高二數學知識點總結
❶ 上海 高二 數學 知識點總結
高二數學期末復習知識點總結
一、直線與圓:
1、直線的傾斜角 的范圍是
在平面直角坐標系中,對於一條與 軸相交的直線 ,如果把 軸繞著交點按逆時針方向轉到和直線 重合時所轉的最小正角記為 , 就叫做直線的傾斜角。當直線 與 軸重合或平行時,規定傾斜角為0;
兩條平行線 與 的距離是
2、圓的標准方程: .⑵圓的一般方程:
注意能將標准方程化為一般方程
3、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那麼另外一條就是與 軸垂直的直線.
4、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.
過兩點(x1,y1),(x2,y2)的直線的斜率k=( y2-y1)/(x2-x1),另外切線的斜率用求導的方法。
5、點 到直線 的距離公式 ;
6、直線與圓的位置關系,通常轉化為圓心距與半徑的關系,或者利用垂徑定理,構造直角三角形解決弦長問題.① 相離② 相切③ 相交
7、直線方程:⑴點斜式:直線過點 斜率為 ,則直線方程為 ,
⑵斜截式:直線在 軸上的截距為 和斜率 ,則直線方程為
8、 , ,① ∥ , ; ② .
直線 與直線 的位置關系:
(1)平行 A1/A2=B1/B2 注意檢驗 (2)垂直 A1A2+B1B2=0
9、解決直線與圓的關系問題時,要充分發揮圓的平面幾何性質的作用(如半徑、半弦長、弦心距構成直角三角形) 直線與圓相交所得弦長
二、圓錐曲線方程:
1、橢圓: ①方程 (a>b>0)注意還有一個;②定義: |PF1|+|PF2|=2a>2c; ③ e= ④長軸長為2a,短軸長為2b,焦距為2c; a2=b2+c2 ;
2、拋物線 :①方程y2=2px注意還有三個,能區別開口方向; ②定義:|PF|=d焦點F( ,0),准線x=- ;③焦半徑 ; 焦點弦 =x1+x2+p;
3、雙曲線:①方程 (a,b>0) 注意還有一個;②定義: ||PF1|-|PF2||=2a<2c; ③e= ;④實軸長為2a,虛軸長為2b,焦距為2c; 漸進線 或 c2=a2+b2
4、直線被圓錐曲線截得的弦長公式:
5、注意解析幾何與向量結合問題:
沒別的了
❷ 高中數學必修二知識點總結
高中數學必修2知識點
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即 .斜率反映直線與軸的傾斜程度.
當 時, ; 當 時, ; 當 時, 不存在.
②過兩點的直線的斜率公式:
注意下面四點:(1)當 時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到.
(3)直線方程
①點斜式: 直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1.
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1.
②斜截式: ,直線斜率為k,直線在y軸上的截距為b
③兩點式: ( )直線兩點 ,
④截矩式:
其中直線 與 軸交於點 ,與 軸交於點 ,即 與 軸、 軸的截距分別為 .
⑤一般式: (A,B不全為0)
注意:各式的適用范圍 特殊的方程如:
平行於x軸的直線: (b為常數); 平行於y軸的直線: (a為常數);
(5)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行於已知直線 ( 是不全為0的常數)的直線系: (C為常數)
(二)垂直直線系
垂直於已知直線 ( 是不全為0的常數)的直線系: (C為常數)
(三)過定點的直線系
(ⅰ)斜率為k的直線系: ,直線過定點 ;
(ⅱ)過兩條直線 , 的交點的直線系方程為
( 為參數),其中直線 不在直線系中.
(6)兩直線平行與垂直
當 , 時,
;
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.
(7)兩條直線的交點
相交
交點坐標即方程組 的一組解.
方程組無解 ; 方程組有無數解 與 重合
(8)兩點間距離公式:設 是平面直角坐標系中的兩個點,
則
(9)點到直線距離公式:一點 到直線 的距離
(10)兩平行直線距離公式
在任一直線上任取一點,再轉化為點到直線的距離進行求解.
二、圓的方程
1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑.
2、圓的方程
(1)標准方程 ,圓心 ,半徑為r;
(2)一般方程
當 時,方程表示圓,此時圓心為 ,半徑為
當 時,表示一個點; 當 時,方程不表示任何圖形.
(3)求圓方程的方法:
一般都採用待定系數法:先設後求.確定一個圓需要三個獨立條件,若利用圓的標准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置.
3、直線與圓的位置關系:
直線與圓的位置關系有相離,相切,相交三種情況:
(1)設直線 ,圓 ,圓心 到l的距離為 ,則有 ; ;
(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
設圓 ,
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
當 時兩圓外離,此時有公切線四條;
當 時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;
當 時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當 時,兩圓內切,連心線經過切點,只有一條公切線;
當 時,兩圓內含; 當 時,為同心圓.
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點
三、立體幾何初步
1、柱、錐、台、球的結構特徵
(1)稜柱:
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形.
(2)棱錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方.
(3)稜台:
幾何特徵:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交於原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;
❸ 高二數學知識點整理
一、求雙曲線的標准方程
求雙曲線的標准方程
或
(a、b>0),通常是利用雙曲線的有關概念及性質再
結合其它知識直接求出a、b或利用待定系數法.
例1
求與雙曲線
有公共漸近線,且過點
的雙曲線的共軛雙曲線方程.
解
令與雙曲線
有公共漸近線的雙曲線系方程為
,將點
代入,得
,∴雙曲線方程為
,由共軛雙曲線的定義,可得此雙曲線的共軛雙曲線方程為
.
評
此例是「求與已知雙曲線共漸近線的雙曲線方程」類型的題.一般地,與雙曲線
有公共漸近線的雙曲線的方程可設為
(kR,且k≠0);有公共焦點的雙曲線方程可設為
,本題用的是待定系數法.
例2
雙曲線的實半軸與虛半軸長的積為
,它的兩焦點分別為F1、F2,直線
過F2且與直線F1F2的夾角為
,且
,
與線段F1F2的垂直平分線的交點為P,線段PF2與雙曲線的交點為Q,且
,建立適當的坐標系,求雙曲線的方程.
解
以F1F2的中點為原點,F1、F2所在直線為x軸建立坐標系,則所求雙曲線方程為
(a>0,b>0),設F2(c,0),不妨設
的方程為
,它與y軸交點
,由定比分點坐標公式,得Q點的坐標為
,由點Q在雙曲線上可得
,又
,
∴
,
,∴雙曲線方程為
.
評
此例用的是直接法.
二、雙曲線定義的應用
1、第一定義的應用
例3
設F1、F2為雙曲線
的兩個焦點,點P在雙曲線上,且滿足∠F1PF2=900,求ΔF1PF2的面積.
解
由雙曲線的第一定義知,
,兩邊平方,得
.
∵∠F1PF2=900,∴
,
∴
,
∴
.
2、第二定義的應用
例4
已知雙曲線
的離心率
,左、右焦點分別為F1、F2,左准線為l,能否在雙曲線左支上找到一點P,使
是
P到l的距離d與
的比例中項?
解
設存在點
,則
,由雙曲線的第二定義,得
,
∴
,
,又
,
即
,解之,得
,
∵
,
∴
,
矛盾,故點P不存在.
評
以上二例若不用雙曲線的定義得到焦半徑
、
或其關系,解題過程將復雜得多.
三、雙曲線性質的應用
例5
設雙曲線
(
)的半焦距為c,
直線l過(a,0)、(0,b)兩點,已知原點到
的距離為
,
求雙曲線的離心率.
解析
這里求雙曲線的離心率即求
,是個幾何問題,怎麼把
題目中的條件與之聯系起來呢?如圖1,
∵
,
,
,由面積法知ab=
,考慮到
,
知
即
,亦即
,注意到a
評論
0
0
載入更多
❹ 總結高中數學知識點(人教版)
http://www.zxxk.com/Html/Channel_12/27/23/Class1432/74541120080823211800.Html 在這下載吧!
❺ 高二數學知識點及其公式總結
一、求雙曲線的標准方程
求雙曲線的標准方程 或 (a、b>0),通常是利用雙曲線的版有關概念及性質權再 結合其它知識直接求出a、b或利用待定系數法.
例1 求與雙曲線 有公共漸近線,且過點 的雙曲線的共軛雙曲線方程.
解 令與雙曲線 有公共漸近線的雙曲線系方程為 ,將點 代入,得 ,∴雙曲線方程為 ,由共軛雙曲線的定義,可得此雙曲線的共軛雙曲線方程為 .
評 此例是「求與已知雙曲線共漸近線的雙曲線方程」類型的題.一般地,與雙曲線 有公共漸近線的雙曲線的方程可設為 (k
❻ 高中數學知識點詳細總結
高中數學重點有什麼?該怎樣攻克?
高中數學重點內容還有很多.這些重點都是保持多年來的經驗,他們分析過高考數學的題型,高中數學重點分為以下幾個部分.
向量講解
其實高中數學重點就是在必修的裡面.必修是每個高中生都必須學習的,不管是分不分文理科,他們都是會學習的.很多重點都是在必修裡面,然而在選秀當中就是講一些統計之類的問題,這都是我們在生活當中就會學到的,所以這些都不是重點,重中之重就是在必修的課本當中.
❼ 高中數學所有知識點歸納
怎樣學好高中數學?首先要摘要答題技巧
現在數學這個科目也是必須學習的內容,但是現在還有很多孩子們都不喜歡這個科目,原因就是因為他們不會做這些題,導致這個科目拉他們的總分,該怎樣學好高中數學?對於數學題,他們都分為哪些類型?
高中數學試卷
怎樣學好高中數學這也是需要我們自己群摸索一些學習的技巧,找到自己適合的方法,這還是很關鍵的.
❽ 高中數學知識點總結
怎樣學好高中數學?首先要摘要答題技巧
現在數學這個科目也是必須學習的內容,但是現在還有很多孩子們都不喜歡這個科目,原因就是因為他們不會做這些題,導致這個科目拉他們的總分,該怎樣學好高中數學?對於數學題,他們都分為哪些類型?
高中數學試卷
怎樣學好高中數學這也是需要我們自己群摸索一些學習的技巧,找到自己適合的方法,這還是很關鍵的.