趣味數學一
❶ 趣味數學
我國古代數學家張丘建在《算經》一書中提出了「百雞問題」:雞翁一值錢五,雞母一值錢三,雞雛三值錢一。百錢買百雞,問雞翁、雞母、雞雛各幾何?
1.用1,2兩個數總共可排出11,12,22,21四個兩位數。
2.用1,2,3三個數字總共可排出________個三位數。
3.用1,2,3,4四個數字總共可排出__________個四位數。
4.家用彈子鎖的鎖心是用5根長短不一的金屬圓柱棍製成的,試問:用這種金屬圓柱棍製作的門鎖中,沒有相同鑰匙的門鎖共有_____把。
5.若鎖心是用10根長短不同的金屬圓柱製成,那麼沒有相同鑰匙的門鎖有_______把。
觀察下列各組算式,探求其中規律,用含有自然數n的式子表示你的發現。
(1)2×2=4
1×3=3
(2)5×5=25
4×6=24 ...
(3)(-2)(-2)=4
(-1)(-3)=3
有52張牌,A和B輪流抽取,每人每次可拿1至4張,不能不取.拿到最後一張牌的輸.問,怎樣A能贏.
如果長度為a,b,c的三條線段能夠成三角形,那麽線段根號a,根號b,根號c是否能夠成三角形?
如果一定能構成或一定不能構成,請證明
如果不一定能夠,請舉例說明.
算出這種形式的得數:求全部的喁.
A*A+AB+B*B=??
這是一個六位數,字母表示著不為零的自然數字.這個六位數的有以下72種.
A、B不是0,而且A不等於B,共有72個:
AAABBB為:
111222、111333、111444、111555、111666
111777、111888、111999、222111、222333
222444、222555、222666、222777、222888
222999、333111、333222、333444、333555
333666、333777、333888、333999、444111
444222、444333、444555、444666、444777
444888、444999、555111、555222、555333
555444、555666、555777、555888、555999
666111、666222、666333、666444、666555
666777、666888、666999、777111、777222
777333、777444、777555、777666、777888
777999、888111、888222、888333、888444
888555、888666、888777、888999、999111
999222、999333、999444、999555、999666
999777、999888
一個三位數除以43,商A余數是B(A,B都是整數)。求A+B的最大值。
在軒轅劍中有一分財產題
一母親他若生男孩將分得財產的三分之一,男孩分三分之二;若他生女孩可得三分之二,女孩得三分之一。
問如果她生了龍鳳胎,三人應如何分這份財產。
這應用什麼數學方法解決(要具有普遍性)?
一根繩子,長度剛好繞地球一圈,現在我把繩子長度增加1米,依然將繩子弄成圓圈,請問繩圈距離地面的高度是多少?
爺爺對小軍說:「我現在的年齡是你的7倍,過幾年是你的年齡的6倍,再過若干年就分別是你的5倍,4倍,3倍,2倍。」爺爺和小軍現在的年齡分別是多少歲?
有3個人去投宿,一晚30元,三個人每人掏了10元湊夠30元交給了老闆,後來老闆說今天優惠只要25元就夠了,拿出5元命令服務生退還給他們, 服務生偷偷藏起了2元, 然後,把剩下的3元錢分給了那三個人,每人分到1元,這樣,一開始每人掏了10元,現在又退回1元,也就是10-1=9,每人只花了9元錢, 3個人每人9元,3 X 9 = 27 元 + 服務生藏起的2元=29元,還有一元錢去了哪裡??
現在有黑色、白色、黃色的筷子各8根,混雜在一起,黑暗中想從這些筷子中取出顏色不同的兩雙筷子,問至少要取多少根筷子才能保證達到要求?
❷ 趣味數學1 1 8 2 5 13 3 21
斐波那契數列,又稱黃金分割數列,指的是這樣一個數列:0、1、1、2、3、5、8、13、21、……在數學上,斐波納契數列以如下被以遞歸的方法定義:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)
❸ 趣味數學 (腦筋急轉彎)。
我也是網上找的 http://..com/question/65067516.html 希望對你有幫助 1、某班有40名學生,其中有15人參加數學小組,18人參加航模小組,有10人兩個小組都參加。那麼有多少人兩個小組都不參加?
解:兩個小組共有(15+18)-10=23(人),
都不參加的有40-23=17(人)
答:有17人兩個小組都不參加。
--
2、某班45個學生參加期末考試,成績公布後,數學得滿分的有10人,數學及語文成績均得滿分的有3人,這兩科都沒有得滿分的有29人。那麼語文成績得滿分的有多少人?
解:45-29-10+3=9(人)
答:語文成績得滿分的有9人。
3、50名同學面向老師站成一行。老師先讓大家從左至右按1,2,3,……,49,50依次報數;再讓報數是4的倍數的同學向後轉,接著又讓報數是6的倍數的同學向後轉。問:現在面向老師的同學還有多少名?
解:4的倍數有50/4商12個,6的倍數有50/6商8個,既是4又是6的倍數有50/12商4個。
4的倍數向後轉人數=12,6的倍數向後轉共8人,其中4人向後,4人從後轉回。
面向老師的人數=50-12=38(人)
答:現在面向老師的同學還有38名。
4、在游藝會上,有100名同學抽到了標簽分別為1至100的獎券。按獎券標簽號發放獎品的規則如下:(1)標簽號為2的倍數,獎2支鉛筆;(2)標簽號為3的倍數,獎3支鉛筆;(3)標簽號既是2的倍數,又是3的倍數可重復領獎;(4)其他標簽號均獎1支鉛筆。那麼游藝會為該項活動准備的獎品鉛筆共有多少支?
解:2的倍數有100/2商50個,3的倍數有100/3商33個,2和3人倍數有100/6商16個。
領2支的共准備(50—16)*2=68,領3支的共准備(33—16)*3=51,重復領的共准備16*(2+3)=80,其餘准備100-(50+33-16)*1=33
共需要68+51+80+33=232(支)
答:游藝會為該項活動准備的獎品鉛筆共有232支。
5、有一根長為180厘米的繩子,從一端開始每隔3厘米作一記號,每隔4厘米也作一記號,然後將標有記號的地方剪斷。問繩子共被剪成了多少段?
解:3厘米的記號:180/3=60,最後到頭了不劃,60-1=59個
4厘米記號:180/4=45,45-1=44個,重復的記號:180/12=15,15-1=14個,所以繩子中間實際有記號59+44-14=89個。
剪89次,變成89+1=90段
答:繩子共被剪成了90段。
6、東河小學畫展上展出了許多幅畫,其中有16幅畫不是六年級的,有15幅畫不是五年級的。現知道五、六年級共有25幅畫,那麼其他年級的畫共有多少幅?
解:1,2,3,4,5年級共有16,1,2,3,4,6年級共有15,5,6年級共有25
所以總共有(16+15+25)/2=28(幅),1,2,3,4年級共有28-25=3(幅)
答:其他年級的畫共有3幅。
---
7、有若干卡片,每張卡片上寫著一個數,它是3的倍數或4的倍數,其中標有3的倍數的卡片佔2/3,標有4的倍數的卡片佔3/4,標有12的倍數的卡片有15張。那麼,這些卡片一共有多少張?
解:12的倍數有2/3+3/4-1=5/12,15/(5/12)=36(張)
答:這些卡片一共有36張。
--
--
8、在從1至1000的自然數中,既不能被5除盡,又不能被7除盡的數有多少個?
解:5的倍數有1000/5商200個,7的倍數有1000/7商142個,既是5又是7的倍數有1000/35商28個。5和7的倍數共有200+142-28=314個。
1000-314=686
答:既不能被5除盡,又不能被7除盡的數有686個。
---
9、五年級三班學生參加課外興趣小組,每人至少參加一項。其中有25人參加自然興趣小組,35人參加美術興趣小組,27人參加語文興趣小組,參加語文同時又參加美術興趣小組的有12人,參加自然同時又參加美術興趣小組的有8人,參加自然同時又參加語文興趣小組的有9人,語文、美術、自然3科興趣小組都參加的有4人。求這個班的學生人數。
解:25+35+27-(8+12+9)+4=62(人)
答:這個班的學生人數是62人。
-- --
10、如圖8-1,已知甲、乙、丙3個圓的面積均為30,甲與乙、乙與丙、甲與丙重合部分的面積分別為6,8,5,而3個圓覆蓋的總面積為73。求陰影部分的面積。
解:甲、乙、丙三者重合部分面積=73+(6+8+5)-3*30=2
陰影部分面積=73-(6+8+5)+2*2=58
答:陰影部分的面積是58。
________________________________________
-- 作者:abc
-- 發布時間:2004-12-12 15:45:02
--
11、四年級一班有46名學生參加3項課外活動。其中有24人參加了數學小組,20人參加了語文小組,參加文藝小組的人數是既參加數學小組又參加文藝小組人數的3.5倍,又是3項活動都參加人數的7倍,既參加文藝小組也參加語文小組的人數相當於3項都參加的人數的2倍,既參加數學小組又參加語文小組的有10人。求參加文藝小組的人數。
解:設參加文藝小組的人數是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21
答:參加文藝小組的人數是21人。
________________________________________
-- 作者:abc
-- 發布時間:2004-12-12 15:45:43
--
12、圖書室有100本書,借閱圖書者需要在圖書上簽名。已知在100本書中有甲、乙、丙簽名的分別有33,44和55本,其中同時有甲、乙簽名的圖書為29本,同時有甲、丙簽名的圖書有25本,同時有乙、丙簽名的圖書有36本。問這批圖書中最少有多少本沒有被甲、乙、丙中的任何一人借閱過?
解:三個人一共看過的書的本數是:甲+乙+丙-(甲乙+甲丙+乙丙)+甲乙丙=33+44+55-(29+25+36)+甲乙丙=42+甲乙丙,當甲乙丙最大時,三人看過的書最多,因為甲、丙共同看過的書只有25本,比甲乙和乙丙共同看到的都少,所以甲乙丙最多共同看過25本。
三人總共看過最多有42+25=67(本),都沒看過的書最少有100-67=33(本)
答:這批圖書中最少有33本沒有被甲、乙、丙中的任何一人借閱過。
________________________________________
-- 作者:abc
-- 發布時間:2004-12-12 15:46:53
--
13、如圖8-2,5條同樣長的線段拼成了一個五角星。如果每條線段上恰有1994個點被染成紅色,那麼在這個五角星上紅色點最少有多少個?
解:五條線上右發有5*1994=9970個紅點,如果所有交叉點上都放一個紅點,則紅點最少,這五條線有10個交叉點,所以最少有9970-10=9960個紅點
答:在這個五角星上紅色點最少有9960個。
此主題相關圖片如下:
________________________________________
-- 作者:abc
-- 發布時間:2004-12-12 15:47:12
--
14、甲、乙、丙同時給100盆花澆水。已知甲澆了78盆,乙澆了68盆,丙澆了58盆,那麼3人都澆過的花最少有多少盆?
解:甲和乙必有78+68-100=46盆共同澆過,丙有100-58=42沒澆過,所以3人都澆過的最少有46-42=4(盆)
答:3人都澆過的花最少有4盆。
________________________________________
-- 作者:abc
-- 發布時間:2004-12-12 15:52:54
--
15、甲、乙、丙都在讀同一本故事書,書中有100個故事。每個人都從某一個故事開始,按順序往後讀。已知甲讀了75個故事,乙讀了60個故事,丙讀了52個故事。那麼甲、乙、丙3人共同讀過的故事最少有多少個?
解:乙和丙共同讀過的故事至少有60+52-100=12(個),甲無論從哪裡開始都必定要讀這12個故事。
答:甲、乙、丙3人共同讀過的故事最少有12個。
________________________________________
-- 作者:abc
-- 發布時間:2004-12-12 15:53:43
--
15、甲、乙、丙都在讀同一本故事書,書中有100個故事。每個人都從某一個故事開始,按順序往後讀。已知甲讀了75個故事,乙讀了60個故事,丙讀了52個故事。那麼甲、乙、丙3人共同讀過的故事最少有多少個?
解:乙和丙共同讀過的故事至少有60+52-100=12(個),甲無論從哪裡開始都必定要讀這12個故事。
答:甲、乙、丙3人共同讀過的故事最少有12個。
________________________________________
-- 作者:cxcbz
-- 發布時間:2004-12-13 21:53:23
--
以下是引用abc在2004-12-12 15:42:17的發言:
8、在從1至1000的自然數中,既不能被5除盡,又不能被7除盡的數有多少個?
解:5的倍數有1000/5商200個,7的倍數有1000/7商142個,既是5又是7的倍數有1000/35商28個。5和7的倍數共有200+142-28=314個。
1000-314=686
答:既不能被5除盡,又不能被7除盡的數有686個。
題中的除盡應該是整除吧.
________________________________________
-- 作者:cxcbz
-- 發布時間:2004-12-13 21:56:00
--
以下是引用abc在2004-12-12 15:45:02的發言:
11、四年級一班有46名學生參加3項課外活動。其中有24人參加了數學小組,20人參加了語文小組,參加文藝小組的人數是既參加數學小組又參加文藝小組人數的3.5倍,又是3項活動都參加人數的7倍,既參加文藝小組也參加語文小組的人數相當於3項都參加的人數的2倍,既參加數學小組又參加語文小組的有10人。求參加文藝小組的人數。
解:設參加文藝小組的人數是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21
答:參加文藝小組的人數是21人。
1. 四年級三班訂閱《少年文摘》的有19人,訂閱《學與玩》的有24人,兩種都訂的有13人。問訂閱《
少年文摘》或《學與玩》的有多少人?
2. 幼兒園有58人學鋼琴,43人學畫畫,37人既學鋼琴又學畫畫,問只學鋼琴和只學畫畫的分別有多少
人?
3. 1至100的自然數中:
(1)是2的倍數又是3的倍數的數有多少個?
(2)是2的倍數或是3的倍數的數有多少個?
(3)是2的倍數但不是3的倍數的數有多少個?
4. 某班數學、英語期中考試的成績統計如下:英語得100分的有12人,數學得100分的有10人,兩門功
課都得100分的有3人,兩門功課都未得100分的有26人。這個班共有學生多少人?
5. 全班50人,會騎車的有32人,會滑旱冰的有21人,兩樣都會的有8人,求兩樣都不會的有多少人?
6. 一個班有學生42人,參加體育隊的有30人,參加文藝隊的有25人,並且每人至少參加一個隊。這個
班兩隊都參加的有多少人?
【試題答案】
1. 四年級三班訂閱《少年文摘》的有19人,訂閱《學與玩》的有24人,兩種都訂的有13人。問訂閱《
少年文摘》或《學與玩》的有多少人?
19 + 24—13 = 30(人)
答:訂閱《少年文摘》或《學與玩》的有30人。
2. 幼兒園有58人學鋼琴,43人學畫畫,37人既學鋼琴又學畫畫,問只學鋼琴和只學畫畫的分別有多少
人?
只學鋼琴人數:58—37 = 21(人)
只學畫畫人數:43—37 = 6(人)
3. 1至100的自然數中:
(1)是2的倍數又是3的倍數的數有多少個?
既是3的倍數又是2的倍數,一定是6的倍數
100÷6 = 16……4
所以,既是2的倍數又是3的倍數有16個
(2)是2的倍數或是3的倍數的數有多少個?
100÷2 = 50,100÷3 = 33……1
50 + 33—16 = 67(個)
所以,是2的倍數或是3的倍數的數有67個。
(3)是2的倍數但不是3的倍數的數有多少個?
50—16 = 34(個)
答:是2的倍數但不是3的倍數的數有34個。
4. 某班數學、英語期中考試的成績統計如下:英語得100分的有12人,數學得100分的有10人,兩門功
課都得100分的有3人,兩門功課都未得100分的有26人。這個班共有學生多少人?
12 + 10—3 + 26 = 45(人)
答:這個班共有學生45人。
5. 全班50人,會騎車的有32人,會滑旱冰的有21人,兩樣都會的有8人,求兩樣都不會的有多少人?
50—(30 + 21—8)= 7(人)
答:兩樣都不會的有7人。
6. 一個班有學生42人,參加體育隊的有30人,參加文藝隊的有25人,並且每人至少參加一個隊。這個
班兩隊都參加的有多少人?
30 + 25—42 = 13(人)
答:這個班兩隊都參加的有13人。
某班同學參加升學考試,得滿分的人數如下:數學20人,語文20人,英語20人,數學、英語兩科滿分者8人,數學、語文兩科滿分者7人,語文、英語兩科滿分者9人,三科都沒得滿分者3人.問這個班最多多少人?最少多少人?
分析與解 如圖6,數學、語文、英語得滿分的同學都包含在這個班中,設這個班有y人,用長方形表示.A、B、C分別表示數學、語文、英語得滿分的人,由已知有A∩C=8,A∩B=7,B∩C=9.A∩B∩C=X.
由容斥原理有
Y=A+B+c-A∩B-A∩C-B∩C+A∩B∩C+3
即y=20+20+20-7-8-9+x+3=39+x。
以下我們考察如何求y的最大值與最小值。
由y=39+x可知,當x取最大值時,y也取最大值;當x取最小值時,y也取最小值x是數學、語文、英語三科都得滿分的人數,因而他們中的人數一定不超過兩科得滿分的人數,即x≤7,x≤8且x≤9,由此我們得到x≤7.另一方面數學得滿分的同學有可能語文都沒得滿分,也就是說沒有三科都得滿分的同學,故 x≥0,故0≤x≤7。
當x取最大值7時,y有最大值39+7=46,當x取最小值0時,y有最小值39+0=39。
答:這個班最多有46人,最少有39人。
是否可以解決您的問題?
❹ 誰知道一個趣味數學故事
該數學故事全文內容為:
在神秘的數學王國里,胖子「0」與瘦子「1」這兩個「小有名氣」的數字,常常為了誰重要而爭執不休。瞧!今天,這兩個小冤家狹路相逢,彼此之間又展開了一場舌戰。
瘦子「1」搶先發言:「哼!胖胖的『0』,你有什麼了不起?就像100,如果沒有我這個瘦子『1』,你這兩個胖『0』有什麼用?」
(4)趣味數學一擴展閱讀:
數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態。
代數學可以說是最為人們廣泛接受的「數學」.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一。幾何學則是最早開始被人們研究的數學分支。
直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起.從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程.而其後更發展出更加精微的微積分。
現時數學已包括多個分支.創立於二十世紀三十年代的法國的布爾巴基學派則認為:數學,至少純數學,是研究抽象結構的理論.結構,就是以初始概念和公理出發的演繹系統.他們認為,數學有三種基本的母結構:代數結構(群,環,域,格……)、序結構(偏序,全序……)、拓撲結構(鄰域,極限,連通性,維數……)。
數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等.數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展。
數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標.雖然有許多工作以研究純數學為開端,但之後也許會發現合適的應用。
具體的,有用來探索由數學核心至其他領域上之間的連結的子領域:由邏輯、集合論(數學基礎)、至不同科學的經驗上的數學(應用數學)、以較近代的對於不確定性的研究(混沌、模糊數學)。
❺ 十道趣味數學題及答案
1\魔術師說:「只要告訴我一個數,我便知道你的鞋子大小和年齡。要與 你自身有關系的。將自己的鞋子尺碼數(要整數)乘以2,再加上39,然後乘以50,再加上56,最後減去自己的年齡。」
董饒聽後迅速地計算著,他鞋碼25,1983年生,按要求計算是:
(25X2+39)+56-1983=2523
他將這個數報出後,魔術師立即告訴他:今年23歲,鞋碼25,接著一些人紛紛報出計算結果,魔術師一一猜中,無一失誤。
你知道這是為什麼嗎?答案:設鞋碼X,Y年出生,則:
(2X+39)*50+56-Y
=100X+2006-Y
該年是2006年,2006-Y即年齡
百位以上的數字就是鞋碼趣味數學題(一)
1.過橋
今有a b c d 四人在晚上都要從橋的左邊到右邊。此橋一次最多隻能走兩人,而且只有一支手電筒,過橋是一定要用手電筒。四人過橋最快所需時間如下為:a 2 分;b 3 分;c 8 分;d 10分。走的快的人要等走的慢的人,請問如何的走法才能在 21 分 讓所有的人都過橋?
2.巧插數字
125 × 4 × 3 = 2000
這個式子顯然不等,可是如果算式中巧妙地插入兩個數字「7」,這個等式便可以成立,你知道這兩個7應該插在哪嗎?
3.溫馨四季
春夏 × 秋冬 = 春夏秋冬
春冬 × 秋夏 = 春夏秋冬
式中 春、夏、秋、冬 各代表四個不同的數字,你能指出它們各代表什麼數字嗎?
4.破車下山
一個破車要走兩英哩的路,上山及下山各一英哩,上山時平均速度每小時15英哩問當它下山走第二個英哩的路時要多快才能達到平均速度為每小時30英哩?是45英哩嗎?你可要考慮清楚了呦!
5.共賣多少雞蛋
王老太上集市上去賣雞蛋,第一個人買走藍子里雞蛋的一半又一個,第二個人買走剩下雞蛋的一半又一個,這時藍子里還剩一個雞蛋,請問王老太共賣出多少個雞蛋?
6.有多少人參加考試
試卷上有6道選擇題,每題有3個選項,結果閱卷老師發現,在所有卷子中任選3張答卷,都有一道題的選擇互不相同,請問最多有多少人參加了這次考試?
趣味數學題(二)
一、丟番圖的墓誌銘
古希臘數學家丟番圖的墓誌銘里包含一個有趣的一元一次方程問題:
過路人!這兒埋葬著丟番圖,他生命的六分之一是童年;再過了一生的十二分之一後,他開始長胡須;又過了一生的七分之一後他結了婚;婚後五年他有了兒子,但可惜兒子的壽命只有父親的一半;兒子死後,老人再活了四年就結束了餘生。
根據這個墓誌銘,請計算出丟番圖的壽命。
二、怎樣合算
小臭班裡的45個同學在石老師的帶領下到一個風景點春遊。他們准備買票時,看見一塊牌子上寫著:「請遊客購票:每張票票價2元;50人或50人以上可以購買團體票,票價按八折優惠。」很多同學提出:「我們應該怎樣買票比較合算?」石老師說:「這個問題問得好,看誰能計算出來。」
三、分蘋果
秋天到了,小猴征征種的蘋果都成熟了,他挑了最好的蘋果裝在6個箱子中,准備送給好朋友童童和欣欣,6個箱子中分別裝有11、12、14、16、17、20個蘋果。因為童童小,吃東西少一些,所以他准備只把1/3的蘋果分給童童,其餘的分給欣欣,箱子不能拆分,你知道征征是怎麼分的嗎?
四、誰將取勝
第三屆動物運動會上,老虎和獅子在1200米的長跑比賽中成績相同。為最後決出勝負,裁判老猴讓老虎和獅子舉行附加賽。這兩頭猛獸最後賽的是百米來回跑,共計200米遠。老虎每跨一步為2米,獅子一步為3米,但老虎每跨三步,獅子卻只能跨兩步。
據以上的「情報」,你能提前判斷出誰將取勝嗎?
五、學生的編號
某學校為每個學生編號,設定末尾用1表示男生,用2表示女生;199713321表示「1997年入學的一年級三班的32號同學,該同學是男生」,那麼,199532012表示的學生是哪一年入學的,幾年級幾班的,學號是多少,是男生還是女生?
答案
趣味數學題(一)
第1題答案: 先是a和b一起過橋,然後將b留在對岸,a獨自返回。a返回後將手電筒交給c和d,讓c和d一起過橋,c和d到達對岸後,將手電筒交給b,讓b將手電筒帶回,最後a和b再次一起過橋。則所需時間為:3+2+10+3+3=21分鍾。
第2題答案:插入數字後的式子為:1725×4×3=20700
第3題答案:春=2;夏=1;秋=8;冬=7
第4題答案: 無論如何破車的平均速度也不可能達到30英里/小時。因為當平均速度為30英里/小時時,破車上、下山的總時間應為1/15小時。而破車上山就用了1/15小時。所以說破車的平均速度是達不到30英里/小時的。
第5題答案:王老太共賣了10個雞蛋。
第6題答案:最多有13人參加考試,不過具體的思考過程我也不太清楚,請高手指教!
趣味數學題(二)
一、 設丟番圖壽命為x歲,由題意得
x/6+x/12+x/7+5+x/2+4=x
化簡這個方程,得75x/84+9=x。
解之,得x=84。
就是說,丟番圖的壽命是84歲。
二、 買46張個人票應付錢:2×46=92(元)。
買50張團體票應付錢:2×50×80%=80(元)。
買團體票比買個人票少付:92-80=12(元)。
即買團體票比買個人票少付12元,所以,應該買團體票。
三、 6個箱子中共有蘋果11+12+14+16+17+20=90(個),所以童童應分蘋果90×1/3=30(個)。因為14+16=30(個),所以應該把裝有14、16個蘋果的兩箱蘋果分給童童,其餘的分給欣欣。
四、 老虎跨三步,跑2×3=6(米);獅子跨兩步,跑3×2=6(米)。所以老虎和獅子跑的速度是一樣的。但老虎正好以五十步跑完100米,而獅子則在跑到99米之處後還須再跨一步,到達102米處,然後往回跑。這樣,獅子比老虎要多跑4米,故老虎取勝。
五、199532012表示的學生是1995年入學的三年級二班的,學號是1號,該生是女生。
矯正鬧鍾
答案:我總共用去的時間為4小時50分(7∶00—11∶50),除去遊玩的時間一個半小時,走路的時間應為3小時20分鍾。因為來去時的步行時間相等,都為1小時40分鍾,並且離開博物館開始往家走的准確時間應為8∶50+1∶30 = 10∶20,所以回到家裡的時間應為10∶20+1∶40 = 12。這時,應將鬧鍾撥到12時才是准確的。
為什麼少了1元?
解答:蘋果每千克1元,梨每千克 元,混合後每千克(1+ )÷2= 元,而小明2.5千克只收2元,即每千克只收 元。這樣,每千克少收 - = 元。蘋果和梨一共30千克,就少收了1元。
❻ 趣味數學:
其實這個趣味數學問題裡面用到的原數不一定要是出生年月,可以是任何整數
此規律表述出來即是:任意正整數與將其各位數字亂序所生成的新整數之差必定是9的倍數。
(這里解釋一點:「最後把這個兩位數各個數位數字相加之和總為9」,此即為9的倍數的特點,關於此點我會在最後加以證明)
我們可以考慮將這個問題再加以簡化。不難知道,任意一種亂序組合,實際上都是有限次的鄰位數字交換而成(比如1987變成1789,即是先交換78,再交換79,再交換89,由於鄰位交換可以實現任意兩個數位交換,所以可以形成任意的亂序組合)
所以問題變為:將任意正整數交換兩位數字,所得之數與原數之差必定是9的倍數。
不妨設一個數為XXXXmnXXXX,將其變為XXXXnmXXXX,其中第一個數的n的右邊有k位數字
那麼兩數之差為m*10^(k+1)+n*10^k-n*10^(k+1)-m*10^k(這里10^k表示10的k次冪)
化簡得(9m-9n)*10^k
顯然是9的倍數
從而原命題成立
下面證明各位數字之和為9的倍數的數必定是9的倍數:
假設一個數是abcd(簡單起見就假設是4位數了,標n位數的話角標會比較麻煩,這個證明足以表明原理),且a+b+c+d是9的倍數,下面證明四位數abcd是9的倍數:
abcd=1000a+100b+10c+d
=(999a+99b+9c)+(a+b+c+d)
兩個括弧內均為9的倍數,從而abcd是9的倍數。從證明裡容易知道,這個命題反過來也成立
由於9的倍數各位數字之和也是9的倍數,對於此數字和,我們可以繼續進行這樣的計算,最終得出9.
❼ 趣味數學是什麼意思
「趣味數學」以帶有強烈的游戲色彩知名於世。然而,切莫以為大數學家都看不版起「趣味數學」權問題。歐拉就是通過對bridge-crossing之謎的分析打下了拓撲學的基礎。
萊布尼茨也寫到過他在獨自玩插棍游戲(一種在小方格中插小木條的游戲)時分析問題的樂趣。希爾伯特證明了切割幾何圖形中的許多重要定理。馮·紐曼奠基了博弈論。
最受大眾歡迎的計算機游戲—生命是英國著名數學家康威發明的。愛因斯坦也收藏了整整一書架關於數學游戲和數學謎的書。
(7)趣味數學一擴展閱讀
索尼計算機科學研究所在北京舉行發布會,宣布其與日本算術奧林匹克委員會聯手打造的「世界趣味數學挑戰賽」正式登陸中國。
中國各地的中小學生及數學愛好者可以登錄網站報名,加入精彩紛呈的無國界趣味網路數學大賽。
此次「世界趣味數學挑戰賽」,旨在激發青少年對數學的興趣、挖掘潛能,讓數學愛好者在參與中體驗數學的無窮樂趣與獨特魅力。
❽ 有哪些趣味數學
1、一個人花8塊錢買了一隻雞,9塊錢賣掉了,然後他覺得不劃算,花10塊錢又買回來了,11塊賣給另外一個人。問他賺了多少?
答案:2元
2、假設有一個池塘,裡面有無窮多的水。現有2個空水壺,容積分別為5升和6升。問題是如何只用這2個水壺從池塘里取得3升的水。
答案:先用5升壺裝滿後倒進6升壺里,在再將5升壺裝滿向6升壺里到,使6升壺裝滿為止,此時5升壺里還剩4升水,將6升壺里的水全部倒掉,將5升壺里剩下的4升水倒進6升壺里,此時6升壺里只有4升水,再將5升壺裝滿,向6升壺里到,使6升壺里裝滿為止,此時5升壺里就只剩下3升水了。
3、一個農夫帶著三隻兔到集市上去賣,每隻兔大概三四千克,但農夫的秤只能稱五千克以上,問他該如何稱量。
答案:先稱3隻,再拿下一隻,稱量後算差。
4、有隻猴子在樹林采了100根香蕉堆成一堆,猴子家離香蕉堆50米,猴子打算把香蕉背回家, 每次最多能背50根,可是猴子嘴饞,每走一米要吃一根香蕉,問猴子最多能背回家幾根香蕉?
答案:25根,先背50根到25米處,這時,吃了25根,還有25根,放下。回頭再背剩下的50根,走到25米處時,又吃了25根,還有25根。再拿起地上的25根,一共50根,繼續往家走,一共25米,要吃25根,還剩25根到家。
5. 桌子上原來有12支點燃的蠟燭,先被風吹滅了3根,不久又一陣風吹滅了2根,最後桌子上還剩幾根蠟燭呢
解答:5根
6. 兄弟共有45元錢,如果老大增加2元錢,老二減少2元錢,老三增加到原來的2倍,老四減少到原來的1/2,這時候四人的錢同樣多,原來各有多少錢?
解:老大8 老二12 老三5 老四20
7.一根繩子兩個頭,三根半繩子有幾個頭?
解:8個頭,(半根繩子也是兩個頭)
33.一棟住宅樓,爺爺從一樓走到三樓要6分鍾,現在要到6樓,要走多少分鍾?
答:15分鍾
8. 24個人排成6列,要求5個人為一列,你知道應該怎樣來排列嗎? (一個六邊形)
9. 園新買回一批小玩具。如果按每組10個分,則少了2個;如果按每組12個分,則剛好分完,但卻少分一組。請你想一想,一共有這批玩具多少個?(這批玩具共48個)
10. 有一本書,兄弟兩個都想買。哥哥缺5元,弟弟只缺一分。但是兩人合買一本,錢仍然不夠。你知道這本書的價格嗎?他們又各有多少錢呢? (這本書的價格是5元。哥哥一分也沒有,弟弟有4.9元)
11. 有一家裡兄妹四個,他們4個人的年齡乘起來正好是14,你知道他們分別是多少歲嗎?(當然在這里歲數都是整數。) (14隻能分解為2和7,因此四個人的年紀分別為1,1,2,7,其中有一對為雙胞胎)
12.1根繩子對折,再對折,再第三次對折,然後從中間剪斷,共剪成多少段?
解:9段
13. 五條直線相交,最多能有多少個交點呢?
解:10個交點
14.員(打一數學名詞)——圓心
15.如果有5隻貓,同時吃5條魚,需要5分鍾時間才吃完。按同樣的速度,100隻貓同時吃掉100條魚,需要()分鍾時間。
解:5分鍾
16.在你面前有一條長長的階梯。如果你每步跨2階,那麼最後剩下1階,如果你每步跨3階,那麼你最後剩2階,如果你每步跨5階,那麼最後剩4階,如果你每步跨6階,那麼最後剩5階,只有當你每步跨7階時,最後才正好走完,一階不剩。請你算一算,這條階梯到底有多少階?
解:119階
17.司葯(打一數學名詞)——配方
18.招收演員(打一數學名詞)——補角
20.搬來數一數(打一數學名詞)——運算
21.你盼著我,我盼著你(打一數學名詞)——相等
22.北(打一數學名詞)——反比
23.從後面算起(打一數學名詞)——倒數
24.小小的房子(打一數學名詞)——區間
25.完全合算(打一數學名詞)——絕對值
❾ 趣味數學的概念是什麼
味數學就是說數學內有趣的題目,比較有挑戰性的
也可以說是比較難的題目吧
的確
有人覺得所謂的「趣味數學」蒼白而可笑
那是因為他們不明白「數學」的樂趣
每件事都有每件事的樂趣,只是有的人不一定回有感覺罷了
找到數學的樂趣
做任何數學題目都會是趣味數學