)+P(B);
⑵古典概型: ;
⑶幾何概型: ;
第十二部分 統計與統計案例
1.抽樣方法
⑴簡單隨機抽樣:一般地,設一個總體的個數為N,通過逐個不放回的方法從中抽取一個容量為n的樣本,且每個個體被抽到的機會相等,就稱這種抽樣為簡單隨機抽樣。
註:①每個個體被抽到的概率為 ;
②常用的簡單隨機抽樣方法有:抽簽法;隨機數法。
⑵系統抽樣:當總體個數較多時,可將總體均衡的分成幾個部分,然後按照預先制定的
規則,從每一個部分抽取一個個體,得到所需樣本,這種抽樣方法叫系統抽樣。
註:步驟:①編號;②分段;③在第一段採用簡單隨機抽樣方法確定其時個體編號 ;
④按預先制定的規則抽取樣本。
⑶分層抽樣:當已知總體有差異比較明顯的幾部分組成時,為使樣本更充分的反映總體的情況,將總體分成幾部分,然後按照各部分佔總體的比例進行抽樣,這種抽樣叫分層抽樣。
註:每個部分所抽取的樣本個體數=該部分個體數
2.總體特徵數的估計:
⑴樣本平均數 ;
⑵樣本方差 ;
⑶樣本標准差 = ;
3.相關系數(判定兩個變數線性相關性):
註:⑴ >0時,變數 正相關; <0時,變數 負相關;
⑵① 越接近於1,兩個變數的線性相關性越強;② 接近於0時,兩個變數之間幾乎不存在線性相關關系。
4.回歸分析中回歸效果的判定:
⑴總偏差平方和: ⑵殘差: ;⑶殘差平方和: ;⑷回歸平方和: - ;⑸相關指數 。
註:① 得知越大,說明殘差平方和越小,則模型擬合效果越好;
② 越接近於1,,則回歸效果越好。
5.獨立性檢驗(分類變數關系):
隨機變數 越大,說明兩個分類變數,關系越強,反之,越弱。
第十四部分 常用邏輯用語與推理證明
1. 四種命題:
⑴原命題:若p則q; ⑵逆命題:若q則p;
⑶否命題:若 p則 q;⑷逆否命題:若 q則 p
註:原命題與逆否命題等價;逆命題與否命題等價。
2.充要條件的判斷:
(1)定義法----正、反方向推理;
(2)利用集合間的包含關系:例如:若 ,則A是B的充分條件或B是A的必要條件;若A=B,則A是B的充要條件;
3.邏輯連接詞:
⑴且(and) :命題形式 p q; p q p q p q p
⑵或(or):命題形式 p q; 真 真 真 真 假
⑶非(not):命題形式 p . 真 假 假 真 假
假 真 假 真 真
假 假 假 假 真
4.全稱量詞與存在量詞
⑴全稱量詞-------「所有的」、「任意一個」等,用 表示;
全稱命題p: ;
全稱命題p的否定 p: 。
⑵存在量詞--------「存在一個」、「至少有一個」等,用 表示;
特稱命題p: ;
特稱命題p的否定 p: ;
第十五部分 推理與證明
1.推理:
⑴合情推理:歸納推理和類比推理都是根據已有事實,經過觀察、分析、比較、聯想,在進行歸納、類比,然後提出猜想的推理,我們把它們稱為合情推理。
①歸納推理:由某類食物的部分對象具有某些特徵,推出該類事物的全部對象都具有這些特徵的推理,或者有個別事實概括出一般結論的推理,稱為歸納推理,簡稱歸納。
註:歸納推理是由部分到整體,由個別到一般的推理。
②類比推理:由兩類對象具有類似和其中一類對象的某些已知特徵,推出另一類對象也具有這些特徵的推理,稱為類比推理,簡稱類比。
註:類比推理是特殊到特殊的推理。
⑵演繹推理:從一般的原理出發,推出某個特殊情況下的結論,這種推理叫演繹推理。
註:演繹推理是由一般到特殊的推理。
「三段論」是演繹推理的一般模式,包括:
⑴大前提---------已知的一般結論;
⑵小前提---------所研究的特殊情況;
⑶結 論---------根據一般原理,對特殊情況得出的判斷。
二.證明
⒈直接證明
⑴綜合法
一般地,利用已知條件和某些數學定義、定理、公理等,經過一系列的推理論證,最後推導出所要證明的結論成立,這種證明方法叫做綜合法。綜合法又叫順推法或由因導果法。
⑵分析法
一般地,從要證明的結論出發,逐步尋求使它成立的充分條件,直至最後,把要證明的結論歸結為判定一個明顯成立的條件(已知條件、定義、定理、公理等),這種證明的方法叫分析法。分析法又叫逆推證法或執果索因法。
2.間接證明------反證法
一般地,假設原命題不成立,經過正確的推理,最後得出矛盾,因此說明假設錯誤,從而證明原命題成立,這種證明方法叫反證法。
附:數學歸納法(僅限理科)
一般的證明一個與正整數 有關的一個命題,可按以下步驟進行:
⑴證明當 取第一個值 是命題成立;
⑵假設當 命題成立,證明當 時命題也成立。
那麼由⑴⑵就可以判定命題對從 開始所有的正整數都成立。
這種證明方法叫數學歸納法。
註:①數學歸納法的兩個步驟缺一不可,用數學歸納法證明問題時必須嚴格按步驟進行;
3 的取值視題目而4 定,5 可能是1,6 也可能是2等。
第十六部分 理科選修部分
1. 排列、組合和二項式定理
⑴排列數公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈N*),當m=n時為全排列 =n(n-1)(n-2)…3.2.1=n!;
⑵組合數公式: (m≤n), ;
⑶組合數性質: ;
⑷二項式定理:
①通項: ②注意二項式系數與系數的區別;
⑸二項式系數的性質:
①與首末兩端等距離的二項式系數相等;②若n為偶數,中間一項(第 +1項)二項式系數最大;若n為奇數,中間兩項(第 和 +1項)二項式系數最大;
③
(6)求二項展開式各項系數和或奇(偶)數項系數和時,注意運用賦值法。
2. 概率與統計
⑴隨機變數的分布列:
①隨機變數分布列的性質:pi≥0,i=1,2,…; p1+p2+…=1;
②離散型隨機變數:
X x1 X2 … xn …
P P1 P2 … Pn …
期望:EX= x1p1 + x2p2 + … + xnpn + … ;
方差:DX= ;
註: ;
③兩點分布:
X 0 1 期望:EX=p;方差:DX=p(1-p).
P 1-p p
4 超幾何分布:
一般地,在含有M件次品的N件產品中,任取n件,其中恰有X件次品,則 其中, 。
稱分布列
X 0 1 … m
P …
為超幾何分布列, 稱X服從超幾何分布。
⑤二項分布(獨立重復試驗):
若X~B(n,p),則EX=np, DX=np(1- p);註: 。
⑵條件概率:稱 為在事件A發生的條件下,事件B發生的概率。
註:①0 P(B|A) 1;②P(B∪C|A)=P(B|A)+P(C|A)。
⑶獨立事件同時發生的概率:P(AB)=P(A)P(B)。
⑷正態總體的概率密度函數: 式中 是參數,分別表示總體的平均數(期望值)與標准差;
(6)正態曲線的性質:
①曲線位於x軸上方,與x軸不相交;②曲線是單峰的,關於直線x= 對稱;
③曲線在x= 處達到峰值 ;④曲線與x軸之間的面積為1;
5 當 一定時,6 曲線隨 質的變化沿x軸平移;
7 當 一定時,8 曲線形狀由 確定: 越大,9 曲線越「矮胖」,10 表示總體分布越集中;
越小,曲線越「高瘦」,表示總體分布越分散。
註:P =0.6826;P =0.9544
P =0.9974
歡迎採納 祝你幸福
㈦ 高考數學的重點在哪些部分
2010年高考數學考試重點及沖刺復習建議(2010-02-02 14:01:05)轉載標簽:2010高考數學教育
2010年高考數學重點提示和最後四個月沖刺復習建議
付正軍
一、2010年高考數學考查的重點:
根據《2010高考數學考試大綱》,重點考察函數、數列、三角函數、平面向量、不等式、立體幾何、解析幾何、概率統計、導數九大章節。作為高考來講重點考查下面幾個版塊:
(1)函數與導數:在這個版塊重點考查,二次函數,高次函數,分式函數和復合函數的單調性和最值,考生尤其要重視分式函數和指對復合函數的單調性和值域的求解方法。同時考生應重視函數與數列、函數與不等式的結合,靈活掌握處理這類綜合題的方法和技巧,抓住典型例題,以不變應萬變。
(2)平面向量與三角函數:在這個版塊里,將向量作為一種工具放在三角函數里考,重點考查三方面:①三角的化簡與求值,考查化簡與求值,重點考察的是五組三角公式,包括同角基本公式,誘導公式,倍半公式,和差公式和輔助角公式②圖象和性質:在這里重點考查的是正弦函數和餘弦函數的圖象和性質,掌握正弦和餘弦函數的性質應該從以下的7個方面去掌握:定義域,值域,單調性,奇偶性,圖象,周期性和對稱性,特別是正弦和餘弦函數的性質是高考重點中的重點,應特別關注。③三角恆等變形,這部分重點考察的還是一些基本公式的應用,提醒各位考生應加強對基本公式的理解和記憶。
(3)數列:在這個版塊里重點考查的是數列的通項與求和,在這裡面我們重點掌握幾種常見求通項的方法,包括公式法,待定系數法等等,在求和裡面我們重點掌握幾種常見求和的方法,包括利用公式法,裂項相加法,錯位相減法等等,在這里要強調的是要掌握每一種方法所適應於哪一類的數列。一般來講在高考中通項是重點也是難點,特別是項與項之間的遞推公式應重點掌握。對於數列的求和特別應該重視等比數列求和公式中公比的限制性條件,這是高考的一個易錯點,應重點關注!
(4)空間向量和立體幾何:2010新課標高考對這個版塊的要求降低。特別是對文科同學來說,對於角度和距離的計算僅限於線線角和點面距離、幾何體的表面積和體積。在證明中以線面平行,線面垂直的證明為主。對於理科同學來講,在這里我建議大家要掌握利用空間向量倆來解決立體幾何中的證明和計算問題。特別強調的是利用空間向量求解的時候必須准確記憶角度和距離的計算公式,然後理解公式中各字母的含義,按照公式去找條件即可。對於這部分考生除對傳統的證明和計算重點掌握之外還應加強對立體幾何中的翻轉問題、動點問題訓練,以從容應對高考中的新題、難題。
(5)概率和統計:高中階段重點掌握古典概型、幾何概型和隨機變數三類基本模型。這部分在高考中是以應用題的形式出現,在這里我要強調的是概率這道題在高考中難度往往較小,考生只需要認真讀題,讀懂題意,分清類型就可以解答出來了。對於2010年高考來說考生應重視統計這一部分的學習,特別是線性回歸、統計方法等考生應准確理解基本概念並會簡單應用。
(6)解析幾何:這個版塊我總結了在高考中常考的五種模型:第一類:直線和曲線的位置關系及向量的計算,這類題目是高考最常見的一類問題,考生應掌握它的通法。第二類:動點問題(消參法),在這里需要強調的是要注意動點所滿足的范圍限制。第三類:弦長問題(公式法),在這里考生只需要會利用弦長公式就可以了;第四類:對稱問題(代換法),即找中點來代換;第五類:中點問題(點差法)。解析幾何的這道題目往往是整個試卷中計算量最大的一道題目了,很多同學會做但不會算,這種情況在高考中是很常見的,這就需要我們在平時訓練的時候要善始善終,每做一道題就堅持把它算完,長期堅持養成好習慣,運算能力自然就會提高。這五類模型考生都應該重點掌握,高考中盡管解析的難度較大,但萬變不離其宗,只要基本模型熟練掌握,應對這道大題還是綽綽有餘的。
(7)數列,函數與不等式:這個版塊往往考的是壓軸題,以不等式的證明為主,難度往往很大,考生在復習備考中應重點積累一些不等式的證明方法,包括放縮法,數學歸納法等等。雖然難度較大,我建議考生採取分步得分,不留空白。對於這部分的復習我建議可以放在後期,5月份之後可以適當看看已經考過的壓軸題,開闊思路,對於大部分考生不作重點要求。
二、最後四個月應該注意的問題:
現在距離2010年高考還有四個多月的時間,這是考生綜合素質提高的黃金時間,這段時間,也稱為全面復習階段,同學們需要把前面一些零散的知識點系統化、條理化、模塊化,找到學科中的宏觀線索,提綱摯領,全面到位。下面我根據以往的高考數學復習的經驗,結合優秀考生的學習體會,談談這最後四個月的復習建議。
(一)、全面落實雙基,保證駕輕就熟
目前高考數學試卷,基礎知識和基本方法的考查佔80%左右的份量,即使是創新題或能力題也是建立在雙基之上,只有腳踏實地、一絲不苟地鞏固雙基,才能突破難題,戰勝新題。在這里我要強調的是教材是精品,只有把握了教材,也就切中了要害。不僅要深刻理解教材中的知識,更重要的是要關注教材中解決問題的思想方法,還要全面把握知識體系,做到不掌握不放過。對照《考試說明》,確定考試范圍,認真閱讀和理解教材中相關內容,包括每個概念、每個例題、每個注釋、每個圖形,准確理解和記憶知識點,不留空白和隱患。最後復習階段不防從課本的目錄入手,進行串聯,形成體系。同時要配以適量的練習,練習中遇到困難也在所難免,必須找到問題的症結在那裡,對照教材,徹底掃除障礙。回歸教材、吃透課本,千萬不能眼高手。,對於教材的復習,建議可以重點看看概率和統計、數列、函數、導數、圓錐曲線這幾章的例題。
(二)、重視錯題病例,實時亡羊補牢
錯題病例也是財富,它有時暴露我們的知識缺陷,有時暴露我們的思維不足,有時暴露我們方法的不當,毛病暴露出來了,也就有治療的方向,提供了糾錯的機會,因此我建議在後期沖刺的階段我們一定要建立錯題庫,特別是那些概念理解不深刻、知識記憶失誤、思維不夠嚴謹、方法使用不當等典型錯誤收集成冊,並加以評注,指出錯誤原因,經常翻閱,常常提醒,警鍾長鳴。
(三)、抓住典型例題,爭取融會貫通
現在離高考已不遠了,時間非常緊張,因此在最後的復習階段考生應該抓住寶貴的時間,在最短時間內最大程度提高學習效率,那我們就不能做大量重復的無用功,因此我們要學會選題,那就需要我們抓住一些典型問題,借題發揮,充分挖掘。具體的就是解題後反思。反思題意,總結解此類題目的方法和技巧,同時我們還要學會典型問題的引申變化,促進知識的串聯和方法的升華。那麼到底什麼是典型例題呢?那就是高考真題,特別是近三年以來高考真題中的解答題(重點做前5道)
(四)、精讀考試大綱,確保了如指掌
《考試說明》是高考命題的依據,〈大綱〉明確告訴我們高考考什麼、考多難、怎樣考這三個問題。考生一定要明確考試的知識要求。針對教材與復習時的筆記逐一對照,看是否得到了落實,確保沒有遺漏,對於那些沒有沒達要求的決不罷手。特別是大綱中調整的內容,比如2010新課標高考新增三視圖,程序與框圖、極坐標、幾何概型、微積分等必須高度重視,明確要求,提高復習的針對性和實效性。另外,對試卷的形式,題型、考試時間、分值等等也應一清二楚。
(五)、加強毅力訓練,做到持之以恆
最後的四個月是高考沖刺最關鍵的時候,很多考生身心俱疲,那就看誰能堅持到最後誰就能取得勝利。最後的階段,我們同樣每天要有明確的學習計劃,並堅決執行,不尋找借口。任何一門學科,只要三天不接觸,拿到題目時,將會覺得入手不順,思維不暢,效率不高且容易出錯,若5天不訓練將會不進而退。所以,建議各個學科每天都要有所鞏固,遇到困難應及時解決,不能積累,否則會打擊信心,喪失鬥志,要想高考成功,即要有熱情更要有毅力!
㈧ 高中數學高考知識點
數學知識之間都有著千絲萬縷的聯系,僅僅想憑著對章節的理解就能得到高分的時代已經遠去了。所以考生在解答數學試題時要有正確的思路,才能避免錯失分數的機會。以下是高考數學解題五大思路,供大家學習參考。
高考數學解題思想一:函數與方程思想
函數思想是指運用運動變化的觀點,分析和研究數學中的數量關系,通過建立函數關系(或構造函數)運用函數的圖像和性質去分析問題、轉化問題和解決問題;方程思想,是從問題的數量關系入手,運用數學語言將問題轉化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉化思想我們還可進行函數與方程間的相互轉化。
高考數學解題思想二:數形結合思想
中學數學研究的對象可分為兩大部分,一部分是數,一部分是形,但數與形是有聯系的,這個聯系稱之為數形結合或形數結合。它既是尋找問題解決切入點的「法寶」,又是優化解題途徑的「良方」,因此我們在解答數學題時,能畫圖的盡量畫出圖形,以利於正確地理解題意、快速地解決問題。
高考數學解題思想三:特殊與一般的思想
用這種思想解選擇題有時特別有效,這是因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據這一點,我們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣精彩。
高考數學解題思想四:極限思想解題步驟
極限思想解決問題的一般步驟為:(1)對於所求的未知量,先設法構思一個與它有關的變數;(2)確認這變數通過無限過程的結果就是所求的未知量;(3)構造函數(數列)並利用極限計演算法則得出結果或利用圖形的極限位置直接計算結果。
高考數學解題思想五:分類討論思想
我們常常會遇到這樣一種情況,解到某一步之後,不能再以統一的方法、統一的式子繼續進行下去,這是因為被研究的對象包含了多種情況,這就需要對各種情況加以分類,並逐類求解,然後綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數學概念本身具有多種情形,數學運演算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。在分類討論解題時,要做到標准統一,不重不漏。
詳細內容看文件,希望採納謝謝
㈨ 數學高考知識點
2013年四川理科高考考綱:
考試范圍如下:
數學1(必修):集合、函數概念與基本初等函數Ⅰ(指數函數、對數函數、冪函數).
數學2(必修):立體幾何初步、平面解析幾何初步.
數學3(必修):演算法初步、統計、概率.
數學4(必修):基本初等函數Ⅱ(三角函數)、平面上的向量、三角恆等變換.
數學5(必修):解三角形、數列、不等式.
選修2-1:常用邏輯用語、圓錐曲線與方程、空間向量與立體幾何.
選修2-2:導數及其應用(不含「導數及其應用」中「(4)生活中的優化問題舉例」、「(5)定積分與微積分基本定理」及「(6)數學文化」)、數系的擴充與復數的引入.
選修2-3:計數原理、統計與概率(不含「統計與概率」(1)「概率」中「④通過實例,理解取有限值的離散型隨機變數方差的概念,能計算簡單離散型隨機變數的方差,並能解決一些實際問題」、「⑤通過實際問題,藉助直觀,認識正態分布曲線的特點及曲線所表示的意義」及(2)「統計案例」)
難度控制:
試題按其難度分為容易題、中等難度題和難題.難度在0.7以上的試題為容易題,難度為0.4—0.7的試題是中等難度題,難度在0.4以下的試題為難題.試卷由三種難度的試題組成,並以中等難度題為主.命題時根據有關要求和教學實際合理控制三種難度試題的分值比例(大致控制在3:5:2)及全卷總體難度.
考試范圍與要求層次
考試內容
要求層次
A
B
C
集合與常用邏輯用語
集合
集合的含義
√
集合的表示
√
集合間的基本關系
√
集合的基本運算
√
常用邏輯用語
命題的概念
√
「若p,則q」形式的命題及其逆命題、否命題與逆否命題
√
四種命題的相互關系
√
充要條件
√
簡單的邏輯聯結詞
√
全稱量詞與存在量詞
√
函數概念與指數函數、對數函數、冪函數
函數
函數的概念與表示
√
映射
√
單調性與最大(小)值
√
奇偶性
√
指數函數
有理指數冪的含義
√
實數指數冪的意義
√
冪的運算
√
指數函數的概念、圖象及其性質
√
對數函數
對數的概念及其運算性質
√
換底公式
√
對數函數的概念、圖象及其性質
√
指數函數 與對數函數 互為反函數( 且 )
√
冪函數
冪函數的概念
√
冪函數
的圖象
√
函數與方程
函數的零點
√
二分法
√
函數的模型及其應用
函數模型的應用
√
三角函數、三角恆等變化、解三角形
任意角的概念、弧度制
任意角的概念和弧度制
√
弧度與角度的互化
√
三角函數
任意角的正弦、餘弦、正切的定義
√
單位圓中的三角函數線及其應用
√
誘導公式
√
同角三角函數的基本關系式
√
周期函數的定義、三角函數的周期
√
函數 的圖象和性質
√
函數 的圖象
√
用三角函數解決一些簡單的實際問題
√
三角恆等變換
兩角和與差的正弦、餘弦、正切公式
√
二倍角的正弦、餘弦、正切公式
√
簡單的三角恆等變換
√
解三角形
正弦定理、餘弦定理
√
解三角形
√
數列
數列的概念
數列的概念和表示法
√
等差數列、等比數列
等差數列的概念
√
等比數列的概念
√
等差數列的通項公式與前n項和公式
√
等比數列的通項公式與前n項和公式
√
用等差數列、等比數列的有關知識解決一些簡單的實際問題
√
不等式
不等關系
不等式的基本性質
√
一元二次不等式
解一元二次不等式
√
簡單的線性規劃
用二元一次不等式組表示平面區域
√
簡單的二元線性規劃問題
√
基本不等式
基本不等式 的證明過程
√
用基本不等式解決簡單的最大(小)值問題
√
平面向量
平面向量
平面向量的相關概念
√
向量的線性運算
向量加法、減法及其幾何意義
√
向量的數乘及其幾何意義
√
兩個向量共線
√
平面向量的基本定理及坐標表示
平面向量的基本定理
√
平面向量的正交分解及其坐標表示
√
用坐標表示平面向量的加法、減法與數乘運算
√
用坐標表示的平面向量共線的條件
√
平面向量的數量積
數量積及其物理意義
√
數量積與向量投影的關系
√
數量積的坐標表示
√
用數量積表示兩個向量的夾角
√
用數量積判斷兩個平面向量的垂直關系
√
向量的應用
用向量方法解決簡單的問題
√
導數及其應用
導數概念及其幾何意義
導數的概念
√
導數的幾何意義
√
導數的運算
根據導數定義求函數
的導數
√
導數的四則運算
√
簡單的復合函數(僅限於形如 的導數)
√
導數公式表
√
導數在研究函數中的應用
利用導數研究函數的單調性(其中多項式函數不超過三次)
√
函數的極值、最值(其中多項式函數不超過三次)
√
數系的擴充與復數的引入
復數的概念與運算
復數的基本概念,復數相等的條件
√
復數的代數表示法及幾何意義
√
復數代數形式的四則運算
√
復數代數形式加減法的幾何意義
√
立體幾何初步
空間幾何體
柱、錐、台、球及其簡單組合體
√
簡單空間圖形的三視圖
√
斜二測法畫簡單空間圖形的直觀圖
√
球、稜柱、棱錐的表面積和體積
√
點、直線、平面間的位置關系
空間線、面的位置關系
√
公理1、公理2、公理3、公理4、定理[1]
√
線、面平行或垂直的判定
√
線、面平行或垂直的性質
√
用公理、定理和已獲得的結論證明一些空間圖形的簡單命題
√
空間向量與立體幾何
空間直角坐標系
空間直角坐標系
√
空間兩點間的距離公式
√
空間向量及其運算
空間向量的概念
√
空間向量基本定理及其意義
√
空間向量的正交分解及其坐標表示
√
空間向量的線性運算及其坐標表示
√
空間向量的數量積及其坐標表示
√
運用向量的數量積判斷向量的共線與垂直
√
空間向量的應用
直線的方向向量
√
平面的法向量
√
向量語言表述線、面位置關系
√
是否合為一條
向量方法證明有關線、面位置關系的一些定理
√
線線、線面、面面的夾角
√
平面解析幾何初步
直線與方程
直線的傾斜角和斜率
√
過兩點的直線斜率的計算公式
√
兩條直線平行或垂直的判定
√
直線方程的點斜式、兩點式及一般式
√
兩條相交直線的交點坐標
√
兩點間的距離公式、點到直線的距離公式
√
兩條平行線間的距離
√
圓與方程
圓的標准方程與一般方程
√
直線與圓的位置關系
√
兩圓的位置關系
√
用直線和圓的方程解決簡單的問題
√
圓錐曲線與方程
圓錐曲線
橢圓的定義及標准方程
√
橢圓的幾何圖形及簡單性質
√
拋物線的定義及標准方程
√
拋物線的幾何圖形及簡單性質
√
雙曲線的定義及標准方程
√
雙曲線的幾何圖形及簡單性質
√
直線與圓錐曲線的位置關系
√
曲線與方程
曲線與方程的對應關系
√
演算法初步
演算法及其程序框圖
演算法的含義
√
程序框圖的三種基本邏輯結構
√
基本演算法語句
輸入語句、輸出語句、賦值語句、條件語句、循環語句
√
計數原理
加法原理、乘法原理
分類加法計數原理、分步乘法計數原理
√
用分類加法計數原理或分步乘法計數原理解決一些簡單的實際問題
√
排列與組合
排列、組合的概念
√
排列數公式、組合數公式
√
用排列與組合解決一些簡單的實際問題
√
二項式定理
用計數原理證明二項式定理
√
用二項式定理解決與二項展開式有關的簡單問題
√
統計
隨機抽樣
簡單隨機抽樣
√
分層抽樣和系統抽樣
√
用樣本估計總體
概率分布表、直方圖、折線圖、莖葉圖
√
樣本數據的基本的數字特徵(如平均數、標准差)
√
用樣本的頻率分布估計總體分布,用樣本的基本數字特徵估計總體的基本數字特徵
√
變數的相關性
線性回歸方程
√
概率
事件與概率
隨機事件的概率
√
兩個互斥事件的概率加法公式
√
古典概型
古典概型
√
幾何概型
幾何概型
√
概率
取有限值的離散型隨機變數及其分布列
√
超幾何分布
√
條件概率
√
事件的獨立性
√
n次獨立重復試驗與二項分布
√
取有限值的離散型隨機變數的均值
√
[1] 公理1:如果一條直線上的兩點在一個平面內,那麼這條直線在此平面內.
公理2:過不在一條直線上的三點,有且只有一個平面.
公理3:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線.
公理4:平行於同一條直線的兩條直線平行.
定 理:空間中如果兩個角的兩條邊分別對應平行,那麼這兩個角相等或互補.