奇妙數學手抄報
1. 數學手抄報的題目(要有創意.個性的!)
1.數學天地,
2.數學的校園,
3.數學的花園,
4.數學真奇妙,
5.趣味數學,
6.數學的世界,
7.我愛數學,
8.數學之家。
2. 怎麼做數學手抄報
一般來說,製作手抄報使用的紙張都是素描紙。
素描紙可以在文具店買到,一般使用的大小是4開或者8開,不過,4開的手抄報太大,會給製作手抄報帶來很大難度。
相比之下,8開正好16開太小,建議購買8開的素描紙,質量稍好一點的,就可以開始製作了。
2
第一個小竅門就是加邊。
有過製作手抄報經驗的人都知道,我們要在一張8開大小的素描紙上忙活好久,很多時候,一張手抄報做完,那張素描紙的邊緣已經變得不成樣子了。解決這個問題的方法就是加邊。
筆者的小學老師建議加兩厘米,筆者試過以後覺得太寬,八毫米已經足夠。而且這個寬度可以用普通的膠帶來衡量,如果將普通的膠帶綁在素描紙的邊上,會對你的素描紙起到極大地保護作用。並且,在整張手抄報完成之後,會使手抄報顯得非常清爽、整潔。
3
通常來說,製作手抄報,無論是數學手抄報也好,語文手抄報也罷,都需要製作人去查閱有關的書籍資料,以充做手抄報的內容。
這里也給個小建議,千萬不要選擇太長的故事。在現在的書籍上,我們能看到的字都是很小號的,讓我們用手把它抄寫出來,會顯得很多,很長。如果一不小心選擇了一個漫長的故事,那可就悲催了呀。
4
查閱好資料之後就要開始排版。這個步驟可以和上一個步驟交替進行。
畢竟在排版的時候,我們會發現,有的故事過長,有的故事過短,或者在替換之後,會有更好的效果。兩個步驟,相互協調,最後確定大概的排版。
如果是要製作一張數學手抄報,可以選擇一些數學圖案的由來、數學家的小故事、關於數學的名言、關於數學的小笑話,等等。
這個時候的排版可以在草稿紙上進行!
5
開始製作手抄報的時候,不要一上來就用無法修改的水筆,或者鋼筆,也不要使用彩鉛或者油畫棒。
最佳的選擇是使用鉛筆,打一個大概的輪廓,明確素描紙的每一個部分大概要寫的內容,然後補充上各種各樣分隔線,比如直線、波浪線、虛線、s型線等等,之後在大概的分隔線上添加一些花邊,或者小圖案,或者是文本框一樣的卷軸。
在需要填充文字的文本框里可以選擇用鉛筆尺子打上格子,格子的寬窄由製作人來決定,但是同一個小故事的寬窄要相似。如果不想寫那麼多字的話,就把字寫大一點,把格子畫寬一點。
以上內容,最好都用鉛筆完成。
6
接下來就是要添加文字內容了。
因為之前所做的所有工作都是用鉛筆完成的,而一旦有了鉛筆的輪廓之後,就可以放心大膽地,用不褪色的水筆或者鋼筆在上面寫字了。
同一張手抄報上可以有不同顏色的筆寫出來的字。比如說左上角選擇用黑筆,右下角可以選擇用藍筆。相鄰板塊的顏色,也最好選擇不相似。除非整個布局有特殊的含義。
但是需要提醒的一件事情是,不要用紅筆在上面寫字。因為無論從哪個方面來說,用紅筆製作的手抄報,都顯得很不妥。
7
剛抄寫完文字部分之後,手抄報的格局已經定下來了,接下來所剩下來的就是修飾。修飾步驟,建議使用彩鉛,和有顏色的水筆。
畢竟水粉、油畫什麼的,用於製作手抄報,還真的不是一般人能夠hold得住的。如果只用黑色的單調的水筆,大概顯得比較壓抑,如果使用鉛筆素描的話,這張手抄報很容易就會模糊。
8
將原有的鉛筆痕跡,一點一點地擦除,再換上水筆和彩鉛描繪精心描繪的圖案。
一定要將鉛筆痕跡擦除才能用彩鉛描繪,不然會把紙張弄得非常臟哦。
在一些不明顯的地方,如果需要畫得更清新明亮一點,就可以使用紅色,藍色,或者黑色的水筆,其實已經足夠了。
還記得原來我們話在文字下方的橫線嗎?那些橫線你可以選擇用水筆重新描一遍,也可以選擇將它們全部擦除。如果你將它們全部描一遍,然後再用橡皮擦去鉛筆的痕跡,會得到意想不到的奇妙結果哦!
9
記得在完成整張手抄報之後,一定要加以適當的調整,這樣會使你的手抄報看上去更加的美觀。
這些調整包括:錯別字的修改、多餘鉛筆線的擦除、添加部分小插畫、填充空白且突兀的地方、精心描繪分隔線……
對啦,要在右下角寫上你的大名和製作日期哦,日後回來看,很有紀念意義的!
3. 數學手抄報版面設計圖
阿拉伯數字 在生活中,我們經常會用到0、1、2、3、4、5、6、7、8、9這些數字。那麼你知道這些數字是誰發明的嗎? 這些數字元號原來是古代印度人發明的,後來傳到阿拉伯,又從阿拉伯傳到歐洲,歐洲人誤以為是阿拉伯人發明的,就把它們叫做"阿拉伯數字",因為流傳了許多年,人們叫得順口,所以至今人們仍然將錯就錯,把這些古代印度人發明的數字元號叫做阿拉伯數字。 現在,阿拉伯數字已成了全世界通用的數字元 九九歌 九九歌就是我們現在使用的乘法口訣。 遠在公元前的春秋戰國時代,九九歌就已經被人們廣泛使用。在當時的許多著作中,都有關於九九歌的記載。最初的九九歌是從"九九八十一"起到"二二如四"止,共36句。因為是從"九九八十一"開始,所以取名九九歌。大約在公元五至十世紀間,九九歌才擴充到"一一如一"。大約在公元十三、十四世紀,九九歌的順序才變成和現在所用的一樣,從"一一如一"起到"九九八十一"止。 現在我國使用的乘法口訣有兩種,一種是45句的,通常稱為"小九九";還有一種是81句的,通常稱為"大九九"。 數學符號的起源 數學除了記數以外,還需要一套數學符號來表示數和數、數和形的相互關系。數學符號的發明和使用比數字晚,但是數量多得多。現在常用的有200多個,初中數學書里就不下20多種。它們都有一段有趣的經歷。 例如加號曾經有好幾種,現在通用"+"號。 "+"號是由拉丁文"et"("和"的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文"più"(加的意思)的第一個字母表示加,草為"μ"最後都變成了"+"號。 "-"號是從拉丁文"minus"("減"的意思)演變來的,簡寫m,再省略掉字母,就成了"-"了。 到了十五世紀,德國數學家魏德美正式確定:"+"用作加號,"-"用作減號。 乘號曾經用過十幾種,現在通用兩種。一個是"×",最早是英國數學家奧屈特1631年提出的;一個是"· ",最早是英國數學家赫銳奧特首創的。德國數學家萊布尼茨認為:"×"號象拉丁字母"X",加以反對,而贊成用"· "號。他自己還提出用"п"表示相乘。可是這個符號現在應用到集合論中去了。 到了十八世紀,美國數學家歐德萊確定,把"×"作為乘號。他認為"×"是"+"斜起來寫,是另一種表示增加的符號。 "÷"最初作為減號,在歐洲大陸長期流行。直到1631年英國數學家奧屈特用":"表示除或比,另外有人用"-"(除線)表示除。後來瑞士數學家拉哈在他所著的《代數學》里,才根據群眾創造,正式將"÷"作為除號。 十六世紀法國數學家維葉特用"="表示兩個量的差別。可是英國牛津大學數學、修辭學教授列考爾德覺得:用兩條平行而又相等的直線來表示兩數相等是最合適不過的了,於是等於符號"="就從1540年開始使用起來。 1591年,法國數學家韋達在菱中大量使用這個符號,才逐漸為人們接受。十七世紀德國萊布尼茨廣泛使用了"="號,他還在幾何學中用"∽"表示相似,用"≌"表示全等。 大於號"〉"和小於號"〈",是1631年英國著名代數學家赫銳奧特創用。至於≯""≮"、"≠"這三個符號的出現,是很晚很晚的事了。大括弧"{ }"和中括弧"[ ]"是代數創始人之一魏治德創造的。 奇妙的圓形 圓形,是一個看來簡單,實際上是很奇妙的圓形。 古代人最早是從太陽,從陰歷十五的月亮得到圓的概念的。一萬八千年前的山頂洞人曾經在獸牙、礫石和石珠上鑽孔,那些孔有的就很圓。 以後到了陶器時代,許多陶器都是圓的。圓的陶器是將泥土放在一個轉盤上製成的。 當人們開始紡線,又制出了圓形的石紡綞或陶紡綞。 古代人還發現圓的木頭滾著走比較省勁。後來他們在搬運重物的時候,就把幾段圓木墊在大樹、大石頭下面滾著走,這樣當然比扛著走省勁得多。 大約在6000年前,美索不達米亞人,做出了世界上第一個輪子--圓的木盤。大約在4000多年前,人們將圓的木盤固定在木架下,這就成了最初的車子。 會作圓,但不一定就懂得圓的性質。古代埃及人就認為:圓,是神賜給人的神聖圖形。一直到兩千多年前我國的墨子(約公元前468-前376年)才給圓下了一個定義:"一中同長也"。意思是說:圓有一個圓心,圓心到圓周的長都相等。這個定義比希臘數學家歐幾里得(約公元前330-前275年)給圓下定義要早100年。 圓周率,也就是圓周與直徑的比值,是一個非常奇特的數。 《周髀算經》上說"徑一周三",把圓周率看成3,這只是一個近似值。美索不達來亞人在作第一個輪子的時候,也只知道圓周率是3。 魏晉時期的劉徽於公元263年給《九章算術》作注。他發現"徑一周三"只是圓內接正六邊形周長和直徑的比值。他創立了割圓術,認為圓內接正多連形邊數無限增加時,周長就越逼近圓周長。他算到圓內接正3072邊形的圓周率,π= 3927/1250。劉徽已經把極限的概念運用於解決實際的數學問題之中,這在世界數學史上也是一項重大的成就。 祖沖之(公元429-500年)在前人的計算基礎上繼續推算,求出圓周率在3.1415926與3.1415927之間,是世界上最早的七位小數精確值,他還用兩個分數值來表示圓周率:22/7稱為約率,355/113稱為密率。 在歐洲,直到1000年後的十六世紀,德國人鄂圖(公元1573年)和安托尼茲才得到這個數值。 現在有了電子計算機,圓周率已經算到了小數點後一千萬以上了。 從一加到一百 七歲時高斯進了 St. Catherine小學。大約在十歲時,老師在算數課上出了一道難題:"把 1到 100的整數寫下來,然後把它們加起來!"每當有考試時他們有如下的習慣:第一個做完的就把石板﹝當時通行,寫字用﹞面朝下地放在老師的桌子上,第二個做完的就把石板擺在第一張石板上,就這樣一個一個落起來。這個難題當然難不倒學過算數級數的人,但這些孩子才剛開始學算數呢!老師心想他可以休息一下了。但他錯了,因為還不到幾秒鍾,高斯已經把石板放在講桌上了,同時說道:「答案在這兒!」其他的學生把數字一個個加起來,額頭都出了汗水,但高斯卻靜靜坐著,對老師投來的,輕蔑的、懷疑的眼光毫不在意。考完後,老師一張張地檢查著石板。大部分都做錯了,學生就吃了一頓鞭打。最後,高斯的石板被翻了過來,只見上面只有一個數字:5050(用不著說,這是正確的答案。)老師吃了一驚,高斯就解釋他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50對和為 101的數目,所以答案是 50×101=5050。由此可見高斯找到了算術級數的對稱性,然後就像求得一般算術級數合的過程一樣,把數目一對對地湊在一起。 勾股定理 勾股定理:在任何一個直角三角形中,兩條直角邊的平方之和一定等於斜邊的平方。 這個定理在中國又稱為"商高定理",在外國稱為"畢達哥拉斯定理"。為什麼一個定理有這么多名稱呢?商高是公元前十一世紀的中國人。當時中國的朝代是西周,是奴隸社會時期。在中國古代大約是戰國時期西漢的數學著作《周髀算經》中記錄著商高同周公的一段對話。商高說:"…故折矩,勾廣三,股修四,經隅五。"什麼是"勾、股"呢?在中國古代,人們把彎曲成直角的手臂的上半部分稱為"勾",下半部分稱為"股"。商高那段話的意思就是說:當直角三角形的兩條直角邊分別為3(短邊)和4(長邊)時,徑隅(就是弦)則為5。以後人們就簡單地把這個事實說成"勾三股四弦五"。由於勾股定理的內容最早見於商高的話中,所以人們就把這個定理叫作"商高定理"。 畢達哥拉斯(Pythagoras)是古希臘數學家,他是公元前五世紀的人,比商高晚出生五百多年。希臘另一位數學家歐幾里德(Euclid,是公元前三百年左右的人)在編著《幾何原本》時,認為這個定理是畢達哥達斯最早發現的,所以他就把這個定理稱為"畢達哥拉斯定理",以後就流傳開了。 關於勾股定理的發現,《周髀算經》上說:"故禹之所以治天下者,此數之所由生也。""此數"指的是"勾三股四弦五",這句話的意思就是說:勾三股四弦五這種關系是在大禹治水時發現的。 勾股定理的應用非常廣泛。我國戰國時期另一部古籍《路史後記十二注》中就有這樣的記載:"禹治洪水決流江河,望山川之形,定高下之勢,除滔天之災,使注東海,無漫溺之患,此勾股之所系生也。"這段話的意思是說:大禹為了治理洪水,使不決流江河,根據地勢高低,決定水流走向,因勢利導,使洪水注入海中,不再有大水漫溺的災害,是應用勾股定理的結果。 無聲勝有聲 在數學上也不乏無聲勝有聲這種意境。1903年,在紐約的一次數學報告會上,數學家科樂上了講台,他沒有說一句話,只是用粉筆在黑板上寫了兩數的演算結果,一個是2的67次方-1,另一個是193707721×761838257287,兩個算式的結果完全相同,這時,全場爆發出經久不息的掌聲。這是為什麼呢? 因為科樂解決了兩百年來一直沒弄清的問題,即2是67次方-1是不是質數?現在既然它等於兩個數的乘積,可以分解成兩個因數,因此證明了2是67次方-1不是質數,而是合數。 科爾只做了一個簡短的無聲的報告,可這是他花了3年中全部星期天的時間,才得出的結論。在這簡單算式中所蘊含的勇氣,毅力和努力,比洋洋灑灑的萬言報告更具魅力。 為什麼時間和角度的單位用六十進位制 時間的單位是小時,角度的單位是度,從表面上看,它們完全沒有關系。可是,為什麼它們都分成分、秒等名稱相同的小單位呢?為什麼又都用六十進位制呢? 我們仔細研究一下,就知道這兩種量是緊密聯系著的。原來,古代人由於生產勞動的需要,要研究天文和歷法,就牽涉到時間和角度了。譬如研究晝夜的變化,就要觀察地球的自轉,這里自轉的角度和時間是緊密地聯系在一起的。因為歷法需要的精確度較高,時間的單位"小時"、角度的單位"度"都嫌太大,必須進一步研究它們的小數。時間和角度都要求它們的小數單位具有這樣的性質:使1/2、1/3、1/4、1/5、1/6等都能成為它的整數倍。以1/60作為單位,就正好具有這個性質。譬如:1/2等於30個1/60,1/3等於20個1/60,1/4等於15個1/60…… 數學上習慣把這個1/60的單位叫做"分",用符號"′"來表示;把1分的1/60的單位叫做"秒",用符號"″"來表示。時間和角度都用分、秒作小數單位。 這個小數的進位制在表示有些數字時很方便。例如常遇到的1/3,在十進位制里要變成無限小數,但在這種進位制中就是一個整數。 這種六十進位制(嚴格地說是六十退位制)的小數記數法,在天文歷法方面已長久地為全世界的科學家們所習慣,所以也就一直沿用到今天。 哥德巴赫猜想 哥德巴赫(Goldbach C.,1690.3.18~1764.11.20)是德國數學家; 在1742年6月7日給歐拉的信中,哥德巴赫提出了一個命題:任何大於5的奇數都是三個素數之和。 但這怎樣證明呢?雖然做過的每一次試驗都得到了上述結果,但是不可能把所有的奇數都拿來檢驗,需要的是一般的證明,而不是個別的檢驗。" 歐拉回信又提出了另一個命題:任何一個大於2的偶數都是兩個素數之和。但是這個命題他也沒能給予證明。現在通常把這兩個命題統稱為哥德巴赫猜想 二百多年來,盡管許許多多的數學家為解決這個猜想付出了艱辛的勞動,迄今為止它仍然是一個既沒有得到正面證明也沒有被推翻的命題。 夠了吧,自己選擇吧 回答人的補充 2009-08-15 10:10 一次只能一萬字,而且要審核,比較慢,所以第二部分放這里
4. 怎麼做數學手抄報簡單
方法/步驟
1
一般來說,製作手抄報使用的紙張都是素描紙。
素描紙可以在文具店買到,一般使用的大小是4開或者8開,不過,4開的手抄報太大,會給製作手抄報帶來很大難度。
相比之下,8開正好16開太小,建議購買8開的素描紙,質量稍好一點的,就可以開始製作了。
2
第一個小竅門就是加邊。
有過製作手抄報經驗的人都知道,我們要在一張8開大小的素描紙上忙活好久,很多時候,一張手抄報做完,那張素描紙的邊緣已經變得不成樣子了。解決這個問題的方法就是加邊。
筆者的小學老師建議加兩厘米,筆者試過以後覺得太寬,八毫米已經足夠。而且這個寬度可以用普通的膠帶來衡量,如果將普通的膠帶綁在素描紙的邊上,會對你的素描紙起到極大地保護作用。並且,在整張手抄報完成之後,會使手抄報顯得非常清爽、整潔。
3
通常來說,製作手抄報,無論是數學手抄報也好,語文手抄報也罷,都需要製作人去查閱有關的書籍資料,以充做手抄報的內容。
這里也給個小建議,千萬不要選擇太長的故事。在現在的書籍上,我們能看到的字都是很小號的,讓我們用手把它抄寫出來,會顯得很多,很長。如果一不小心選擇了一個漫長的故事,那可就悲催了呀。
4
查閱好資料之後就要開始排版。這個步驟可以和上一個步驟交替進行。
畢竟在排版的時候,我們會發現,有的故事過長,有的故事過短,或者在替換之後,會有更好的效果。兩個步驟,相互協調,最後確定大概的排版。
如果是要製作一張數學手抄報,可以選擇一些數學圖案的由來、數學家的小故事、關於數學的名言、關於數學的小笑話,等等。
這個時候的排版可以在草稿紙上進行!
5
開始製作手抄報的時候,不要一上來就用無法修改的水筆,或者鋼筆,也不要使用彩鉛或者油畫棒。
最佳的選擇是使用鉛筆,打一個大概的輪廓,明確素描紙的每一個部分大概要寫的內容,然後補充上各種各樣分隔線,比如直線、波浪線、虛線、s型線等等,之後在大概的分隔線上添加一些花邊,或者小圖案,或者是文本框一樣的卷軸。
在需要填充文字的文本框里可以選擇用鉛筆尺子打上格子,格子的寬窄由製作人來決定,但是同一個小故事的寬窄要相似。如果不想寫那麼多字的話,就把字寫大一點,把格子畫寬一點。
以上內容,最好都用鉛筆完成。
6
接下來就是要添加文字內容了。
因為之前所做的所有工作都是用鉛筆完成的,而一旦有了鉛筆的輪廓之後,就可以放心大膽地,用不褪色的水筆或者鋼筆在上面寫字了。
同一張手抄報上可以有不同顏色的筆寫出來的字。比如說左上角選擇用黑筆,右下角可以選擇用藍筆。相鄰板塊的顏色,也最好選擇不相似。除非整個布局有特殊的含義。
但是需要提醒的一件事情是,不要用紅筆在上面寫字。因為無論從哪個方面來說,用紅筆製作的手抄報,都顯得很不妥。
7
剛抄寫完文字部分之後,手抄報的格局已經定下來了,接下來所剩下來的就是修飾。修飾步驟,建議使用彩鉛,和有顏色的水筆。
畢竟水粉、油畫什麼的,用於製作手抄報,還真的不是一般人能夠hold得住的。如果只用黑色的單調的水筆,大概顯得比較壓抑,如果使用鉛筆素描的話,這張手抄報很容易就會模糊。
8
將原有的鉛筆痕跡,一點一點地擦除,再換上水筆和彩鉛描繪精心描繪的圖案。
一定要將鉛筆痕跡擦除才能用彩鉛描繪,不然會把紙張弄得非常臟哦。
在一些不明顯的地方,如果需要畫得更清新明亮一點,就可以使用紅色,藍色,或者黑色的水筆,其實已經足夠了。
還記得原來我們話在文字下方的橫線嗎?那些橫線你可以選擇用水筆重新描一遍,也可以選擇將它們全部擦除。如果你將它們全部描一遍,然後再用橡皮擦去鉛筆的痕跡,會得到意想不到的奇妙結果哦!
9
記得在完成整張手抄報之後,一定要加以適當的調整,這樣會使你的手抄報看上去更加的美觀。
這些調整包括:錯別字的修改、多餘鉛筆線的擦除、添加部分小插畫、填充空白且突兀的地方、精心描繪分隔線……
對啦,要在右下角寫上你的大名和製作日期哦,日後回來看,很有紀念意義的!
5. 如何做一張數學手抄報
我覺得可以從以下幾方面注意。
內容上:只要和數學有關的,都可以拿來做手抄報。可以找一些數字歌和一些關於奧數相關的資料,再進行加工一下就有你所要的東西了!比如,你可以寫寫數學家的故事、數學文化、數學小笑話、數學趣題妙解,還可以是數學的故事,學習數學中發生的故事等等,內容很豐富。
版面上:要求造型准確外,還須善於處理色塊的搭配和變化關系,而這些關系的處理要從對象的需要出發,使版面色彩豐富。
低年級手抄報的辦理主要以插圖為主,充滿童稚和童趣。同學們可以選擇把一些剪切文章或圖片粘貼起來,這樣比較簡便易行,同時也能培養學生讀書看報的興趣。其實低年級的小孩辦手抄報不必要有一套程序,讓他們放手寫一寫,配上一副畫,再自己起個名,就是一個不錯的作品。
中年級手抄報要注重圖文並茂;對於板式有一定的要求,在內容上也要充實起來。辦手抄報要用心辦才對,只是希望辦手抄報不要留於形式,辦就辦得有特色,比如:學生心得、學生空間、師生互動、課餘生活、愛好與興趣、生活常識等等。
高年級的學生辦手抄報,要求相較於中低年級要有所提高。同學們在手抄報的版面設計上不僅要漂亮美觀還要布局合理。在內容上要有一定的深度和意義,講究知識的關聯系及普及性。同學們通過辦理手抄報要達到鞏固所學知識的目的。辦理手抄報的時間一般較長,大家要總結經驗提高辦報的效率,同時通過辦報鞏固知識。達到深化學習的目的。
6. 數學手抄報
可以寫數學名言和數學故事,比如:
◇數學知識是最純粹的邏輯思維活動,以及最高級智能活力美學體現。——普林舍姆
◇歷史使人聰明,詩歌使人機智,數學使人精細。——培根
◇數學是最寶貴的研究精神之一。——華羅庚
◇沒有哪門學科能比數學更為清晰地闡明自然界的和諧性。——卡羅斯
◇數學是規律和理論的裁判和主宰者。——本傑明
◇音樂能激發或撫慰情懷,繪畫使人賞心悅目,詩歌能動人心弦,哲學使人
獲得智慧,科學可改善物質生活,但數學能給予以上的一切。. ————克萊因.
◇音樂能激發或撫慰情懷,繪畫使人賞心悅目,詩歌能動人心弦,哲學使人
獲得智慧,科學可改善物質生活,但數學能給予以上的一切。. ————克萊因.
◇數學的本質在於它的自由. ——康扥爾(Cantor)
◇在數學的領域中, 提出問題的藝術比解答問題的藝術更為重要. ——康扥爾(Cantor)
◇沒有任何問題可以向無窮那樣深深的觸動人的情感, 很少有別的觀念能像無窮那樣激勵理智產生富有成果的思想, 然而也沒有任何其他的概念能向無窮那樣需要加以闡明.——希爾伯特(Hilbert)
◇數學是無窮的科學. ——外爾(Weil)
◇問題是數學的心臟.—— 哈爾默斯(P.R.Halmos )
◇只要一門科學分支能提出大量的問題, 它就充滿著生命力, 而問題缺乏則預示著獨立發展的終止或衰亡.—— 希爾伯特(Hilbert )
◇數學中的一些美麗定理具有這樣的特性: 它們極易從事實中歸納出來, 但證明卻隱藏的極深.——高斯 (Gauss)
◇數學是科學的皇後,而數論是數學的皇後 ——高斯(Gauss)
◇自然這一巨著是用數學符號寫成的) ——伽里略
◇數學是一項工具,特別適合於處理任何一類抽象概念,而且,它在這方面的作用是無止境的。因此,一本論述新物理學的書,如果不是單純地描述實驗工作的,其本質上,必定是一本數學書。 ——狄拉克
◇數學受到高度尊崇的另一個原因在於:恰恰是數學,給精密的自然科學提供了無可置疑的可靠保證,沒有數學,它們無法達到這樣的可靠程度。 ——愛因斯坦
◇純粹數學,就其本質而言,是邏輯思想的詩篇。——愛因斯坦
◇數學科學呈現出一個最輝煌的例子,表明不用藉助實驗,純粹的推理能成功地擴大人們的認知領域。 ——康德
◇一個人就好像一個分數,他的實際才能好比分子,而他對自己的估價好比分母。分母越大,則分數的值就越小。 ——托爾斯泰
◇時間是個常數,但對勤奮者來說,是個『變數』。用『分』來計算時間的人比用『小時』來計算時間的人時間多59倍。
——雷巴柯夫
◇在學習中要敢於做減法,就是減去前人已經解決的部分,看看還有那些問題沒有解決,需要我們去探索解決 —— 華羅庚
◇數學中的一些美麗定理具有這樣的特性: 它們極易從事實中歸納出來, 但證明卻隱藏的極深。數學是科學之王。 ——高斯
◇數學是無窮的科學。 ——赫爾曼外爾
◇在數學的天地里,重要的不是我們知道什麼,而是我們怎麼知道什麼。
——畢達哥拉斯
◇一門科學,只有當它成功地運用數學時,才能達到真正完善的地步。
——馬克思
◇一個國家的科學水平可以用它消耗的數學來度量。
——拉奧
◇A=x+y+z. A代表成功,x代表艱苦的勞動,y代表正確的方法,z代表少說空話。
-----愛因斯坦
◇天才=1%的靈感+99%的血汗。 ------愛迪生
◇要利用時間,思考一下一天之中做了些什麼,是「正號」還是「負號」,倘若是「+」,則進步;倘若是「—」,就得吸取教訓,採取措施。 ------季米特洛夫
◇人生應該象線段,有始有終;不應象射線,有始無終。
◇人生軌跡都是圓,但是你可以將圓的半徑延長些。
◇一個人要在有限的生活區域內求得最大值。
◇20多歲的人是銳角,30多歲的人是鈍角,40多歲的人是平角,50多歲的人是周角。
◇做朋友要象垂線,互相交流;做對手要象平行線,雖然不來往,但是你追我趕,互相超越。
數學故事:
那是1618年11月,笛卡兒在軍隊服役,駐扎在荷蘭的一個小小的城填布萊達。一天,他在街上散步,看見一群人聚集在一張貼布告的招貼牌附近,情緒興奮地議論紛紛。他好奇地走到跟前。但由於他聽不懂荷蘭話,也看不懂布告上的荷蘭字,他就用法語向旁邊的人打聽。有一位能聽懂法語的過路人不以為然的看了看這個年青的士兵,告訴他,這里貼的是一張解數學題的有獎競賽。要想讓他給翻譯一下布告上所有的內容,需要有一個條件,就是士兵要給他送來這張布告上所有問題的答案。這位荷蘭人自稱,他是物理學、醫學和數學教師別克曼。出乎意料的是,第二天,笛卡兒真地帶著全部問題的答案見他來了;尤其是使別克曼吃驚地是,這位青年的法國士兵的全部答案竟然一點兒差錯都沒有。於是,二人成了好朋友,笛卡兒成了別克曼家的常客。
笛卡兒在別克曼指導下開始認真研究數學,別克曼還教笛卡兒學習荷蘭語。這種情況一直延續了兩年多,為笛卡兒以後創立解析幾何打下了良好的基礎。而且,據說別克曼教笛卡兒學會的荷蘭話還救過笛卡兒一命:
有一次笛卡兒和他的僕人一起乘一艘不大的商船駛往法國,船費不很貴。沒想到這是一艘海盜船,船長和他的副手以為笛卡兒主僕二人是法國人,不懂荷蘭語,就用荷蘭語商量殺害他們倆搶掠他們錢財的事。笛卡兒聽懂了船長和他副手的話,悄悄做准備,終於制服了船長,才安全回到了法國。
八歲的高斯發現了數學定理
他八歲時進入鄉村小學讀書。教數學的老師是一個從城裡來的人,覺得在一個窮鄉僻壤教幾個小猢猻讀書,真是大材小用。而他又有些偏見:窮人的孩子天生都是笨蛋,教這些蠢笨的孩子念書不必認真,如果有機會還應該處罰他們,使自己在這枯燥的生活里添一些樂趣。
這一天正是數學教師情緒低落的一天。同學們看到老師那抑鬱的臉孔,心裡畏縮起來,知道老師又會在今天捉這些學生處罰了。
「你們今天替我算從1加2加3一直到100的和。誰算不出來就罰他不能回家吃午飯。」老師講了這句話後就一言不發的拿起一本小說坐在椅子上看去了。
教室里的小朋友們拿起石板開始計算:「1加2等於3,3加3等於6,6加4等於10……」一些小朋友加到一個數後就擦掉石板上的結果,再加下去,數越來越大,很不好算。有些孩子的小臉孔漲紅了,有些手心、額上滲出了汗來。
還不到半個小時,小高斯拿起了他的石板走上前去。「老師,答案是不是這樣?」
老師頭也不抬,揮著那肥厚的手,說:「去,回去再算!錯了。」他想不可能這么快就會有答案了。
可是高斯卻站著不動,把石板伸向老師面前:「老師!我想這個答案是對的。」
數學老師本來想怒吼起來,可是一看石板上整整齊齊寫了這樣的數:5050,他驚奇起來,因為他自己曾經算過,得到的數也是5050,這個8歲的小鬼怎麼這樣快就得到了這個數值呢?
高斯解釋他發現的一個方法,這個方法就是古時希臘人和中國人用來計算級數1+2+3+…+n的方法。高斯的發現使老師覺得羞愧,覺得自己以前目空一切和輕視窮人家的孩子的觀點是不對的。他以後也認真教起書來,並且還常從城裡買些數學書自己進修並借給高斯看。在他的鼓勵下,高斯以後便在數學上作了一些重要的研究了。
小歐拉智改羊圈
歐拉是數學史上著名的數學家,他在數論、幾何學、天文數學、微積分等好幾個數學的分支領域中都取得了出色的成就。不過,這個大數學家在孩提時代卻一點也不討老師的喜歡,他是一個被學校除了名的小學生。
事情是因為星星而引起的。 當時,小歐拉在一個教會學校里讀書。有一次,他向老師提問,天上有多少顆星星。老師是個神學的信徒,他不知道天上究竟有多少顆星,聖經上也沒有回答過。其實,天上的星星數不清,是無限的。我們的肉眼可見的星星也有幾千顆。這個老師不懂裝懂,回答歐拉說:"天有有多少顆星星,這無關緊要,只要知道天上的星星是上帝鑲嵌上去的就夠了。"
歐拉感到很奇怪:"天那麼大,那麼高,地上沒有扶梯,上帝是怎麼把星星一顆一顆鑲嵌到一在幕上的呢?上帝親自把它們一顆一顆地放在天幕,他為什麼忘記了星星的數目呢?上帝會不會太粗心了呢?
他向老師提出了心中的疑問,老師又一次被問住了,漲紅了臉,不知如何回答才好。老師的心中頓時升起一股怒氣,這不僅是因為一個才上學的孩子向老師問出了這樣的問題,使老師下不了台,更主要的是,老師把上帝看得高於一切。小歐拉居然責怪上帝為什麼沒有記住星星的數目,言外之意是對萬能的上帝提出了懷疑。在老師的心目中,這可是個嚴重的問題。
在歐拉的年代,對上帝是絕對不能懷疑的,人們只能做思想的奴隸,絕對不允許自由思考。小歐拉沒有與教會、與上帝"保持一致",老師就讓他離開學校回家。但是,在小歐拉心中,上帝神聖的光環消失了。他想,上帝是個窩囊廢,他怎麼連天上的星星也記不住?他又想,上帝是個獨裁者,連提出問題都成了罪。他又想,上帝也許是個別人編造出來的傢伙,根本就不存在。
回家後無事,他就幫助爸爸放羊,成了一個牧童。他一面放羊,一面讀書。他讀的書中,有不少數學書。
爸爸的羊群漸漸增多了,達到了100隻。原來的羊圈有點小了,爸爸決定建造一個新的羊圈。他用尺量出了一塊長方形的土地,長40米,寬15米,他一算,面積正好是600平方米,平均每一頭羊佔地6平方米。正打算動工的時候,他發現他的材料只夠圍100米的籬笆,不夠用。若要圍成長40米,寬15米的羊圈,其周長將是110米(15+15+40+40=110)父親感到很為難,若要按原計劃建造,就要再添10米長的材料;要是縮小面積,每頭羊的面積就會小於6平方米。
小歐拉卻向父親說,不用縮小羊圈,也不用擔心每頭羊的領地會小於原來的計劃。他有辦法。父親不相信小歐拉會有辦法,聽了沒有理他。小歐拉急了,大聲說,只有稍稍移動一下羊圈的樁子就行了。
父親聽了直搖頭,心想:"世界上哪有這樣便宜的事情?"但是,小歐拉卻堅持說,他一定能兩全齊美。父親終於同意讓兒子試試看。
小歐拉見父親同意了,站起身來,跑到准備動工的羊圈旁。他以一個木樁為中心,將原來的40米邊長截短,縮短到25米。父親著急了,說:"那怎麼成呢?那怎麼成呢?這個羊圈太小了,太小了。"小歐拉也不回答,跑到另一條邊上,將原來15米的邊長延長,又增加了10米,變成了25米。經這樣一改,原來計劃中的羊圈變成了一個25米邊長的正方形。然後,小歐拉很自信地對爸爸說:"現在,籬笆也夠了,面積也夠了。"
父親照著小歐拉設計的羊圈紮上了籬笆,100米長的籬笆真的夠了,不多不少,全部用光。面積也足夠了,而且還稍稍大了一些。父親心裡感到非常高興。孩子比自己聰明,真會動腦筋,將來一定大有出息。
父親感到,讓這么聰明的孩子放羊實在是及可惜了。後來,他想辦法讓小歐拉認識了一個大數學家伯努利。通過這位數學家的推薦,1720年,小歐拉成了巴塞爾大學的大學生。這一年,小歐拉13歲,是這所大學最年輕的大學生。
數學趣味題:
1、兩個男孩各騎一輛自行車,從相距2O英里(1英里合1.6093千米)的兩個地方,開始沿直線相向騎行。在他們起步的那一瞬間,一輛自行車車把上的一隻蒼蠅,開始向另一輛自行車徑直飛去。它一到達另一輛自行車車把,就立即轉嚮往回飛行。這只蒼蠅如此往返,在兩輛自行車的車把之間來回飛行,直到兩輛自行車相遇為止。如果每輛自行車都以每小時1O英里的等速前進,蒼蠅以每小時15英里的等速飛行,那麼,蒼蠅總共飛行了多少英里?
答案
每輛自行車運動的速度是每小時10英里,兩者將在1小時後相遇於2O英里距離的中點。蒼蠅飛行的速度是每小時15英里,因此在1小時中,它總共飛行了15英里。
許多人試圖用復雜的方法求解這道題目。他們計算蒼蠅在兩輛自行車車把之間的第一次路程,然後是返回的路程,依此類推,算出那些越來越短的路程。但這將涉及所謂無窮級數求和,這是非常復雜的高等數學。據說,在一次雞尾酒會上,有人向約翰?馮·諾伊曼(John von Neumann, 1903~1957,20世紀最偉大的數學家之一。)提出這個問題,他思索片刻便給出正確答案。提問者顯得有點沮喪,他解釋說,絕大多數數學家總是忽略能解決這個問題的簡單方法,而去採用無窮級數求和的復雜方法。
馮·諾伊曼臉上露出驚奇的神色。「可是,我用的是無窮級數求和的方法.」他解釋道
2、 有位漁夫,頭戴一頂大草帽,坐在劃艇上在一條河中釣魚。河水的流動速度是每小時3英里,他的劃艇以同樣的速度順流而下。「我得向上游劃行幾英里,」他自言自語道,「這里的魚兒不願上鉤!」
正當他開始向上游劃行的時候,一陣風把他的草帽吹落到船旁的水中。但是,我們這位漁夫並沒有注意到他的草帽丟了,仍然向上游劃行。直到他劃行到船與草帽相距5英里的時候,他才發覺這一點。於是他立即掉轉船頭,向下游劃去,終於追上了他那頂在水中漂流的草帽。
在靜水中,漁夫劃行的速度總是每小時5英里。在他向上游或下游劃行時,一直保持這個速度不變。當然,這並不是他相對於河岸的速度。例如,當他以每小時5英里的速度向上游劃行時,河水將以每小時3英里的速度把他向下游拖去,因此,他相對於河岸的速度僅是每小時2英里;當他向下游劃行時,他的劃行速度與河水的流動速度將共同作用,使得他相對於河岸的速度為每小時8英里。
如果漁夫是在下午2時丟失草帽的,那麼他找回草帽是在什麼時候?
答案
由於河水的流動速度對劃艇和草帽產生同樣的影響,所以在求解這道趣題的時候可以對河水的流動速度完全不予考慮。雖然是河水在流動而河岸保持不動,但是我們可以設想是河水完全靜止而河岸在移動。就我們所關心的劃艇與草帽來說,這種設想和上述情況毫無無差別。
既然漁夫離開草帽後劃行了5英里,那麼,他當然是又向回劃行了5英里,回到草帽那兒。因此,相對於河水來說,他總共劃行了10英里。漁夫相對於河水的劃行速度為每小時5英里,所以他一定是總共花了2小時劃完這10英里。於是,他在下午4時找回了他那頂落水的草帽。
這種情況同計算地球表面上物體的速度和距離的情況相類似。地球雖然旋轉著穿越太空,但是這種運動對它表面上的一切物體產生同樣的效應,因此對於絕大多數速度和距離的問題,地球的這種運動可以完全不予考慮.
3、一架飛機從A城飛往B城,然後返回A城。在無風的情況下,它整個往返飛行的平均地速(相對於地面的速度)為每小時100英里。假設沿著從A城到B城的方向筆直地刮著一股持續的大風。如果在飛機往返飛行的整個過程中發動機的速度同往常完全一樣,這股風將對飛機往返飛行的平均地速有何影響?
懷特先生論證道:「這股風根本不會影響平均地速。在飛機從A城飛往B城的過程中,大風將加快飛機的速度,但在返回的過程中大風將以相等的數量減緩飛機的速度。」「這似乎言之有理,」布朗先生表示贊同,「但是,假如風速是每小時l00英里。飛機將以每小時200英里的速度從A城飛往B城,但它返回時的速度將是零!飛機根本不能飛回來!」你能解釋這似乎矛盾的現象嗎?
答案
懷特先生說,這股風在一個方向上給飛機速度的增加量等於在另一個方向上給飛機速度的減少量。這是對的。但是,他說這股風對飛機整個往返飛行的平均地速不發生影響,這就錯了。
懷特先生的失誤在於:他沒有考慮飛機分別在這兩種速度下所用的時間。
逆風的回程飛行所用的時間,要比順風的去程飛行所用的時間長得多。其結果是,地速被減緩了的飛行過程要花費更多的時間,因而往返飛行的平均地速要低於無風時的情況。
風越大,平均地速降低得越厲害。當風速等於或超過飛機的速度時,往返飛行的平均地速變為零,因為飛機不能往回飛了。
4、《孫子算經》是唐初作為「算學」教科書的著名的《算經十書》之一,共三卷,上卷敘述算籌記數的制度和乘除法則,中卷舉例說明籌算分數法和開平方法,都是了解中國古代籌算的重要資料。下卷收集了一些算術難題,「雞兔同籠」問題是其中之一。原題如下:令有雉(雞)兔同籠,上有三十五頭,下有九十四足。
問雄、兔各幾何?
原書的解法是;設頭數是a,足數是b。則b/2-a是兔數,a-(b/2-a)是雉數。這個解法確實是奇妙的。原書在解這個問題時,很可能是採用了方程的方法。
設x為雉數,y為兔數,則有
x+y=b, 2x+4y=a
解之得
y=b/2-a,
x=a-(b/2-a)
根據這組公式很容易得出原題的答案:兔12隻,雉22隻。
5、我們大家一起來試營一家有80間套房的旅館,看看知識如何轉化為財富。
經調查得知,若我們把每日租金定價為160元,則可客滿;而租金每漲20元,就會失去3位客人。 每間住了人的客房每日所需服務、維修等項支出共計40元。
問題:我們該如何定價才能賺最多的錢?
答案:日租金360元。
雖然比客滿價高出200元,因此失去30位客人,但餘下的50位客人還是能給我們帶來360*50=18000元的收入; 扣除50間房的支出40*50=2000元,每日凈賺16000元。而客滿時凈利潤只有160*80-40*80=9600元。
當然,所謂「經調查得知」的行情實乃本人杜撰,據此入市,風險自擔。
7. 《 奇妙的數王國 》手抄報
=8,0=1, =3, =5, =7, =9.小華一下子明白了。他匠心獨具!於是仙鶴王子得救了。
這本書分為十個長篇,等著我來破解其中的答案,兵根據小鼴鼠的回答奇妙的數王國讀後感
今年暑假,我讀了一本有關數學知識的童話書《奇妙的數王國》,是李毓佩教授寫的!整數王國的公民個個文武雙全,
=4,=6,身體成了個「2」字形。被心胸狹窄的2司令看到後。可是,小華卻被偶數士兵給抓走了,其中最長的一篇是「奇妙的數王國」。它的主人公有哥哥小強,與其他的數有很大差別。區別是這本有豐富的想像力,並且把枯燥乏味的數學知識編成一個個生動有趣的故事,吸引我不禁一口氣讀下去。同時!原來,要把這些數橫豎相加,然後得到的和都是15。小華因為45塊石頭認識了小鼴鼠,用童話形式把那枯燥的數學知識傳授給我們少年兒童、弟弟小華、0國王、1司令、2司令等等。咱們先說說人物吧,提高了我的思維能力。小華捨己救人的精神多麼感人啊!
這本書很有趣,每一個故事都是一道道數學題!
令我感受最深的故事是《烏龜殼上的奧秘》,數王國的公民可真有能耐: =2,苦思冥想,用盡所有的辦法都不能解開魔咒。話說仙鶴王子在水面上休息時,認為仙鶴王子得罪了他,於是利用魔咒把他變成一隻醜陋的烏龜。好心的小華為了幫助仙鶴王子,絞盡腦汁;而分數王國的公民則都神通廣大;小數王國的公民特別勇敢無畏。他們經過一次大地震,在小強的幫助下,大家都毫發無損。總之
8. 數學手抄報 主題是奇妙的數學 請大家幫忙找資料 能幫我畫出來最好 我會多給他30分
http://image..com/i?tn=image&ct=201326592&lm=-1&cl=2&word=%C6%E6%C3%EE%B5%C4%CA%FD%D1%A7%CA%D6%B3%AD%B1%A8&t=3
這裡面有好多呢呀
9. 趣味數學手抄報的素材
1()2()3()4=1
1()2()3()4()5=1
1()2()3()4()5()6=1
1()2()3()4()5()6()7=1
1()2()3()4()5()6()7()8() =1
1客車長190米,貨車長240米,兩車分別以每秒20米和每秒23M的速度前進.在雙軌鐵路上,相遇時從車頭相遇到車尾相離需幾秒?
答案:10秒.
2 計算1234+2341+3412+4123=?
答案:11110
3 一個等差數列的首項是5.6 ,第六項是20.6,求它的第4項
答案:14.6
4 求和0.1+0.3+0.5+0.7+.....+0.87+0.89=?
答案:22.5
5 求解下列同餘方程:
(1)5X≡3(mod 13) (2)30x≡33(mod 39) (3)35x≡140(mod 47) (4)3x+4x≡45(mod 4)
答案:(1)x≡11(mod 13) (2)x≡5(mod 39) (3)x≡4(mod 47) (4)x≡3(mod 4)
6 請問數2206525321能否被7 11 13 整除?
答案:能
7現有1分.2分.5分硬幣共100枚,總共價值2元.已知2分硬幣總價值比一分硬幣總價值多13分,三類硬幣各幾枚?
答案:一分幣51`枚.二分幣32枚.5分幣17枚.
8 找規律填數:
0 , 3,8,15,24,35,___,63 答案: 48
9 100條直線最多能把平面分為幾個部分?
答案:5051
10 A B兩人向大洋前進,每人備有12天食物,他們最多探險___天
答案:8天
11 100以內所有能被2或3或5或7整除的自然數個數
答案:78個
12 1/2 + 1/2+3 + 1/2+3+4 + ......+ 1/2+3+4+....+10=?
答案:343/330
13 從1,2,3,......2003,2004這些數中最多可取幾個數,讓任意兩數差不等於9?
答案:1005
14 求360的全部約數個數. 答案: 24
15 停車場上,有24輛車,汽車四輪,摩托車3輪,共86個輪.三輪摩托車____輛. 答案:10輛.
16 約數共有8個的最小自然數為____. 答案:24
17求所有除4餘一的兩位數和 答案;1210