當前位置:首頁 » 語數英語 » 數學模型製作

數學模型製作

發布時間: 2021-07-30 11:39:05

數學建模怎麼做啊

剛參加完九月份的全國大學生數學建模競賽。一份基本的的數學建模論文要包含以下幾個方面內:容
摘要,問題的背景與提出,問題的分析,模型的假設,符號說明,模型的建立與求解,模型的評價與推廣,參考文獻。
正規的數學建模論文篇幅一般在20頁以上。考慮到你才讀初三,老師的要求不會這么高,而且你的能力應該還有所欠缺。我的建議為你按照自己實際情況選擇一個有一定挑戰性的題目,題目的性質類似於應用題,但又和普通的應用題不同,可以沒有確定答案,針對問題本身做一些分析和探討,最好能和實際相結合。
要注意的是假設要合理,要有數學模型(包括一些方程,不等式等),要有分析思路,並且要對自己建立的模型進行優缺點評價,最好能做相應推廣。

❷ 數學建模怎麼做啊

數學建模就是通過計算得到的結果來解釋實際問題,並接受實際的檢驗,專來建立數學模型的全過屬程。當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。

模型准備
了解問題的實際背景,明確其實際意義,掌握對象的各種信息。以數學思想來包容問題的精髓,數學思路貫穿問題的全過程,進而用數學語言來描述問題。要求符合數學理論,符合數學習慣,清晰准確。

模型假設
根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。

模型建立
在假設的基礎上,利用適當的數學工具來刻劃各變數常量之間的數學關系,建立相應的數學結構(盡量用簡單的數學工具)。

模型求解
利用獲取的數據資料,對模型的所有參數做出計算(或近似計算)。

模型分析
對所要建立模型的思路進行闡述,對所得的結果進行數學上的分析。

模型檢驗
將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。

❸ 數學建模設計

數學建模是利用數學工具解決實際問題的重要手段。數學教育不僅要教給學生數學知識,更要教給學生運用所學知識去解決實際問題。針對專科普系的學清特點教師要善於在教學中把數學的概念法則和解題方法進行模型化,使學生既能掌握數學的基礎知識,又能應用數學知識解決生活和生產中出現的問題。[1]

❹ 數學建模怎麼做

數學建模就是用數學語言描述實際現象的過程。這里的實際現象既包涵具體的自然現象比如自由落體現象,也包涵抽象的現象比如顧客對某種商品所取的價值傾向。這里的描述不但包括外在形態,內在機制的描述,也包括預測,試驗和解釋實際現象等內容。 我們也可以這樣直觀地理解這個概念:數學建模是一個讓純粹數學家(指只懂數學不懂數學在實際中的應用的數學家)變成物理學家,生物學家,經濟學家甚至心理學家等等的過程。 數學模型一般是實際事物的一種數學簡化。它常常是以某種意義上接近實際事物的抽象形式存在的,但它和真實的事物有著本質的區別。要描述一個實際現象可以有很多種方式,比如錄音,錄像,比喻,傳言等等。為了使描述更具科學性,邏輯性,客觀性和可重復性,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。使用數學語言描述的事物就稱為數學模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代。 數學是研究現實世界數量關系和空間形式的科學,在它產生和發展的歷史長河中,一直是和各種各樣的應用問題緊密相關的。數學的特點不僅在於概念的抽象性、邏輯的嚴密性,結論的明確性和體系的完整性,而且在於它應用的廣泛性,進入20世紀以來,隨著科學技術的迅速發展和計算機的日益普及,人們對各種問題的要求越來越精確,使得數學的應用越來越廣泛和深入,特別是在即將進入21世紀的知識經濟時代,數學科學的地位會發生巨大的變化,它正在從國或經濟和科技的後備走到了前沿。經濟發展的全球化、計算機的迅猛發展,數學理倫與方法的不斷擴充使得數學已經成為當代高科技的一個重要組成部分和思想庫,數學已經成為一種能夠普遍實施的技術。培養學生應用數學的意識和能力已經成為數學教學的一個重要方面。 應用數學去解決各類實際問題時,建立數學模型是十分關鍵的一步,同時也是十分困難的一步。建立教學模型的過程,是把錯綜復雜的實際問題簡化、抽象為合理的數學結構的過程。要通過調查、收集數據資料,觀察和研究實際對象的固有特徵和內在規律,抓住問題的主要矛盾,建立起反映實際問題的數量關系,然後利用數學的理論和方法去分折和解決問題。這就需要深厚扎實的數學基礎,敏銳的洞察力和想像力,對實際問題的濃厚興趣和廣博的知識面。數學建模是聯系數學與實際問題的橋梁,是數學在各個領械廣泛應用的媒介,是數學科學技術轉化的主要途徑,數學建模在科學技術發展中的重要作用越來越受到數學界和工程界的普遍重視,它已成為現代科技工作者必備的重要能力之。

如何利用excel製作數學模型

1.在表格中列好數據;
2.選中數據點擊菜單欄中的「插入」,選擇子菜單中的「圖表」,從圖表類型中選擇合適的圖表。(我一般用「XY散點圖」)
3.點擊菜單欄中的「圖表」,可以添加趨勢線。
如果要添加方程,可以在生成的圖表中繼續操作。
不知道你理解了沒?
我給個圖片吧。

❻ 數學模型怎麼做

不是哦 簡單來說就是用一套公式 一個表格等來代表 統計這一類型的問題
數學模型是指根據對研究對象所觀察到的現象及實踐經驗,歸結成的一套反映其內部因素數量關系的數學公式、邏輯准則和具體演算法。用以描述和研究客觀現象的運動規律。 廣義地說,數學概念、如數、集合、向量、方程都可稱為數學模型,狹義地說,只有反映特定問題和特定的具體事物系統的數學關系結構方數學模型大致可分為二類:(1)描述客體必然現象的確定性模型,其數學工具一般是代效方程、微分方程、積分方程和差分方程等,(2)描述客體或然現象的隨機性模型,其數學模型方法是科學研究相創新的重要方法之一。在體育實踐中常常提到優秀運動員的數學模型。如經調查統計.現代的世界級短跑運動健將模型為身高1.80米左右、體重70公斤左右,100米成績10秒左右或更好等。

❼ 數學建模的方法有哪些

  1. 預測模塊:灰色預測、時間序列預測、神經網路預測、曲線擬合(線性回歸);

  2. 歸類判別:歐氏距離判別、fisher判別等 ;

  3. 圖論:最短路徑求法 ;

  4. 最優化:列方程組 用lindo 或 lingo軟體解 ;

  5. 其他方法:層次分析法 馬爾可夫鏈 主成分析法 等 。

建模常用演算法,僅供參考:

  1. 蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決 問題的演算法,同時間=可以通過模擬可以來檢驗自己模型的正確性,是比賽時必 用的方法) 。

  2. 數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數 據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab 作為工具) 。

  3. 線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多 數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通 常使用Lindo、Lingo 軟體實現) 。

  4. 圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等算 法,涉及到圖論的問題可以用這些方法解決,需要認真准備) 。

  5. 動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是算 法設計中比較常用的方法,很多場合可以用到競賽中) 。

  6. 最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些 問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助, 但是演算法的實現比較困難,需慎重使用) 。

  7. 網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很 多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種 暴力方案,最好使用一些高級語言作為編程工具) 。

  8. 一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計 算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替 積分等思想是非常重要的) 。

  9. 數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分 析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編 寫庫函數進行調用) 。

  10. 圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文 中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問 題,通常使用Matlab 進行處理)。

熱點內容
化學品物流 發布:2025-08-04 16:15:56 瀏覽:409
中國國家地理訂閱 發布:2025-08-04 15:05:37 瀏覽:185
色琪琪校園 發布:2025-08-04 14:24:16 瀏覽:409
老師是長輩 發布:2025-08-04 13:54:51 瀏覽:58
樂至毒打班主任 發布:2025-08-04 13:43:38 瀏覽:921
背影教學 發布:2025-08-04 13:17:55 瀏覽:991
叫老師 發布:2025-08-04 12:44:46 瀏覽:432
新時代師德師風心得體會 發布:2025-08-04 11:14:27 瀏覽:685
八年級上冊物理總復習 發布:2025-08-04 10:50:13 瀏覽:847
軍師生 發布:2025-08-04 09:22:14 瀏覽:41