海洋數學小報
通訊類的話,數學和物理都是基礎。如果要學習的話,估計要學高數、線代、統回計、概論這些答基礎,再學習一些結合通訊方面的模電、數電等課程。所以說,要求的數學知識是多一點。 如果狹義上說,負責船隻的通訊、聯絡的工作,簡單說就是跑船,收入不錯的,就是辛苦些;
廣義上說,通訊類的都可以,比如移動啊聯通啊這類電信運營商,但是對個人能力要求較高。
其次,具體你可以直接打個電話去詢問你志願的學校,在廣東湛江海洋大學就比較不錯。
❷ 數學手抄報不知道寫什麼內容,給點建議唄!
1畫些關於科技的圖 2有一位老人,他有三個兒子和十七匹馬。他在臨終前對他的兒子們說:"我已經寫好了遺囑,我把馬留給你們,你們一定要按我的要求去分。" 老人去世後,三兄弟看到了遺囑。遺囑上寫著:"我把十七匹馬全都留給我的三個兒子。長子得一半,次子得三分之一,給幼子九分之一。不許流血,不許殺馬。你們必須遵從父親的遺願!" 這三個兄弟迷惑不解。盡管他們在學校里學習成績都不錯,可是他們還是不會用17除以2、用17除以3、用17除以9,又不讓馬流血。於是他們就去請教當地一位公認的智者。這位智者看了遺囑以後說:"我借給你們一匹馬,去按你們父親的遺願分吧!" 0,可以說是人類最早接觸的數了。我們祖先開始只認識沒有和有,其中的沒有便是0了,那麼0是不是沒有呢?記得小學里老師曾經說過"任何數減去它本身即等於0,0就表示沒有數量。"這樣說顯然是不正確的。我們都知道,溫度計上的0攝氏度表示水的冰點(即一個標准大氣壓下的冰水混合物的溫度),其中的0便是水的固態和液態的區分點。而且在漢字里,0作為零表示的意思就更多了,如:1)零碎;小數目的。2)不夠一定單位的數量……至此,我們知道了"沒有數量是0,但0不僅僅表示沒有數量,還表示固態和液態水的區分點等等。" "任何數除以0即為沒有意義。"這是小學至中學老師仍在說的一句關於0的"定論",當時的除法(小學時)就是將一份分成若干份,求每份有多少。一個整體無法分成0份,即"沒有意義".後來我才了解到a/0中的0可以表示以零為極限的變數(一個變數在變化過程中其絕對值永遠小於任意小的已定正數),應等於無窮大(一個變數在變化過程中其絕對值永遠大於任意大的已定正數)。從中得到關於0的又一個定理"以零為極限的變數,叫做無窮小". "105、203房間、2003年"中,雖都有0的出現,粗"看"差不多;彼此意思卻不同。105、2003年中的0指數的空位,不可刪去。203房間中的0是分隔"樓(2)"與"房門號(3)"的(即表示二樓八號房),可刪去。0還表示…… 愛因斯坦曾說:"要探究一個人或者一切生物存在的意義和目的,宏觀上看來,我始終認為是荒唐的。"我想研究一切"存在"的數字,不如先了解0這個"不存在"的數,不至於成為愛因斯坦說的"荒唐"的人。作為一個中學生,我的能力畢竟是有限的,對0的認識還不夠透徹,今後望(包括行動)能在"知識的海洋"中發現"我的新大陸". 3寫些經典例題 4外加些數學家的故事 例如 數學家高斯的故事 高斯(Gauss 1777~1855)生於Brunswick,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。 高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。 老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,(轉載自中國板報網http://www.cnbanbao.cn,請保留此標記。)最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。 1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。 1791年高斯終於找到了資助人--布倫斯維克公爵費迪南(Braunschweig),答應盡一切可能幫助他,高斯的父親再也沒有反對的理由。隔年,高斯進入Braunschweig學院。這年,高斯十五歲。在那裡,高斯開始對高等數學作研究。並且獨立發現了二項式定理的一般形式、數論上的「二次互逆定理」(Law of Quadratic Reciprocity)、質數分布定理(prime numer theorem)、及算術幾何平均(arithmetic-geometric mean)。 1795年高斯進入哥廷根(G?ttingen)大學,因為他在語言和數學上都極有天分,為了將來是要專攻古典語文或數學苦惱了一陣子。到了1796年,十七歲的高斯得到了一個數學史上極重要的結果。最為人所知,也使得他走上數學之路的,就是正十七邊形尺規作圖之理論與方法。 希臘時代的數學家已經知道如何用尺規作出正 2m×3n×5p 邊形,其中 m 是正整數,而 n 和 p 只能是0或1.但是對於正七、九、十一邊形的尺規作圖法,兩千年來都沒有人知道。而高斯證明了: 一個正 n 邊形可以尺規作圖若且唯若 n 是以下兩種形式之一: 1、n = 2k,k = 2, 3,… 2、n = 2k × (幾個不同「費馬質數」的乘積),k = 0,1,2,… 費馬質數是形如 Fk = 22k 的質數。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是質數。高斯用代數的方法解決二千多年來的幾何難題,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。 1799年高斯提出了他的博士論文,這論文證明了代數一個重要的定理: 任一多項式都有(復數)根。這結果稱為「代數學基本定理」(Fundamental Theorem of Algebra)。 事實上在高斯之前有許多數學家認為已給出了這個結果的證明,可是沒有一個證明是嚴密的。高斯把前人證明的缺失一一指出來,然後提出自己的見解,他一生中一共給出了四個不同的證明。 在1801年,高斯二十四歲時出版了《算學研究》(Disquesitiones Arithmeticae),這本書以拉丁文寫成,原來有八章,由於錢不夠,只好印七章 美國的著名數學家貝爾(E.T.Bell),在他著的《數學工作者》(Men of Mathematics) 一書里曾經這樣批評高斯: 在高斯死後,人們才知道他早就預見一些十九世的數學,而且在1800年之前已經期待它們的出現。如果他能把他所知道的一些東西泄漏,很可能現在數學早比目前還要先進半個世紀或更多的時間。阿貝爾(Abel)和雅可比(Jacobi)可以從高斯所停留的地方開始工作,而不是把他們最好的努力花在發現高斯早在他們出生時就知道的東西。而那些非歐幾何學的創造者,可以把他們的天才用到其他力面去。 在1855年二月23日清晨,高斯在他的睡夢中安詳的去世了。 《數學手抄報內容》
❸ 五年級數學小報資料、數學家的故事
16世紀德國數學家魯道夫,花了畢生精力,把圓周率算到小數後35位,後人稱之為魯 道夫數,他死後別人便把這個數刻到他的墓碑上。 瑞士數學家雅谷·伯努利,生前對螺線(被譽為生命之線)有研究,他死之後,墓碑上 就刻著一條對數螺線,同時碑文上還寫著:「我雖然改變了,但卻和原來一樣」。這是一句既刻劃螺線性質又象徵他對數學熱愛的雙關語
❹ 數學海洋知多少手抄報
類 別: 數學手抄報 學 校: 於都縣貢江鎮楂林小學 版面設計: 郭麗華 熱法提 尺 寸: 400x300 像素 班 級: 一年級(7)班 文字編輯: 郭麗華 大 小: 37KB(37861 Bytes) 指導老師: 李恆勇 美術編輯: 熱法提
❺ 如何用海洋來形容數學
數學曲折象海洋,
坐標系中峰谷淌,
峰高低谷不迷向,
攀登高峰人嚮往
❻ 如何利用專注海洋提高小孩子做數學題的准確率
要想利用專注海洋提高小孩子做數學題的准確率那就讓孩子每天做許多的數學題然後命中率為100%100%。
❼ 有關數學家的故事,做手抄報
1.陳景潤不愛玩公園,不愛逛馬路,就愛學習。學習起來,常常忘記了吃飯睡覺。
有一天,陳景潤吃中飯的時候,摸摸腦袋,哎呀,頭發太長了,應該快去理一理,要不,人家看見了,還當他是個姑娘呢。於是,他放下飯碗,就跑到理發店去了。
理發店裡人很多,大家挨著次序理發。陳景潤拿的牌子是三十八號的小牌子。他想:輪到我還早著哩。時間是多麼寶貴啊,我可不能白白浪費掉。他趕忙走出理發店,找了個安靜的地方坐下來,然後從口袋裡掏出個小本子,背起外文生字來。他背了一會,忽然想起上午讀外文的時候,有個地方沒看懂。不懂的東西,一定要把它弄懂,這是陳景潤的脾氣。他看了看手錶,才十二點半。他想:先到圖書館去查一查,再回來理發還來得及,站起來就走了。誰知道,他走了不多久,就輪到他理發了。理發員叔叔大聲地叫:「三十八號!誰是三十八號?快來理發!」你想想,陳景潤正在圖書館里看書,他能聽見理發員叔叔喊三十八號嗎?
過了好些時間,陳景潤在圖書館里,把不懂的東西弄懂了,這才高高興興地往理發店走去。可是他路過外文閱覽室,有各式各樣的新書,可好看啦。又跑進去看起書來了,一直看到太陽下山了,他才想起理發的事兒來。他一摸口袋,那張三十八號的小牌子還好好地躺著哩。但是他來到理發店還有啥用呢,這個號碼早已過時了。
2. 阿基米德
敘拉古的亥厄洛王叫金匠造一頂純金的皇冠,因懷疑裡面摻有銀,便請阿基米德鑒定。當他進入浴盆洗澡時,水漫溢到盆外,於是悟得不同質料的物體,雖然重量相同,但因體積不同,排去的水也必不相等。根據這一道理,就可以判斷皇冠是否摻假。
3.華羅庚(1910.11.12—1985.6.12.),世界著名數學家,中國解析數論、矩陣幾何學、典型群、自安函數論等多方面研究的創始人和開拓者。國際上以華氏命名的數學科研成果就有「華氏定理」、「懷依—華不等式」、「華氏不等式」、「普勞威爾—加當華定理」、「華氏運算元」、「華—王方法」等。
4.1966年屈居於六平方米小屋的陳景潤,借一盞昏暗的煤油燈,伏在床板上,用一支筆,耗去了幾麻袋的草稿紙,居然攻克了世界著名數學難題「哥德巴赫猜想」中的(1+2),創造了距摘取這顆數論皇冠上的明珠(1+ 1)只是一步之遙的輝煌。他證明了「每個大偶數都是一個素數及一個不超過兩個素數的乘積之和」,使他在哥德巴赫猜想的研究上居世界領先地位。這一結果國際上譽為「陳氏定理」,受到廣泛徵引。這項工作還使他與王元、潘承洞在1978年共同獲得中國自然科學獎一等獎。他研究哥德巴赫猜想和其他數論問題的成就,至今,仍然在世界上遙遙領先。世界級的數學大師、美國學者阿 ·威爾(A?Weil)曾這樣稱贊他:「陳景潤的每一項工作,都好像是在喜馬拉雅山山巔上行走。
--------------------------------------------我是分割線----------------------------------------------
1930 年的一天,清華大學數學系主任熊慶來,坐在辦公室里看一本《科學》雜志。看著看著,不禁拍案叫絕:「這個華羅庚是哪國留學生?」周圍的人搖搖頭,「他是在哪個大學教書的?」人們面面相覷。最後還是一位江蘇籍的教員想了好一會兒,才慢吞吞地說:「我弟弟有個同鄉叫華羅庚,他哪裡教過什麼大學啊!他只念過初中,聽說是在金壇中學當事務員。」
熊慶來驚奇不已,一個初中畢業的人,能寫出這樣高深的數學論文,必是奇才。他當即做出決定,將華羅庚請到清華大學來。
從此,華羅庚就成為清華大學數學系助理員。在這里,他如魚得水,每天都游弋在數學的海洋里,只給自己留下五、六個小時的睡眠時間。說起來讓人很難相信,華羅庚甚至養成了熄燈之後,也能看書的習慣。他當然沒有什麼特異功能,只是頭腦中一種邏輯思維活動。他在燈下拿來一本書,看著題目思考一會兒,然後熄燈躺在床上,閉目靜思,開始在頭腦中做題。碰到難處,再翻身下床,打開書看一會兒。就這樣,一本需要十天半個月才能看完的書,他一夜兩夜就看完了。華羅庚被人們看成是不尋常的助理員。
第二年,他的論文開始在國外著名的數學雜志陸續發表。清華大學破了先例,決定把只有初中學歷的華羅庚提升為助教。
幾年之後,華羅庚被保送到英國劍橋大學留學。可是他不願讀博士學位,只求做個訪問學者。因為做訪問學者可以沖破束縛,同時攻讀七、八門學科。他說:「我到英國,是為了求學問,不是為了得學位的。」
華羅庚沒有拿到博士學位。在劍橋的兩年內,他寫了 20 篇論文。論水平,每一篇都可以拿到一個博士學位。其中一篇關於「塔內問題」的研究,他提出的理論被數學界命名為「華氏定理」。
華羅庚以一種熱愛科學,勤奮學習,不求名利的精神,獻身於他所熱愛的數學研究事業。他拋棄了世人所追求的金錢、名利、地位。最終,他的事業成功了。
華羅庚把科學研究與實際應用緊密結合起來。華羅庚把數學應用到工農業生產上,對我國現代化建設做出了突出的貢獻
摘至 網路知道
❽ 數學海洋用pop字體怎麼寫