當前位置:首頁 » 語數英語 » 數學小論文800字

數學小論文800字

發布時間: 2021-07-27 20:51:12

⑴ 生活中的數學(800字論文)

數學源於生活,又廣泛用於生活。在實際生活中運用所學數學知識,處理實際問題是中學生的數學素養之一。新課程標准強調數學教學要「從學生已有的生活經驗出發」,「使學生獲得對數學知識的理解」。因此,在數學教學中,如何結合學生的生活實際,使學生「領悟」數學知識源於生活,又服務於生活,培養學生用數學眼光去觀察生活,運用數學知識解決實際問題的素養,是每位數學教師重視的問題。
1
挖掘教材中的生活資源。例如,在低年級的教學中,教師可以提出這樣的問題:你今年幾歲啦?多高呀?身體有多重?比一比你和你的同桌誰重?……這些都是小學生經常遇到的問題,而要准確地說出結果,就需要我們量一量、稱一稱、算一算,這些都離不開數學。再如,像水電費收取、儲蓄利息的計算、日常購物等生活中常用的各種知識均發生在身邊,我們買東西、做衣服、外出旅遊,也離不開數學。
2
指導學生觀察生活中的數學。讓學生觀察生活中的數學,既是積累數學知識,更是培養學生學習數學興趣的最佳途徑。如在長正方形認識時,從生活中觀察哪些物體的表面是長方形的,用實物的表面在黑板上畫出一個長方形。學生善於發現並研究生活中的數學,本身就是最好的學習方法。學生在研究中不斷思考,不斷嘗試,並不斷地體驗成功。如布置學生用硬紙板做一個長方體模型,學生要思考觀察什麼物體的形狀是長方體,長方體有什麼特徵,怎樣做才美觀大方。第二天學生帶著自己製作的長方體模型到課堂時,每個學生根據已有體驗與同學交流,各抒己見,這樣的課堂能不充實、活躍嗎?
總之,數學教學讓學生的生活經驗走進數學課堂,為學生提供了親身體驗和動手操作的機會,指導學生更好的學習數學。在這方面,我受益良多,通過上學期的教學實踐活動,我們班的學生學習數學的興趣非常濃厚,改變了以往數學學習的枯燥乏味,學生在思想上有了從「要我學」-----到「我要學和我喜歡學」質的飛躍,學生變的喜歡學習數學。我的教學工作也變很順利,學生中沒有了見了數學就頭疼的「老大難」,工作效率有了很大的提高,學生的學習成績有明顯的進步。新《課標》也給我們明確提出:「數學教學要緊密聯系學生的生活實際,從學生的生活經驗和已有的知識出發,創設生動有趣的情境,引導學生開展觀察、操作、猜想、推理、交流等活動。使學生通過數學活動,掌握基本的數學知識和技能,初步學會從數學角度去觀察事物,思考問題。激發對學習數學的興趣,以及學好數學的願望,樹立學好數學的自信心。

⑵ 數學小論文 急啊! 求求大家了! 800字左右

數學小論文一
關於「0」

0,可以說是人類最早接觸的數了。我們祖先開始只認識沒有和有,其中的沒有便是0了,那麼0是不是沒有呢?記得小學里老師曾經說過「任何數減去它本身即等於0,0就表示沒有數量。」這樣說顯然是不正確的。我們都知道,溫度計上的0攝氏度表示水的冰點(即一個標准大氣壓下的冰水混合物的溫度),其中的0便是水的固態和液態的區分點。而且在漢字里,0作為零表示的意思就更多了,如:1)零碎;小數目的。2)不夠一定單位的數量……至此,我們知道了「沒有數量是0,但0不僅僅表示沒有數量,還表示固態和液態水的區分點等等。」

「任何數除以0即為沒有意義。」這是小學至中學老師仍在說的一句關於0的「定論」,當時的除法(小學時)就是將一份分成若干份,求每份有多少。一個整體無法分成0份,即「沒有意義」。後來我才了解到a/0中的0可以表示以零為極限的變數(一個變數在變化過程中其絕對值永遠小於任意小的已定正數),應等於無窮大(一個變數在變化過程中其絕對值永遠大於任意大的已定正數)。從中得到關於0的又一個定理「以零為極限的變數,叫做無窮小」。

「105、203房間、2003年」中,雖都有0的出現,粗「看」差不多;彼此意思卻不同。105、2003年中的0指數的空位,不可刪去。203房間中的0是分隔「樓(2)」與「房門號(3)」的(即表示二樓八號房),可刪去。0還表示……

愛因斯坦曾說:「要探究一個人或者一切生物存在的意義和目的,宏觀上看來,我始終認為是荒唐的。」我想研究一切「存在」的數字,不如先了解0這個「不存在」的數,不至於成為愛因斯坦說的「荒唐」的人。作為一個中學生,我的能力畢竟是有限的,對0的認識還不夠透徹,今後望(包括行動)能在「知識的海洋」中發現「我的新大陸」。

數學小論文二
各門科學的數學化
數學究竟是什麼呢?我們說,數學是研究現實世界空間形式和數量關系的一門科學.它在現代生活和現代生產中的應用非常廣泛,是學習和研究現代科學技術必不可少的基本工具.
同其他科學一樣,數學有著它的過去、現在和未來.我們認識它的過去,就是為了了解它的現在和未來.近代數學的發展異常迅速,近30多年來,數學新的理論已經超過了18、19世紀的理論的總和.預計未來的數學成就每「翻一番」要不了10年.所以在認識了數學的過去以後,大致領略一下數學的現在和未來,是很有好處的.
現代數學發展的一個明顯趨勢,就是各門科學都在經歷著數學化的過程.
例如物理學,人們早就知道它與數學密不可分.在高等學校里,數學系的學生要學普通物理,物理系的學生要學高等數學,這也是盡人皆知的事實了.
又如化學,要用數學來定量研究化學反應.把參加反應的物質的濃度、溫度等作為變數,用方程表示它們的變化規律,通過方程的「穩定解」來研究化學反應.這里不僅要應用基礎數學,而且要應用「前沿上的」、「發展中的」數學.
再如生物學方面,要研究心臟跳動、血液循環、脈搏等周期性的運動.這種運動可以用方程組表示出來,通過尋求方程組的「周期解」,研究這種解的出現和保持,來掌握上述生物界的現象.這說明近年來生物學已經從定性研究發展到定量研究,也是要應用「發展中的」數學.這使得生物學獲得了重大的成就.
談到人口學,只用加減乘除是不夠的.我們談到人口增長,常說每年出生率多少,死亡率多少,那麼是否從出生率減去死亡率,就是每年的人口增長率呢?不是的.事實上,人是不斷地出生的,出生的多少又跟原來的基數有關系;死亡也是這樣.這種情況在現代數學中叫做「動態」的,它不能只用簡單的加減乘除來處理,而要用復雜的「微分方程」來描述.研究這樣的問題,離不開方程、數據、函數曲線、計算機等,最後才能說清楚每家只生一個孩子如何,只生兩個孩子又如何等等.
還有水利方面,要考慮海上風暴、水源污染、港口設計等,也是用方程描述這些問題再把數據放進計算機,求出它們的解來,然後與實際觀察的結果對比驗證,進而為實際服務.這里要用到很高深的數學.
談到考試,同學們往往認為這是用來檢查學生的學習質量的.其實考試手段(口試、筆試等等)以及試卷本身也是有質量高低之分的.現代的教育統計學、教育測量學,就是通過效度、難度、區分度、信度等數量指標來檢測考試的質量.只有質量合格的考試才能有效地檢測學生的學習質量.
至於文藝、體育,也無一不用到數學.我們從中央電視台的文藝大獎賽節目中看到,給一位演員計分時,往往先「去掉一個最高分」,再「去掉一個最低分」.然後就剩下的分數計算平均分,作為這位演員的得分.從統計學來說,「最高分」、「最低分」的可信度最低,因此把它們去掉.這一切都包含著數學道理.
我國著名的數學家關肇直先生說:「數學的發明創造有種種,我認為至少有三種:一種是解決了經典的難題,這是一種很了不起的工作;一種是提出新概念、新方法、新理論,其實在歷史上起更大作用的、歷史上著名的正是這種人;還有一種就是把原來的理論用在嶄新的領域,這是從應用的角度有一個很大的發明創造.」我們在這里所說的,正是第三種發明創造.「這里繁花似錦,美不勝收,把數學和其他各門科學發展成綜合科學的前程無限燦爛.」
正如華羅庚先生在1959年5月所說的,近100年來,數學發展突飛猛進,我們可以毫不誇張地用「宇宙之大、粒子之微、火箭之速、化工之巧、地球之變、生物之謎、日用之繁等各個方面,無處不有數學」來概括數學的廣泛應用.可以預見,科學越進步,應用數學的范圍也就越大.一切科學研究在原則上都可以用數學來解決有關的問題.可以斷言:只有現在還不會應用數學的部門,卻絕對找不到原則上不能應用數學的領域.

數學是什麼
什麼是數學?有人說:「數學,不就是數的學問嗎?」

這樣的說法可不對。因為數學不光研究「數」,也研究「形」,大家都很熟悉的三角形、正方形,也都是數學研究的對象。

歷史上,關於什麼是數學的說法更是五花八門。有人說,數學就是關聯;也有人說,數學就是邏輯,「邏輯是數學的青年時代,數學是邏輯的壯年時代。」

那麼,究竟什麼是數學呢?

偉大的革命導師恩格斯,站在辯證唯物主義的理論高度,通過深刻分析數學的起源和本質,精闢地作出了一系列科學的論斷。恩格斯指出:「數學是數量的科學」,「純數學的對象是現實世界的空間形式和數量關系」。根據恩格斯的觀點,較確切的說法就是:數學——研究現實世界的數量關系和空間形式的科學。

數學可以分成兩大類,一類叫純粹數學,一類叫應用 數學。

純粹數學也叫基礎數學,專門研究數學本身的內部規律。中小學課本里介紹的代數、幾何、微積分、概率論知識,都屬於純粹數學。純粹數學的一個顯著特點,就是暫時撇開具體內容,以純粹形式研究事物的數量關系和空間形式。例如研究梯形的面積計算公式,至於它是梯形稻田的面積,還是梯形機械零件的面積,都無關緊要,大家關心的只是蘊含在這種幾何圖形中的數量關系。

應用數學則是一個龐大的系統,有人說,它是我們的全部知識中,凡是能用數學語言來表示的那一部分。應用數學著限於說明自然現象,解決實際問題,是純粹數學與科學技術之間的橋梁。大家常說現在是信息社會,專門研究信息的「資訊理論」,就是應用數學中一門重要的分支學科, 數學有3個最顯著的特徵。

高度的抽象性是數學的顯著特徵之一。數學理論都算有非常抽象的形式,這種抽象是經過一系列的階段形成的,所以大大超過了自然科學中的一般抽象,而且不僅概念是抽象的,連數學方法本身也是抽象的。例如,物理學家可以通過實驗來證明自己的理論,而數學家則不能用實驗的方法來證明定理,非得用邏輯推理和計算不可。現在,連數學中過去被認為是比較「直觀」的幾何學,也在朝著抽象的方向發展。根據公理化思想,幾何圖形不再是必須知道的內容,它是圓的也好,方的也好,都無關緊要,甚至用桌子、椅子和啤酒杯去代替點、線、面也未嘗不可,只要它們滿足結合關系、順序關系、合同關系,具備有相容性、獨立性和完備性,就能夠構成一門幾何學。

體系的嚴謹性是數學的另一個顯著特徵。數學思維的正確性表現在邏輯的嚴謹性上。早在2000多年前,數學家就從幾個最基本的結論出發,運用邏輯推理的方法,將豐富的幾何學知識整理成一門嚴密系統的理論,它像一根精美的邏輯鏈條,每一個環節都銜接得絲絲入扣。所以,數學一直被譽為是「精確科學的典範」。

廣泛的應用性也是數學的一個顯著特徵。宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁,無處不用數學。20世紀里,隨著應用數學分支的大量涌現,數學已經滲透到幾乎所有的科學部門。不僅物理學、化學等學科仍在廣泛地享用數學的成果,連過去很少使用數學的生物學、語言學、歷史學等等,也與數學結合形成了內容豐富的生物數學、數理經濟學、數學心理學、數理語言學、數學歷史學等邊緣學科。

各門科學的「數學化」,是現代科學發展的一大趨勢。

初中寫的小論文 未發表的,
你自己修改一下吧。
論文一:
關於學好數學
記得有誰說過:「人與動物之間的差距是人可以用各種語言和符號代替動作和思維。」數學便是最最原始以及精闢的符號,在石器時代蠻野的人類便懂得用繩結和豆子來計算打獵得來的獵物的數量,四大文明古國雖相距萬里但都發現並使用這種方法。現代科技日漸發達的社會中無論哪一個事物,哪一項科學成果全都要用到數學,比如說你坐正坐著的椅子,要怎樣來構造才能達到最最舒適的效果這不也需要經過一系列復雜精密的計算嗎?
數學是我最喜愛的學科,每當經過一系列的周密計算而得出一個結果,你會覺得身心得到了解放,彷彿身子都變得輕了許多,不管你如何絞盡腦汁,無論你經歷多少的挫折,當你看見那由數字排列起的一條長龍般的計算過程時,你會覺得無比的自豪。記得小學剛接觸數字時我覺得它就象惡魔,整天纏攪著我,我有時甚至把口算書丟到水溝里,希望再也不要見到它。經過這些年的練習,做題越來越得心應手,以至於現在一天不做數學題,情緒都會有些低落,彷彿缺少了些什麼,也理解了福爾摩斯為什麼要打興奮劑來度日了。剛進初中時,教我的幾位數學老師都是超嚴厲,他們可以忍心讓學生們半夜還在做數學題,記得剛開學時,數學教師給我一疊將近20厘米厚的數學題冊,我以為是要我來發作業,沒想到那是老師要我用課余時間來做的數學題,當時我簡直覺得老師也象惡魔了。就這樣天天的做題,慢慢的看著一道道的難題被自己征服,心中就有一份成就感,做的題目多了,也發現做數學題其實也有很多的決竅,它不象做文學題目,背得了,記得牢就可以橫行考場,數學題千變萬化,各種各樣,答案其實離你很近,但你卻就是差那麼一點做不出來,這就是缺少「數感」,要有「數感」,你就得多做題,試卷上的一道題,課上課下就得用一百道甚至上千道的題來打基礎,基礎不牢,你還怎麼長高長大?所以說多做題是學好數學的關鍵之一。再有就是不要不懂裝懂,這是很多人都有過的毛病,老師的耐心是天底下最好的,他不怕你問,就怕你不問,所以不懂你就一定要問,記住這也是無論你做什麼成功的基礎。我覺得學數學最懼怕的是竟然找不出不懂的地方,最怕自以為是,所以每天上完課就得花十分鍾來回憶課堂上學的東西是不是真的懂了,以便及時地查缺補漏。同時關鍵還要有訂正錯誤的習慣,記得有人說過:「最可怕的不是犯了錯,而是錯了不知及時去改正。」所以我認為做數學有錯誤也是一件好事,有錯了你便可以知道你所學知識中最薄弱的位置,可以去加強扶正,但你如果忽略了它,以後它便會處處的為難你,就象攔路虎,休想僥幸的繞過它。數學需要你付出時間,付出努力,學好了它,會讓你受益終生,無往不勝。
數學從古到今,一直到以後都是人類共同的語言,學好它至關重要,如果你以前從未重視它,那麼現在開始也還不晚,行動吧!GO FOR IT!

⑶ 數學小論文800字 五年級

數學小論文
今天,我們全家去超市購物。
我們來到超市,看著琳琅滿目的商品,我的眼睛都花了。突然,我看見貨架上擺著我最愛吃的奧利奧小餅干。其中,一種是用塑料袋子裝的,一種是用小紙桶裝的。我看了看,發現每袋只要1.8元,而小桶裝的一桶卻要4.5元。於是,我毫不猶豫,隨手拿了兩袋1.8元的那種,放進了購物車。我推著小車,邊走邊美滋滋地想著:這兩袋小餅幹才3.6元,而那一桶就4.5元,這種袋裝奧利奧小餅干實在太便宜了!
這時,媽媽走了過來。我迫不及待地把剛才的事告訴了她。媽媽一聽,笑了,她提醒我說:「萌萌,你再算一算,看看到底是哪種便宜?」我不解地問:「袋裝的只要1.8元,桶裝的要4.5元,買一桶的價格可以買兩袋還多呢,難道不是袋裝的便宜嗎?」媽媽耐心地說:「便宜不便宜可不能光看價錢,還要看重量的呀!你們不是學過小數嗎?應該會算的!你算算吧!」於是我看了看兩種餅乾的重量,喃喃自語了起來:「袋裝的,凈重20克,用1.8元除以20,那一克就是0.09元。桶裝的,凈含量55克,用4.5元除以55,那一克就是0.08多元。」「我知道了!我知道了!」我興奮得大叫起來,急忙對媽媽說:「應該是桶裝的便宜!」接著我把算的過程講給了媽媽聽,媽媽聽了直誇我聰明,我心裡比吃了蜜還甜。
媽媽又語重心長地對我說:「在超市裡啊,一般情況都是量多的比量少的便宜。你不能只看價錢,還要看看凈含量哦!比如:洗衣液一斤12元,而兩斤卻是45元。夾心餅干125克3.4元,而375克只要8.7元!如果你買每個東西都這樣想想,那我保證你和別人買同樣的東西,你卻省了錢。」
原來買東西還有這么多數學學問,還那麼有趣。看來在生活中,我們處處都要做一個有心人!

⑷ 初一數學小論文800字左右

"數學是一切科學之母"、"數學是思維的體操",它是一門研究數與形的科學,它不處不在。要掌握技術,先要學好數學,想攀登科學的高峰,更要學好數學。

數學,與其他學科比起來,有哪些特點?它有什麼相應的思想方法?它要求我們具備什麼樣的主觀條件和學習方法?本講將就數學學科的特點,數學思想以及數學學習方法作簡要的闡述。

一、數學的特點(一)

數學的三大特點嚴謹性、抽象性、廣泛的應用性所謂數學的嚴謹性,指數學具有很強的邏輯性和較高的精通性,一般以公理化體系來體現。

什麼是公理化體系呢?指得是選用少數幾個不加定義的概念和不加邏輯證明的命題為基礎,推出一些定理,使之成為數學體系,在這方面,古希臘數學家歐幾里得是個典範,他所著的《幾何原本》就是在幾個公理的基礎上研究了平面幾何中的大多數問題。在這里,哪怕是最基本的常用的原始概念都不能直觀描述,而要用公理加以確認或證明。

中學數學和數學科學在嚴謹性上還是有所區別的,如,中學數學中的數集的不斷擴充,針對數集的運算律的擴充並沒有進行嚴謹的推證,而是用默認的方式得到,從這一點看來,中學數學在嚴謹性上還是要差很多,但是,要學好數學卻不能放鬆嚴謹性的要求,要保證內容的科學性。

比如,等差數列的通項是通過前若干項的遞推從而歸納出通項公式,但要予以確認,還需要用數學歸納法進行嚴格的證明。

數學的抽象性表現在對空間形式和數量關系這一特性的抽象。它在抽象過程中拋開較多的事物的具體的特性,因而具有十分抽象的形式。它表現為高度的概括性,並將具體過程符號化,當然,抽象必須要以具體為基礎。

至於數學的廣泛的應用性,更是盡人皆知的。只是在以往的教學、學習中,往往過於注重定理、概念的抽象意義,有時卻拋卻了它的廣泛的應用性,如果把抽象的概念、定理比作骨骼,那麼數學的廣泛應用就好比血肉,缺少哪一個都將影響數學的完整性。高中數學新教材中大量增加數學知識的應用和研究性學習的篇幅,就是為了培養同學們應用數學解決實際問題的能力。

二、高中數學的特點往往有同學進入高中以後不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。為什麼會這樣呢?讓我們先看看高中數學和初中數學有些什麼樣的轉變吧。

1、理論加強2、課程增多3、難度增大4、要求提高三、掌握數學思想高中數學從學習方法和思想方法上更接近於高等數學。學好它,需要我們從方法論的高度來掌握它。我們在研究數學問題時要經常運用唯物辯證的思想去解決數學問題。數學思想,實質上就是唯物辯證法在數學中的運用的反映。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,初步公理化思想,數形結合思想,運動思想,轉化思想,變換思想。

例如,數列、一次函數、解析幾何中的直線幾個概念都可以用函數(特殊的對應)的概念來統一。又比如,數、方程、不等式、數列幾個概念也都可以統一到函數概念。

再看看下面這個運用"矛盾"的觀點來解題的例子。

已知動點Q在圓x2+y2=1上移動,定點P(2,0),求線段PQ中點的軌跡。

分析此題,圖中P、Q、M三點是互相制約的,而Q點的運動將帶動M點的運動;主要矛盾是點Q的運動,而點Q的運動軌跡遵循方程x02+y02=1①;次要矛盾關系:M是線段PQ的中點,可以用中點公式將M的坐標(x,y)用點Q的坐標表示出來。

x=(x0+2)/2 ②y=y0/2 ③顯然,用代入的方法,消去題中的x0、y0就可以求得所求軌跡。

數學思想方法與解題技巧是不同的,在證明或求解中,運用歸納、演繹、換元等方法解題問題可以說是解題的技術性問題,而數學思想是解題時帶有指導性的普遍思想方法。在解一道題時,從整體考慮,應如何著手,有什麼途徑?就是在數學思想方法的指導下的普遍性問題。

有了數學思想以後,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。只有在解題思想的指導下,靈活地運用具體的解題方法才能真正地學好數學,僅僅掌握具體的操作方法,而沒有從解題思想的角度考慮問題,往往難於使數學學習進入更高的層次,會為今後進入大學深造帶來很有麻煩。

在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。

要打贏一場戰役,不可能只是勇猛沖殺、一不怕死二不怕苦就可以打贏的,必須制訂好事關全局的戰術和策略問題。解數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。一般地,在解題中所採取的總體思路,是帶有原則性的思想方法,是一種宏觀的指導,一般性的解決方案。

中學數學中經常用到的數學思維策略有:

以簡馭繁、數形結全、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔如果有了正確的數學思想方法,採取了恰當的數學思維策略,又有了豐富的經驗和扎實的基本功,一定可以學好高中數學。

四、學習方法的改進身處應試教育的怪圈,每個教師和學生都不由自主地陷入"題海"之中,教師拍心某種題型沒講,高考時做不出,學生怕少做一道題,萬一考了損失太慘重,在這樣一種氛圍中,往往忽視了學習方法的培養,每個學生都有自己的方法,但什麼樣的學習方法才是正確的方法呢?是不是一定要"博覽群題"才能提高水平呢?

現實告訴我們,大膽改進學習方法,這是一個非常重大的問題。

(一)

學會聽、讀我們每天在學校里都在聽老師講課,閱讀課本或者資料,但我們聽和讀對不對呢?

讓我們從聽(聽講、課堂學習)和讀(閱讀課本和相關資料)兩方面來談談吧。

學生學習的知識,往往是間接的知識,是抽象化、形式化的知識,這些知識是在前人探索和實踐的基礎上提煉出來的,一般不包含探索和思維的過程。因此必須聽好老師講課,集中注意力,積極思考問題。弄清講得內容是什麼?怎麼分析?理由是什麼?採用什麼方法?還有什麼疑問?只有這樣,才可能對教學內容有所理解。

聽講的過程不是一個被動參預的過程,在聽講的前提下,還要展開來分析:這里用了什麼思想方法,這樣做的目的是什麼?為什麼老師就能想到最簡捷的方法?這個題有沒有更直接的方法?

"學而不思則罔,思而不學則殆",在聽講的過程中一定要有積極的思考和參預,這樣才能達到最高的學習效率。

閱讀數學教材也是掌握數學知識的非常重要的方法。只有真正閱讀和數學教材,才能較好地掌握數學語言,提高自學能力。一定要改變只做題不看書,把課本當成查公式的辭典的不良傾向。閱讀課本,也要爭取老師的指導。閱讀當天的內容或一個單元一章的內容,都要通盤考慮,要有目標。

比如,學習反正弦函數,從知識上來講,通過閱讀,應弄請以下幾個問題:

(1) 是不是每個函數都有反函數,如果不是,在什麼情況下函數有反函數?

(2)正弦函數在什麼情況下有反函數?若有,其反函數如何表示?

(3)正弦函數的圖象與反正弦函數的圖象是什麼關系?

(4)反正弦函數有什麼性質?

(5)如何求反正弦函數的值?

(二)

學會思考愛因斯坦曾說:"發展獨立思考和獨立判斷的一般能力應當始終放在首位",勤於思考,善於思考,是對我們學習數學提出的最基本的要求。一般來說,要盡力做到以下兩點。

1、善於發現問題和提出問題2、善於反思與反求

⑸ 六年級數學小論文800字 .....

有一篇六年級學生的小論文,謹供參考!

數學的色彩
清晨,鮮紅的太陽露出半個笑臉,和諧的陽光灑滿人間,我的心情真是好極了。突然接到爺爺的電話,叫我巧算九塊五加九十九塊五,我馬上告訴爺爺:九加九十九,再加一,不就等於一百零九嗎?爺爺說我的演算法還不算巧,如果湊整減零頭就好算得多。我馬上打斷爺爺的話,告訴他:10+100-1=109(元)。這時爺爺誇我,說我還算靈巧。這是早晨的數學題,我把數學定為紅色。
上午,爸爸從銀行交完電費回來,叫我計算電費。用電量是從1079-1279(度),每度電單價是0.38元,我用心算整好200度,我把單價變為分數是38/100,列式:200×(38/100),先約分再乘,等於76元。爸爸說沒錯,和電腦算得一樣。我很得意,這時已近中午,我把數學定為黃色。
下午,我和妹妹在家裡切西瓜,把半個西瓜再均勻地切兩刀,其中的兩份就是2/3,我問妹妹這兩份是整個西瓜的幾分之幾呢?妹妹開學才上一年級,當然不會算,我告訴她把西瓜整體看作1,第一分率是1/2,它的分率是2/3,相乘的結果就是這兩份是整個西瓜的2/6,約分後就是1/3。這時我想爺爺曾說七色陽光為白色,那麼,這個數學就定為白色吧。
夜晚在藍色的星空下,我和媽媽在一起看電視,我怎麼也弄不懂考古學家是怎樣從腿骨的化石推算出大艾爾恐龍的身高呢?媽媽說這藍色的數學等你長大了,本事大了自然就會了。
生活中的數學簡直是太多了,真是絢麗多彩,它隨時在你身邊出現。我愛數學,我要學好數學。

望能幫您!

⑹ 六年級數學小論文(800字)

神奇的火柴棒

常熟市實驗小學

六(6)班

任芷儀

火柴棒到處可見,用它來做游戲,簡便易行,妙趣橫生。而游戲時,你必須認真思考,探索規律,因此被人們公認是一項有利於訓練思維,增長智慧的益智游戲。

暑假裡,我閑著沒事干,隨手打開書櫥,拿了幾十本我哥哥那時候的奧數書,要知道,我哥哥那時候特別酷愛數學,其中有一本名叫《神奇的火柴棒》裡面都是讓我們思考關於火柴棒的一系列題目,我翻開第一頁,一道火柴棒的題目映入我的眼簾,上面寫著一道題目17+41+1=72,要求只移動一根使火柴棒的等式成立。

我便開始思考起來,首先想到的是答案72不變,17的下面加上-就變成了12,12+41+1=72?不是,看來不能這樣一個一個的試看。只有從個位著手了!7+1+1=9,如果進位的話還相差3。我就想到了41的4,如果把1移開個位上7+4+1正好等於12,然後再考慮1往哪移,在這到題目中,1隻能放在兩個7的下面變成12+4+1=72或變成17+4+1=22看來是第二種行得通,由此得來答案17+4+1=22。

其實做這種形式的題目要掌握形成的變化規律就能輕而易舉的得出答案,只要認真思考,抓住竅門就能做出來,其實還是挺有趣的,能嘗到勝利的果實!以後我也要多做這種題目,增強奧數能力,提高奧數水平!

媽媽的年齡

六(6)班 吳杜妍

在神秘莫測的大海深處,鯨魚老師正在教同學們數學題,有一道題是這樣的:

有一天,小鯨魚對媽媽說:"媽媽,我到您現在這么大年齡時,您就31歲啦!」媽媽聽了,笑著對小鯨魚說:"孩子,我像你這么大年齡時,你只有1歲.」聽了她們的對話,你知道媽媽現在有多少歲嗎?」

聰明的聰聰小鯨魚很快就得到了答案,他舉手告訴老師是「21」,鯨魚老師點了點頭,笑著讓聰聰把解題過程給大家說一說,聰聰聽後,馬上走上講台,給大家說了起來.

首先,可以從題中得知:小鯨魚長到媽媽那麼大時,需要從現在起再長一個年齡差;而媽媽在小鯨魚長了一個年齡差,也就是像媽媽現在這么大時,媽媽也長了一個年齡差,即媽媽再長一個年齡差後是31歲;再根據後面的題目,也可得知,媽媽從現在起,減少一個年齡差和孩子現在一樣大時,孩子也減少了一個年齡差,變成了1歲,這說明:

小鯨魚現在的年齡:(1個年齡差+1)歲

媽媽現在的年齡:(2個年齡差+1)歲

媽媽再長一個年齡差後的年齡是:(3個年齡差+1歲),即31歲.看苯笨鯨魚不是很理解,聰聰就在黑板上畫了起來:

小鯨魚現在的年齡{---- ----- -----}

一歲 年齡差年齡差

媽媽現在的年齡 {---- ----- ----- -----}

31歲

最後列出方程 解:設小鯨魚現在與媽媽的年齡差為x歲

3x+1=31

3x=30

X=10

2x+1=2x10+1=21

答:媽媽現在21歲

現在大家都自發地給聰聰鼓掌,因為聰聰答這道題答得太好了。最後,鯨魚老師總結道:同學們,通過這道題大家可以很容易地看出1歲與31歲相差3個年齡差,這種方法就叫做「作圖法」。大家在做題時,就可以運用這種方法。

其實,像這類年齡問題的主要特點就是隨著時間而變化,倍數關系是會發生變化的,但年齡卻一直是個不變數。

2009年10月26日
田忌賽馬相信大家都不陌生,內容就是說的田忌在不利的情況下憑著聰明的頭腦戰勝了齊王,傳說戰國時期,齊王與田忌各有上、中、下三匹馬,同等級的馬中,齊王的馬比田忌的馬強。有一天,齊王要與田忌賽馬,雙方約定:比賽三局,每局各出一匹馬,每匹馬賽一次,贏得兩局者為勝。看樣子,田忌似乎沒有什麼勝的希望,但是田忌的謀士了, 解到主人的上、中等馬分別比齊王的中、下等馬強……。怎麼辦呢?於是田忌就想出了一個妙辦法,既然循規蹈矩地去比賽根本就行不通,那麼乾脆就來一個超常規的方法,就是當齊王出下馬時自己就出中馬,那麼現在齊王和田忌的比分就是0:1,第一場田忌勝了,當齊王派出上馬時,由於自己的中馬已經比過不能再用,而下馬和上馬又沒一個是它的對手,怎麼辦呢,田忌就用了下馬迎戰,結果肯定是輸了,很多人會認為田忌這是自暴自棄沒有信心的行為,其實其中另有玄機,田忌已經這樣子思考過了,有兩種方法:(1)、自己出上馬,那就是輸,然後最後一場出下馬,對方出中馬,還是輸,最終的結果是2:1,自己會輸。 (2)、自己出下馬,這局雖然也是輸,但是下一局的情況就不一樣了,自己的上馬可以贏齊王的中馬,所以總分是1:2,自己勝,哪個可取,肯定是方法2,田忌就用這個方法贏得了比賽的勝利。

這個故事告訴我們學習數學不應該把它當成一個任務,枯燥乏味地去學習圖形和題目,而應該把它當成一個愛好,讓數學成為你的夥伴,那麼數學就會變得生動、活潑,那麼這時候的數學就不僅僅是一門科目了,它已經變成了你的摯友。

同學們,讓我們學習數學,鑽研數學,讓數學陪伴我們成長,讓思維得到解放,讓數學成為我們的朋友!!!

0
推薦「呼啦啦,嘩啦啦,我是種花的大行家……」狗熊笨笨正在為兔子一家種花賺錢,這時,狐狸狡狡正好路過,看到狗熊笨笨,心想:看那傢伙熊樣,讓我來耍耍他。狡狡來到笨笨跟前,說:「嗨,熊大哥,怎麼樣,幹活累吧,兔子家有三塊土地,每塊土地是邊長30米的正方形,在那裡面種花,一塊地種滿後是給你450元,而去我那裡,種三塊邊長是40米的正方形,一塊種滿後,我給你660元,怎麼樣,很合算吧。」笨笨是個文盲,沒學過數學,只知道基本的加減乘除,他算了算,兔子那裡每米是450÷3=150元,狐狸那裡每米是660÷4=165元,狐狸那裡賺的錢多呀!於是,笨笨就答應了。

第二天,笨笨就來到狐狸那裡幹活了,他幹得可賣力了,每天都大汗淋漓,可幾天下來,卻發現賺的錢不太多,笨笨心想,那可能是心理作用吧。

一天,笨笨的朋友猴子聰聰經過狡狡的田地,看到笨笨坐在邊上,滿頭大汗,聰聰問道:「笨笨大哥,你怎麼累成這個模樣?」笨笨答道:「我在兔子家種花,狐狸狡狡過來說要我去他家種,而且他給我的錢多,我就答應了,沒想到卻幹得很累。」給的錢多?狡狡從來都是不願意吃虧的,現在怎麼這么大方?聰聰不禁心生疑惑,他問笨笨:「他給你多少錢?」「種邊長是40米的3塊地,每塊地660元。」「那兔子家呢?」「也是種三塊地,每塊邊長30米,一塊450元。」聰聰快速算了一下,說:「笨笨大哥,你上當了,兔子家是每平方米450÷(30×30)=0.5元,而狐狸家是每平方米660÷(40×40)≈0.41元,0.41元小於0.5元,所以,你是吃虧了。」笨笨聽了,恍然大悟,他剛想生氣,但又想這是自己答應的呀,也不能怪狡狡騙他。聰聰拉著笨笨的手,說:「走,我們找狡狡辭職去。」笨笨「哦」了一聲,他邊走邊想:數學還真是重要啊,我也要去上數學班,學好數學,那樣才不會吃虧。對了,辭職後,我還是去兔子家種花吧。

⑺ 初中數學小論文 800字

各門科學的數學化
數學究竟是什麼呢?我們說,數學是研究現實世界空間形式和數量關系的一門科學.它在現代生活和現代生產中的應用非常廣泛,是學習和研究現代科學技術必不可少的基本工具.
同其他科學一樣,數學有著它的過去、現在和未來.我們認識它的過去,就是為了了解它的現在和未來.近代數學的發展異常迅速,近30多年來,數學新的理論已經超過了18、19世紀的理論的總和.預計未來的數學成就每「翻一番」要不了10年.所以在認識了數學的過去以後,大致領略一下數學的現在和未來,是很有好處的.
現代數學發展的一個明顯趨勢,就是各門科學都在經歷著數學化的過程.
例如物理學,人們早就知道它與數學密不可分.在高等學校里,數學系的學生要學普通物理,物理系的學生要學高等數學,這也是盡人皆知的事實了.
又如化學,要用數學來定量研究化學反應.把參加反應的物質的濃度、溫度等作為變數,用方程表示它們的變化規律,通過方程的「穩定解」來研究化學反應.這里不僅要應用基礎數學,而且要應用「前沿上的」、「發展中的」數學.
再如生物學方面,要研究心臟跳動、血液循環、脈搏等周期性的運動.這種運動可以用方程組表示出來,通過尋求方程組的「周期解」,研究這種解的出現和保持,來掌握上述生物界的現象.這說明近年來生物學已經從定性研究發展到定量研究,也是要應用「發展中的」數學.這使得生物學獲得了重大的成就.
談到人口學,只用加減乘除是不夠的.我們談到人口增長,常說每年出生率多少,死亡率多少,那麼是否從出生率減去死亡率,就是每年的人口增長率呢?不是的.事實上,人是不斷地出生的,出生的多少又跟原來的基數有關系;死亡也是這樣.這種情況在現代數學中叫做「動態」的,它不能只用簡單的加減乘除來處理,而要用復雜的「微分方程」來描述.研究這樣的問題,離不開方程、數據、函數曲線、計算機等,最後才能說清楚每家只生一個孩子如何,只生兩個孩子又如何等等.
還有水利方面,要考慮海上風暴、水源污染、港口設計等,也是用方程描述這些問題再把數據放進計算機,求出它們的解來,然後與實際觀察的結果對比驗證,進而為實際服務.這里要用到很高深的數學.
談到考試,同學們往往認為這是用來檢查學生的學習質量的.其實考試手段(口試、筆試等等)以及試卷本身也是有質量高低之分的.現代的教育統計學、教育測量學,就是通過效度、難度、區分度、信度等數量指標來檢測考試的質量.只有質量合格的考試才能有效地檢測學生的學習質量.
至於文藝、體育,也無一不用到數學.我們從中央電視台的文藝大獎賽節目中看到,給一位演員計分時,往往先「去掉一個最高分」,再「去掉一個最低分」.然後就剩下的分數計算平均分,作為這位演員的得分.從統計學來說,「最高分」、「最低分」的可信度最低,因此把它們去掉.這一切都包含著數學道理.
我國著名的數學家關肇直先生說:「數學的發明創造有種種,我認為至少有三種:一種是解決了經典的難題,這是一種很了不起的工作;一種是提出新概念、新方法、新理論,其實在歷史上起更大作用的、歷史上著名的正是這種人;還有一種就是把原來的理論用在嶄新的領域,這是從應用的角度有一個很大的發明創造.」我們在這里所說的,正是第三種發明創造.「這里繁花似錦,美不勝收,把數學和其他各門科學發展成綜合科學的前程無限燦爛.」
正如華羅庚先生在1959年5月所說的,近100年來,數學發展突飛猛進,我們可以毫不誇張地用「宇宙之大、粒子之微、火箭之速、化工之巧、地球之變、生物之謎、日用之繁等各個方面,無處不有數學」來概括數學的廣泛應用.可以預見,科學越進步,應用數學的范圍也就越大.一切科學研究在原則上都可以用數學來解決有關的問題.可以斷言:只有現在還不會應用數學的部門,卻絕對找不到原則上不能應用數學的領域.

⑻ 數學小論文五年級 800字 不能太深奧

小學數學教學論文--在小學數學教學中培養學生的思維能力 培養學生的思維能力是現代學校教學的一項基本任務。我們要培養社會主義現代化建設所需要的人才,其基本條件之一就是要具有獨立思考的能力,勇於創新的精神。小學數學教學從一年級起就擔負著培養學生思維能力的重要任務。下面就如何培養學生思維能力談幾點看法。 一 培養學生的邏輯思維能力是小學數學教學中一項重要任務 思維具有很廣泛的內容。根據心理學的研究,有各種各樣的思維。在小學數學教學中應該培養什麼樣的思維能力呢?《小學數學教學大綱》中明確規定,要「使學生具有初步的邏輯思維能力。」這一條規定是很正確的。下面試從兩方面進行一些分析。首先從數學的特點看。數學本身是由許多判斷組成的確定的體系,這些判斷是用數學術語和邏輯術語以及相應的符號所表示的數學語句來表達的。並且藉助邏輯推理由一些判斷形成一些新的判斷。而這些判斷的總和就組成了數學這門科學。小學數學雖然內容簡單,沒有嚴格的推理論證,但卻離不開判斷推理,這就為培養學生的邏輯思維能力提供了十分有利的條件。再從小學生的思維特點來看。他們正處在從具體形象思維向抽象邏輯思維過渡的階段。這里所說的抽象邏輯思維,主要是指形式邏輯思維。因此可以說,在小學特別是中、高年級,正是發展學生抽象邏輯思維的有利時期。由此可以看出,《小學數學教學大綱》中把培養初步的邏輯思維能力作為一項數學教學目的,既符合數學的學科特點,又符合小學生的思維特點。 值得注意的是,《大綱》中的規定還沒有得到應有的和足夠的重視。一個時期內,大家談創造思維很多,而談邏輯思維很少。殊不知在一定意義上說,邏輯思維是創造思維的基礎,創造思維往往是邏輯思維的簡縮。就多數學生說,如果沒有良好的邏輯思維訓練,很難發展創造思維。因此如何貫徹《小學數學教學大綱》的目的要求,在教學中有計劃有步驟地培養學生邏輯思維能力,還是值得重視和認真研究的問題。 《大綱》中強調培養初步的邏輯思維能力,只是表明以它為主,並不意味著排斥其他思維能力的發展。例如,學生雖然在小學階段正在向抽象邏輯思維過渡,但是形象思維並不因此而消失。在小學高年級,有些數學內容如質數、合數等概念的教學,通過實際操作或教具演示,學生更易於理解和掌握;與此同時學生的形象思維也會繼續得到發展。又例如,創造思維能力的培養,雖然不能作為小學數學教學的主要任務,但是在教學與舊知識有密切聯系的新知識時,在解一些富有思考性的習題時,如果採用適當的教學方法,可以對激發學生思維的創造性起到促進作用。教學時應該有意識地加以重視。至於辯證思維,從思維科學的理論上說,它屬於抽象邏輯思維的高級階段;從個體的思維發展過程來說,它遲於形式邏輯思維的發展。據初步研究,小學生在10歲左右開始萌發辨證思維。因此在小學不宜過早地把發展辯證思維作為一項教學目的,但是可以結合某些數學內容的教學滲透一些辯證觀點的因素,為發展辯證思維積累一些感性材料。例如,通用教材第一冊出現,可以使學生初步地直觀地知道第二個加數變化了,得數也隨著變化了。到中年級課本中還出現一些表格,讓學生說一說被乘數(或被除數)變化,積(或商)是怎樣跟著變化的。這就為以後認識事物是相互聯系、變化的思想積累一些感性材料。 二 培養學生思維能力要貫穿在小學數學教學的全過程 現代教學論認為,教學過程不是單純的傳授和學習知識的過程,而是促進學生全面發展(包括思維能力的發展)的過程。從小學數學教學過程來說,數學知識和技能的掌握與思維能力的發展也是密不可分的。一方面,學生在理解和掌握數學知識的過程中,不斷地運用著各種思維方法和形式,如比較、分析、綜合、抽象、概括、判斷、推理;另一方面,在學習數學知識時,為運用思維方法和形式提供了具體的內容和材料。這樣說,絕不能認為教學數學知識、技能的同時,會自然而然地培養了學生的思維能力。數學知識和技能的教學只是為培養學生思維能力提供有利的條件,還需要在教學時有意識地充分利用這些條件,並且根據學生年齡特點有計劃地加以培養,才能達到預期的目的。如果不注意這一點,教材沒有有意識地加以編排,教法違背激發學生思考的原則,不僅不能促進學生思維能力的發展,相反地還有可能逐步養成學生死記硬背的不良習慣。 怎樣體現培養學生思維能力貫穿在小學數學教學的全過程?是否可以從以下幾方面加以考慮。 (一)培養學生思維能力要貫穿在小學階段各個年級的數學教學中。要明確各年級都擔負著培養學生思維能力的任務。從一年級一開始就要注意有意識地加以培養。例如,開始認識大小、長短、多少,就有初步培養學生比較能力的問題。開始教學10以內的數和加、減計算,就有初步培養學生抽象、概括能力的問題。開始教學數的組成就有初步培養學生分析、綜合能力的問題。這就需要教師引導學生通過實際操作、觀察,逐步進行比較、分析、綜合、抽象、概括,形成10以內數的概念,理解加、減法的含義,學會10以內加、減法的計算方法。如果不注意引導學生去思考,從一開始就有可能不自覺地把學生引向死記數的組成,機械地背誦加、減法得數的道路上去。而在一年級養成了死記硬背的習慣,以後就很難糾正。 (二)培養學生思維能力要貫穿在每一節課的各個環節中。不論是開始的復習,教學新知識,組織學生練習,都要注意結合具體的內容有意識地進行培養。例如復習20以內的進位加法時,有經驗的教師給出式題以後,不僅讓學生說出得數,還要說一說是怎樣想的,特別是當學生出現計算錯誤時,說一說計算過程有助於加深理解「湊十」的計算方法,學會類推,而且有效地消滅錯誤。經過一段訓練後,引導學生簡縮思維過程,想一想怎樣能很快地算出得數,培養學生思維的敏捷性和靈活性。在教學新知識時,不是簡單地告知結論或計演算法則,而是引導學生去分析、推理,最後歸納出正確的結論或計演算法則。例如,教學兩位數乘法,關鍵是通過直觀引導學生把它分解為用一位數乘和用整十數乘,重點要引導學生弄清整十數乘所得的部分積寫在什麼位置,最後概括出用兩位數乘的步驟。學生懂得算理,自己從直觀的例子中抽象、概括出計算方法,不僅印象深刻,同時發展了思維能力。在教學中看到,有的老師也注意發展學生思維能力,但不是貫穿在一節課的始終,而是在一節課最後出一兩道稍難的題目來作為訓練思維的活動,或者專上一節思維訓練課。這種把培養思維能力只局限在某一節課內或者一節課的某個環節內,是值得研究的。當然,在教學全過程始終注意培養思維能力的前提下,為了掌握某一特殊內容或特殊方法進行這種特殊的思維訓練是可以的,但是不能以此來代替教學全過程發展思維的任務。 (三)培養思維能力要貫穿在各部分內容的教學中。這就是說,在教學數學概念、計演算法則、解答應用題或操作技能(如測量、畫圖等)時,都要注意培養思維能力。任何一個數學概念,都是對客觀事物的數量關系或空間形式進行抽象、概括的結果。因此教學每一個概念時,要注意通過多種實物或事例引導學生分析、比較、找出它們的共同點,揭示其本質特徵,做出正確的判斷,從而形成正確的概念。例如,教學長方形概念時,不宜直接畫一個長方形,告訴學生這就叫做長方形。而應先讓學生觀察具有長方形的各種實物,引導學生找出它們的邊和角各有什麼共同特點,然後抽象出圖形,並對長方形的特徵作出概括。教學計演算法則和規律性知識更要注意培養學生判斷、推理能力。例如,教學加法結合律,不宜簡單地舉一個例子,就作出結論。最好舉兩三個例子,每舉一個例子,引導學生作出個別判斷〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,與先把3和5加在一起再同2相加,結果相同〕。然後引導學生對幾個例子進行分析、比較,找出它們的共同點,即等號左端都是先把前兩個數相加,再同第三個數相加,而等號右端都是先把後兩個數相加,再同第一個數相加,結果不變。最後作出一般的結論。這樣不僅使學生對加法結合律理解得更清楚,而且學到不完全歸納推理的方法。然後再把得到的一般結論應用到具體的計算(如57+28+12)中去並能說出根據什麼可以使計算簡便。這樣又學到演繹的推理方法至於解應用題引導學生分析數量關系,這里不再贅述。 三 設計好練習題對於培養學生思維能力起著重要的促進作用 培養學生的思維能力同學習計算方法、掌握解題方法一樣,也必須通過練習。而且思維與解題過程是密切聯系著的。培養思維能力的最有效辦法是通過解題的練習來實現。因此設計好練習題就成為能否促進學生思維能力發展的重要一環。一般地說,課本中都安排了一定數量的有助於發展學生思維能力的練習題。但是不一定都能滿足教學的需要,而且由於班級的情況不同,課本中的練習題也很難做到完全適應各種情況的需要。因此教學時往往要根據具體情況做一些調整或補充。為此提出以下幾點建議供參考。 (一)設計練習題要有針對性,要根據培養目標來進行設計。例如,為了了解學生對數學概念是否清楚,同時也為了培養學生運用概念進行判斷的能力,可以出一些判斷對錯或選擇正確答案的練習題。舉個具體例子:「所有的質數都是奇數。( )」如要作出正確判斷,學生就要分析偶數裡面有沒有質數。而要弄清這一點,要明確什麼叫做偶數,什麼叫做質數,然後應用這兩個概念的定義去分析能被2整除的數裡面有沒有一個數,它的約數只1和它自身。想到了2是偶數又是質數,這樣就可以斷定上面的判斷是錯誤的。

⑼ 七年級數學小論文 600-800字

巧算「24」點
一, 摘要 在我們的生活中,「24點」這個游戲已經被人們所熟知。在1~10這些數字中,任意挑取四個數字,運用+、-、×、÷和()這些運算符號,使之和差積商等於24。那麼,如何更簡便地計算「24點」呢?如:以下這組數字:4,3,3,6演算法:(3÷3×4)×6=24再例如:5,1,8,3演算法:5×3+1+8=24二, 問題的提出&探究目的 假設四個自然數a、b、c、d,有a≤10,b≤10,c≤10,d≤10。那麼,如何快速的將這四位數字運用+、-、×、÷和()這些運算符號,使之和差積商等於24?等於n時呢?三, 探究過程 先看幾組實例:數字方法9,5,3,4(5×3-9)×43,3,6,8(3×3-6)×86,8,5,4(5+4-6)×83,7,5,6[(7+5)÷3]×65,4,8,5(4-5÷5)×83,5,8,4(5-3)×(8+4)1,9,8,5(8-5)×(9-1)1,8,6,18÷(1+1)×66,6,5,3(5-3)×(6+6)1,3,4,4(3-1+4)×4由以上表格得出第一種演算法:利用公因式的演算法∵24=72÷3=48÷2=1×24=2×12=3×8=4×6∴1,其中若a為24的約數,那麼應優先考慮使b,c,d的和差積商為24÷a。其一般形式為(b?c?d)×a=24(?為+、-、×、÷中的一個)對於a,b,c,d,其組合有16896種可能,據不完全統計,這是可能性最大的一種。 2,a,b,c,d中,其中若a為24的約數,但(b?c?d)×a≠24,則應優先考慮(a?b)?(c?d)或(a?b)?(c?d)=24。據不完全統計,a×b-c×d和(a±b)?(c±d)的幾率較大(?為+、-、×、÷中的一個)同理,推廣到任意四個小於10的自然數a,b,c,d,使他們的和差積商等於n,則若n為合數,則(b?c?d)×a=n和(a?b)?(c?d)或(a?b)?(c?d)=n,這兩種組合的可能性最大。且據不完全統計,若n的約數越多,這兩種的可能性最大。(?為+、-、×、÷中的一個)3,最可能出現的幾種情況:(不完全統計)(1)(a—b)×(c+d)(2)(b+c)÷d×a (3)(b-c÷d)×a (4)(b+c-d)×a 請看第二組實例:數字方法1,3,5,6(5+1)×3+69,9,6,5(9-6)×5+97,6,5,16×5+1-77,4,7,37×4+3-79,6,4,59+6+4+59,3,1,4(4+1)×3+93,8,4,43×8-4+4不難看出,第一種演算法並不適合所有的牌組。那麼,無法使用第一種牌組時,我們應該怎樣去做呢?於是,我便做出了如下幾種的歸納:1, 若a?b=24,c=d,則有a?b+c-d=24(?為+、-、×、÷ 中的一個,且前後的?為同一運算符號)2, 若a?b=25,c=d,則有(a?b)×c÷d=24(?為+、-、×、÷ 中的一個,且前後的?為同一運算符號)3, 同理,推廣到任意四個小於10的自然數a,b,c,d,使他們的和差積商等於n 。n的約數越少,則出現(a?b?c)±d和(a?b)±(c,d)的幾率越高。(?為+、-、×、÷中的一個)4, 據不完全統計,以下兩種演算法的機率較大。(1)a×b+c-d (2)(a-b)×c+d 經計算機准確計算,一副牌(52張)中,任意抽取4張可有1820種不同組合,其中有458個牌組算不出24點,列出幾種情況:1,1,1,k,其中k≠82,2,2,k,其中k=1,2,65,5,5,k,其中k≠1,4,5,6,96,6,6,77,7,7,k,其中k≠3,48,8,8,k,其中k=7,8,99,9,9,k,其中k≠3k,k,k,k,其中k≠3,4,5,6以下均為不規則:6,4,3,7 4,6,4,7 3,4,8,8 9,4,4,5 7,7,9,4 9,9,1,4 等

熱點內容
杭州育才教育集團 發布:2025-08-17 12:17:12 瀏覽:202
教育初中生的視頻 發布:2025-08-17 11:47:50 瀏覽:62
有關土地的歷史 發布:2025-08-17 10:59:04 瀏覽:794
五年級上冊語文教案人教版 發布:2025-08-17 10:24:19 瀏覽:665
2017高考寧夏語文答案 發布:2025-08-17 09:31:14 瀏覽:588
國防教育總結 發布:2025-08-17 07:05:32 瀏覽:317
王珏班主任 發布:2025-08-17 06:33:46 瀏覽:152
語文部編教材 發布:2025-08-17 05:45:28 瀏覽:882
中小學教師述職報告 發布:2025-08-17 04:08:05 瀏覽:879
惠民縣教育局官網 發布:2025-08-17 03:04:32 瀏覽:243