當前位置:首頁 » 語數英語 » 數學題用

數學題用

發布時間: 2021-08-15 19:36:50

數學題 用兩種方法

法(一):證明:延長ED交BC於點M
設∠E=∠EDA=x,
∠B=∠C=y
在△EAD中,∠EAD=∠B+∠C=2y
∴∠E+∠EDA+∠EAD=2x+2y=180°,
∴x+y=90°
在△DMB中,∠B+∠BDM=90°
∴DM⊥BM
法(二)證明:延長ED交BC於點M,過點A作AN⊥BC,則AN為三線合一
∵AE=AD
∴∠E=∠EDA
∵∠BAC=∠E+∠EDA=2∠EDA,AN為∠BAC的平分線
∴∠EDA=∠BAN
∵∠EDA=∠BDM
∴∠BDM=∠BAN
∴DM∥AN
∴DM⊥BC

⑵ 五年級數學應用題帶答案

1、築路隊要修一條長180千米的路,原來每天修6千米,修了15天以後加快速度,每天修7.5千米,修完這條路還要多少天?
1、(180-6×15)÷7.5=12(天)
2、建築工地需要沙子106噸,先用小汽車運15次,每次運2.4噸。剩下的改用大車運,每次運5噸,還要幾次運完?
2、(106-2.4×15)÷5=14(次)
3、張立買來《寓言故事》和《英語幽默》各4本,共付20元,找回7.6元,每本《寓言故事》1.6元,每本《英語幽默》多少元?
3、(20-7.6)÷4-1.6=1.5(元)
4、人民公園原來有30條船,每天收入540元。現在比原來多15條船,現在每天收入多少元?
4、540÷30×(30+15)=810(元)
5、電視機廠原計劃36天生產彩電1680台,前16天完成了一半。剩下的打算6天完成,平均每天生產多少台?
5、1680÷2÷6=140(台)
1、某廠有一批煤,原計劃每天燒5噸,可以燒45天。實際每天少燒0.5噸,這批煤可以燒多少天?
1、5×45÷(5-0.5)=50(天)
2、學校買來150米長的塑料繩,先剪下7.5米,做3根同樣長的跳繩。照這樣計算,剩下的塑料繩還可以做多少根?
2、(150-7.5)÷(7.5÷3)=57(根)
3、修一條水渠,原計劃每天修0.48千米,30天修完。實際每天多修0.02千米,實際修了多少天?
3、0.48×30÷(0.48+0.02)=28.8(天)
4、王老師看一本書,如果每天看32頁,15天看完。現在每天看40頁,可以提前幾天看完?
4、15-32×15÷40=3(天)
5、一輛汽車4小時行駛了260千米,照這樣的速度,又行了2.4小時,前後一共行駛了多少千米?(用兩種方法解答)
5、260÷4×2.4+260=416(千米) 260÷4×(4+2.4)=416(千米)
6、石河農場先派8台收割機參加收割晚稻,前2天收割19.2公頃,後來增加到13台收割機,用同樣的速度又割4天,他們一共割多少公頃?
6、19.2÷2÷8×4×13+19.2=81.6(公頃)
7、甲乙兩地相距600千米,一列客車和一列貨車同時從甲開往乙,客車比貨車早到4小時,客車到乙地時,貨車行了400千米。客車行完全程要用多長時間?
7、 600÷[(600-400)÷4]-4=8(小時) 或 4÷(600÷400-1)=8(小時)

甲乙兩地,相距500千米,甲每小時行30千米,乙每小時行20千米,問同時出發,幾小時相遇?
500÷(30+20)=10

1.商店有彩色電視機210台,比黑白電視機的3倍還多21台.商店有黑白電視機多少台?
1.63台

2.用一根長12.4分米的鐵絲圍成一個等腰梯形,已知這個梯形的兩腰共長6.4分米,面積是9平方分米,這個梯形的高是多少分米?(用方程解答)
2.3米

3.河裡有鵝鴨若干只,其中鴨的只數是鵝的只數的4倍.又知鴨比鵝多27隻,鵝和鴨各多少只?
3.鵝9隻,鴨36隻

4.一個林場要栽樹2000棵,前3天平均每天栽350棵.其餘的要求2天栽完,平均每天要栽多少棵?
4.475棵

⑶ 數學題目用巧妙的方法

解:當兩人相遇時。小狗跑了50千米。因為:甲乙的相對速度是(3+2)=5千米。二者相遇時間是50÷5=10小時。小狗跑的路程=5*10=50千米。

⑷ 數學題 用三種方法

第一種:

過E點作AB的平行線交BC的延長線於K,角K=角ABC=角ACB=角KCE,則KE=CE=DB,另有兩個F角為對頂角,則三角形FDB與三角形FEK全等,DF=FE.

⑸ 小學畢業數學應用題

工程問題
1.甲乙兩個水管單獨開,注滿一池水,分別需要小時,16小時.丙水管單獨開,排一池水要10小時,若水池沒水,同時打開甲乙兩水管,5小時後,再打開排水管丙,問水池注滿還是要多少小時?
解:
1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小時後進水量
1-45/80=35/80表示還要的進水量
35/80÷(9/80-1/10)=35表示還要35小時注滿
答:5小時後還要35小時就能將水池注滿。

2.修一條水渠,單獨修,甲隊需要20天完成,乙隊需要30天完成。如果兩隊合作,由於彼此施工有影響,他們的工作效率就要降低,甲隊的工作效率是原來的五分之四,乙隊工作效率只有原來的十分之九。現在計劃16天修完這條水渠,且要求兩隊合作的天數盡可能少,那麼兩隊要合作幾天?
解:由題意得,甲的工效為1/20,乙的工效為1/30,甲乙的合作工效為1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因為,要求「兩隊合作的天數盡可能少」,所以應該讓做的快的甲多做,16天內實在來不及的才應該讓甲乙合作完成。只有這樣才能「兩隊合作的天數盡可能少」。
設合作時間為x天,則甲獨做時間為(16-x)天
1/20*(16-x)+7/100*x=1
x=10
答:甲乙最短合作10天

3.一件工作,甲、乙合做需4小時完成,乙、丙合做需5小時完成。現在先請甲、丙合做2小時後,餘下的乙還需做6小時完成。乙單獨做完這件工作要多少小時?
解:
由題意知,1/4表示甲乙合作1小時的工作量,1/5表示乙丙合作1小時的工作量
(1/4+1/5)×2=9/10表示甲做了2小時、乙做了4小時、丙做了2小時的工作量。
根據「甲、丙合做2小時後,餘下的乙還需做6小時完成」可知甲做2小時、乙做6小時、丙做2小時一共的工作量為1。
所以1-9/10=1/10表示乙做6-4=2小時的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小時表示乙單獨完成需要20小時。
答:乙單獨完成需要20小時。

4.一項工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,這樣交替輪流做,那麼恰好用整數天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,這樣交替輪流做,那麼完工時間要比前一種多半天。已知乙單獨做這項工程需17天完成,甲單獨做這項工程要多少天完成?
解:由題意可知
1/甲+1/乙+1/甲+1/乙+……+1/甲=1
1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1
(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最後結束必須如上所示,否則第二種做法就不比第一種多0.5天)
1/甲=1/乙+1/甲×0.5(因為前面的工作量都相等)
得到1/甲=1/乙×2
又因為1/乙=1/17
所以1/甲=2/17,甲等於17÷2=8.5天

5.師徒倆人加工同樣多的零件。當師傅完成了1/2時,徒弟完成了120個。當師傅完成了任務時,徒弟完成了4/5這批零件共有多少個?
答案為300個
120÷(4/5÷2)=300個
可以這樣想:師傅第一次完成了1/2,第二次也是1/2,兩次一共全部完工,那麼徒弟第二次後共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,剛好是120個。

6.一批樹苗,如果分給男女生栽,平均每人栽6棵;如果單份給女生栽,平均每人栽10棵。單份給男生栽,平均每人栽幾棵?
答案是15棵
算式:1÷(1/6-1/10)=15棵

7.一個池上裝有3根水管。甲管為進水管,乙管為出水管,20分鍾可將滿池水放完,丙管也是出水管,30分鍾可將滿池水放完。現在先打開甲管,當水池水剛溢出時,打開乙,丙兩管用了18分鍾放完,當打開甲管注滿水是,再打開乙管,而不開丙管,多少分鍾將水放完?
答案45分鍾。
1÷(1/20+1/30)=12 表示乙丙合作將滿池水放完需要的分鍾數。
1/12*(18-12)=1/12*6=1/2 表示乙丙合作將漫池水放完後,還多放了6分鍾的水,也就是甲18分鍾進的水。
1/2÷18=1/36 表示甲每分鍾進水
最後就是1÷(1/20-1/36)=45分鍾。

8.某工程隊需要在規定日期內完成,若由甲隊去做,恰好如期完成,若乙隊去做,要超過規定日期三天完成,若先由甲乙合作二天,再由乙隊單獨做,恰好如期完成,問規定日期為幾天?
答案為6天
解:
由「若乙隊去做,要超過規定日期三天完成,若先由甲乙合作二天,再由乙隊單獨做,恰好如期完成,」可知:
乙做3天的工作量=甲2天的工作量
即:甲乙的工作效率比是3:2
甲、乙分別做全部的的工作時間比是2:3
時間比的差是1份
實際時間的差是3天
所以3÷(3-2)×2=6天,就是甲的時間,也就是規定日期
方程方法:
[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1
解得x=6

9.兩根同樣長的蠟燭,點完一根粗蠟燭要2小時,而點完一根細蠟燭要1小時,一天晚上停電,小芳同時點燃了這兩根蠟燭看書,若干分鍾後來點了,小芳將兩支蠟燭同時熄滅,發現粗蠟燭的長是細蠟燭的2倍,問:停電多少分鍾?
答案為40分鍾。
解:設停電了x分鍾
根據題意列方程
1-1/120*x=(1-1/60*x)*2
解得x=40

二.雞兔同籠問題
1.雞與兔共100隻,雞的腿數比兔的腿數少28條,問雞與兔各有幾只?
解:
4*100=400,400-0=400 假設都是兔子,一共有400隻兔子的腳,那麼雞的腳為0隻,雞的腳比兔子的腳少400隻。
400-28=372 實際雞的腳數比兔子的腳數只少28隻,相差372隻,這是為什麼
4+2=6 這是因為只要將一隻兔子換成一隻雞,兔子的總腳數就會減少4隻(從400隻變為396隻),雞的總腳數就會增加2隻(從0隻到2隻),它們的相差數就會少4+2=6隻(也就是原來的相差數是400-0=400,現在的相差數為396-2=394,相差數少了400-394=6)
372÷6=62 表示雞的只數,也就是說因為假設中的100隻兔子中有62隻改為了雞,所以腳的相差數從400改為28,一共改了372隻
100-62=38表示兔的只數

三.數字數位問題
1.把1至2005這2005個自然數依次寫下來得到一個多位數123456789.....2005,這個多位數除以9餘數是多少?
解:
首先研究能被9整除的數的特點:如果各個數位上的數字之和能被9整除,那麼這個數也能被9整除;如果各個位數字之和不能被9整除,那麼得的余數就是這個數除以9得的余數。
解題:1+2+3+4+5+6+7+8+9=45;45能被9整除
依次類推:1~1999這些數的個位上的數字之和可以被9整除
10~19,20~29……90~99這些數中十位上的數字都出現了10次,那麼十位上的數字之和就是10+20+30+……+90=450 它有能被9整除
同樣的道理,100~900 百位上的數字之和為4500 同樣被9整除
也就是說1~999這些連續的自然數的各個位上的數字之和可以被9整除;
同樣的道理:1000~1999這些連續的自然數中百位、十位、個位 上的數字之和可以被9整除(這里千位上的「1」還沒考慮,同時這里我們少200020012002200320042005
從1000~1999千位上一共999個「1」的和是999,也能整除;
200020012002200320042005的各位數字之和是27,也剛好整除。
最後答案為余數為0。

2.A和B是小於100的兩個非零的不同自然數。求A+B分之A-B的最小值...
解:
(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 * B/(A+B)
前面的 1 不會變了,只需求後面的最小值,此時 (A-B)/(A+B) 最大。
對於 B / (A+B) 取最小時,(A+B)/B 取最大,
問題轉化為求 (A+B)/B 的最大值。
(A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1
(A+B)/B = 100
(A-B)/(A+B) 的最大值是: 98 / 100

3.已知A.B.C都是非0自然數,A/2 + B/4 + C/16的近似值市6.4,那麼它的准確值是多少?
答案為6.375或6.4375
因為A/2 + B/4 + C/16=8A+4B+C/16≈6.4,
所以8A+4B+C≈102.4,由於A、B、C為非0自然數,因此8A+4B+C為一個整數,可能是102,也有可能是103。
當是102時,102/16=6.375
當是103時,103/16=6.4375

4.一個三位數的各位數字 之和是17.其中十位數字比個位數字大1.如果把這個三位數的百位數字與個位數字對調,得到一個新的三位數,則新的三位數比原三位數大198,求原數.
答案為476
解:設原數個位為a,則十位為a+1,百位為16-2a
根據題意列方程100a+10a+16-2a-100(16-2a)-10a-a=198
解得a=6,則a+1=7 16-2a=4
答:原數為476。

5.一個兩位數,在它的前面寫上3,所組成的三位數比原兩位數的7倍多24,求原來的兩位數.
答案為24
解:設該兩位數為a,則該三位數為300+a
7a+24=300+a
a=24
答:該兩位數為24。

6.把一個兩位數的個位數字與十位數字交換後得到一個新數,它與原數相加,和恰好是某自然數的平方,這個和是多少?
答案為121
解:設原兩位數為10a+b,則新兩位數為10b+a
它們的和就是10a+b+10b+a=11(a+b)
因為這個和是一個平方數,可以確定a+b=11
因此這個和就是11×11=121
答:它們的和為121。

7.一個六位數的末位數字是2,如果把2移到首位,原數就是新數的3倍,求原數.
答案為85714
解:設原六位數為abcde2,則新六位數為2abcde(字母上無法加橫線,請將整個看成一個六位數)
再設abcde(五位數)為x,則原六位數就是10x+2,新六位數就是200000+x
根據題意得,(200000+x)×3=10x+2
解得x=85714
所以原數就是857142
答:原數為857142

8.有一個四位數,個位數字與百位數字的和是12,十位數字與千位數字的和是9,如果個位數字與百位數字互換,千位數字與十位數字互換,新數就比原數增加2376,求原數.
答案為3963
解:設原四位數為abcd,則新數為cdab,且d+b=12,a+c=9
根據「新數就比原數增加2376」可知abcd+2376=cdab,列豎式便於觀察
abcd
2376
cdab
根據d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。
再觀察豎式中的個位,便可以知道只有當d=3,b=9;或d=8,b=4時成立。
先取d=3,b=9代入豎式的百位,可以確定十位上有進位。
根據a+c=9,可知a、c可能是1、8;2、7;3、6;4、5。
再觀察豎式中的十位,便可知只有當c=6,a=3時成立。
再代入豎式的千位,成立。
得到:abcd=3963
再取d=8,b=4代入豎式的十位,無法找到豎式的十位合適的數,所以不成立。

9.有一個兩位數,如果用它去除以個位數字,商為9餘數為6,如果用這個兩位數除以個位數字與十位數字之和,則商為5餘數為3,求這個兩位數.
解:設這個兩位數為ab
10a+b=9b+6
10a+b=5(a+b)+3
化簡得到一樣:5a+4b=3
由於a、b均為一位整數
得到a=3或7,b=3或8
原數為33或78均可以

10.如果現在是上午的10點21分,那麼在經過28799...99(一共有20個9)分鍾之後的時間將是幾點幾分?
答案是10:20
解:
(28799……9(20個9)+1)/60/24整除,表示正好過了整數天,時間仍然還是10:21,因為事先計算時加了1分鍾,所以現在時間是10:20

四.排列組合問題
1.有五對夫婦圍成一圈,使每一對夫婦的夫妻二人動相鄰的排法有( )
A 768種 B 32種 C 24種 D 2的10次方中
解:
根據乘法原理,分兩步:
第一步是把5對夫妻看作5個整體,進行排列有5×4×3×2×1=120種不同的排法,但是因為是圍成一個首尾相接的圈,就會產生5個5個重復,因此實際排法只有120÷5=24種。
第二步每一對夫妻之間又可以相互換位置,也就是說每一對夫妻均有2種排法,總共又2×2×2×2×2=32種
綜合兩步,就有24×32=768種。

2 若把英語單詞hello的字母寫錯了,則可能出現的錯誤共有 ( )
A 119種 B 36種 C 59種 D 48種
解:
5全排列5*4*3*2*1=120
有兩個l所以120/2=60
原來有一種正確的所以60-1=59

五.容斥原理問題
1. 有100種赤貧.其中含鈣的有68種,含鐵的有43種,那麼,同時含鈣和鐵的食品種類的最大值和最小值分別是( )
A 43,25 B 32,25 C32,15 D 43,11
解:根據容斥原理最小值68+43-100=11
最大值就是含鐵的有43種

2.在多元智能大賽的決賽中只有三道題.已知:(1)某校25名學生參加競賽,每個學生至少解出一道題;(2)在所有沒有解出第一題的學生中,解出第二題的人數是解出第三題的人數的2倍:(3)只解出第一題的學生比餘下的學生中解出第一題的人數多1人;(4)只解出一道題的學生中,有一半沒有解出第一題,那麼只解出第二題的學生人數是( )
A,5 B,6 C,7 D,8
解:根據「每個人至少答出三題中的一道題」可知答題情況分為7類:只答第1題,只答第2題,只答第3題,只答第1、2題,只答第1、3題,只答2、3題,答1、2、3題。
分別設各類的人數為a1、a2、a3、a12、a13、a23、a123
由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①
由(2)知:a2+a23=(a3+ a23)×2……②
由(3)知:a12+a13+a123=a1-1……③
由(4)知:a1=a2+a3……④
再由②得a23=a2-a3×2……⑤
再由③④得a12+a13+a123=a2+a3-1⑥
然後將④⑤⑥代入①中,整理得到
a2×4+a3=26
由於a2、a3均表示人數,可以求出它們的整數解:
當a2=6、5、4、3、2、1時,a3=2、6、10、14、18、22
又根據a23=a2-a3×2……⑤可知:a2>a3
因此,符合條件的只有a2=6,a3=2。
然後可以推出a1=8,a12+a13+a123=7,a23=2,總人數=8+6+2+7+2=25,檢驗所有條件均符。
故只解出第二題的學生人數a2=6人。

3.一次考試共有5道試題。做對第1、2、3、、4、5題的分別占參加考試人數的95%、80%、79%、74%、85%。如果做對三道或三道以上為合格,那麼這次考試的合格率至少是多少?
答案:及格率至少為71%。
假設一共有100人考試
100-95=5
100-80=20
100-79=21
100-74=26
100-85=15
5+20+21+26+15=87(表示5題中有1題做錯的最多人數)
87÷3=29(表示5題中有3題做錯的最多人數,即不及格的人數最多為29人)
100-29=71(及格的最少人數,其實都是全對的)
及格率至少為71%

六.抽屜原理、奇偶性問題
1.一隻布袋中裝有大小相同但顏色不同的手套,顏色有黑、紅、藍、黃四種,問最少要摸出幾只手套才能保證有3副同色的?
解:可以把四種不同的顏色看成是4個抽屜,把手套看成是元素,要保證有一副同色的,就是1個抽屜里至少有2隻手套,根據抽屜原理,最少要摸出5隻手套。這時拿出1副同色的後4個抽屜中還剩3隻手套。再根據抽屜原理,只要再摸出2隻手套,又能保證有一副手套是同色的,以此類推。
把四種顏色看做4個抽屜,要保證有3副同色的,先考慮保證有1副就要摸出5隻手套。這時拿出1副同色的後,4個抽屜中還剩下3隻手套。根據抽屜原理,只要再摸出2隻手套,又能保證有1副是同色的。以此類推,要保證有3副同色的,共摸出的手套有:5+2+2=9(只)
答:最少要摸出9隻手套,才能保證有3副同色的。

2.有四種顏色的積木若干,每人可任取1-2件,至少有幾個人去取,才能保證有3人能取得完全一樣?
答案為21
解:
每人取1件時有4種不同的取法,每人取2件時,有6種不同的取法.
當有11人時,能保證至少有2人取得完全一樣:
當有21人時,才能保證到少有3人取得完全一樣.

3.某盒子內裝50隻球,其中10隻是紅色,10隻是綠色,10隻是黃色,10隻是藍色,其餘是白球和黑球,為了確保取出的球中至少包含有7隻同色的球,問:最少必須從袋中取出多少只球?
解:需要分情況討論,因為無法確定其中黑球與白球的個數。
當黑球或白球其中沒有大於或等於7個的,那麼就是:
6*4+10+1=35(個)
如果黑球或白球其中有等於7個的,那麼就是:
6*5+3+1=34(個)
如果黑球或白球其中有等於8個的,那麼就是:
6*5+2+1=33
如果黑球或白球其中有等於9個的,那麼就是:
6*5+1+1=32

4.地上有四堆石子,石子數分別是1、9、15、31如果每次從其中的三堆同時各取出1個,然後都放入第四堆中,那麼,能否經過若干次操作,使得這四堆石子的個數都相同?(如果能請說明具體操作,不能則要說明理由)
不可能。
因為總數為1+9+15+31=56
56/4=14
14是一個偶數
而原來1、9、15、31都是奇數,取出1個和放入3個也都是奇數,奇數加減若干次奇數後,結果一定還是奇數,不可能得到偶數(14個)。

七.路程問題
1.狗跑5步的時間馬跑3步,馬跑4步的距離狗跑7步,現在狗已跑出30米,馬開始追它。問:狗再跑多遠,馬可以追上它?
解:
根據「馬跑4步的距離狗跑7步」,可以設馬每步長為7x米,則狗每步長為4x米。
根據「狗跑5步的時間馬跑3步」,可知同一時間馬跑3*7x米=21x米,則狗跑5*4x=20米。
可以得出馬與狗的速度比是21x:20x=21:20
根據「現在狗已跑出30米」,可以知道狗與馬相差的路程是30米,他們相差的份數是21-20=1,現在求馬的21份是多少路程,就是 30÷(21-20)×21=630米

2.甲乙輛車同時從a b兩地相對開出,幾小時後再距中點40千米處相遇?已知,甲車行完全程要8小時,乙車行完全程要10小時,求a b 兩地相距多少千米?
答案720千米。
由「甲車行完全程要8小時,乙車行完全程要10小時」可知,相遇時甲行了10份,乙行了8份(總路程為18份),兩車相差2份。又因為兩車在中點40千米處相遇,說明兩車的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。

多給你一些吧,謝謝請採納了,啊啊啊謝謝採納吧

⑹ 數學題,用啊

x^4-x^2-6=0
(x^2-3)(x^2+2)=0
1.x^2-3=0
x=正負根號3
2.x^2+2=0
x無解
所以x=正負根號3

⑺ 生活數學應用題50道,越多越好

10、有兩根同樣長的鐵絲,第一根減去30厘米,第二根減去18厘米,第二根餘下的是第一根所餘下長度的2倍,第二根鐵絲還剩多少厘米?24

11、有1,2,3,4,5,6,7,8,9的牌,甲、乙、丙各三張,甲說:「我的三張牌的積是48」,乙說:「我的三張牌之和是15」,丙說:「我的三張牌的積是63」,甲、乙、丙各拿什麼牌?
238 564 179
12 、用24厘米長的鐵絲可以圍成幾種不同的長方形(長與寬整厘米數且接頭處不計),面積分別是多少?再比較一下,你能發現什麼? 6

13、 張師傅習慣每工作5天休息2天。最近接到了生產330個零件的任務,他每天生產30個,那麼完成這批任務至少需要多少天?15

14、星期天,小輝乘計程車去看望8千米外的外婆。乘車時,他看了計程車上的車費牌價:5千米以內8元;5千米以上每千米2元。小輝到外婆家時,應付車費多少元?
14

15、 一個小數,如果把它的小數部分擴大4倍,就得到5.4;如果把它的小數部分擴大9倍,就得到8.4,那麼這個小數是多少?3、6

16、甲、乙二人的平均身高是1.66米,乙、丙二人的平均身高是1.7米,甲、丙二人的平均身高是1.65米,那麼甲乙丙三人的平均身高是多少?
1。67

17、 甲、乙、丙三個數之和為270,甲數是乙數的3倍,乙數是丙數的2倍,問甲、乙、丙三個數各是多少?
180 60 30

18、 有A、B兩個煤場,A煤場是B煤場存煤的3倍,若從A煤場運出180噸到B煤場,則兩煤場存煤相等,原來A、B兩煤場各存煤多少噸?
540 180

19、5個隊員排成一列做操,其中1個新來的隊員不能站在排首,有多少種不同的排法?
96

20、六(1)班有50人,會游泳的有25人,會體操的有28人,都不會的有5人,既會游泳又會體操的有多少人?8

21、青年號輪船在一條河裡順水而行120千米要用6小時,逆流而行280千米要用20小時。這只輪船在靜水中航行340千米要用多少小時?
20

22、將分母為15的所有最簡假分數由小到大依次排列,問第99個假分數的分子是多少?
214

23、用96朵紅花和72朵白花紮成花束,如果每個花束里紅花的朵數相同,白花的朵數也相同,每個花束里至少有多少朵花?
84

2、參加大型團體操的同學共有240名,他們面對教練站成一排,自左至右按1、2、3、4、……依次報數,教練讓每個同學記住自己報的數並做以下動作:先讓報數字3的倍數的同學向後轉,接著又讓報數是5的倍數同學向後轉,最後讓報數是7的倍數的學生向後轉,問此時還有多少學生面對教練?34+80+48-16-6-11=162-33=129

1. 山村郵遞員從郵局翻過山頂送郵件到用戶家共行23.5千米,用了6.5小時.他上山速度為每小時行3千米,下山速度為每小時行5千米.問用不變的上山下山速度原路返回,要用多少時間?
4.7
8.甲、乙兩地相距465千米,一輛汽車從甲地開往乙地,以每小時60千米的速度行駛一段後,每小時加速15千米,共用了7小時到達乙地。每小時60千米的速度行駛了幾小時?
9..籠中裝有雞和兔若干只,共100隻腳,若將雞換成兔,兔換成雞,則共92隻腳。籠中原有兔、雞各多少只?
10.蜘蛛有8條腿,蜻蜓有6條腿和2對翅膀。蟬有6條腿和1對翅膀。現在這三種小蟲共18隻,有118條腿和20對翅膀,每種小蟲各幾只?
11.學雷鋒活動中,同學們共做好事240件,大同學每人做好事8件,小同學每人做好事3件,他們平均每人做好事6件。參加這次活動的小同學有多少人?
12.某班42個同學參加植樹,男生平均每人種3棵,女生平均每人種2棵,已知男生比女生多種56棵,男、女生各有多少人?
13.書架上有6本不同的語文書,4本不同的外語書,3本不同的數學書,從中任取語文,外語,數學書各一本,有多少種不同的取法?
14.某班學生植樹,共有杉樹苗與楊樹苗100棵。每小組分杉樹苗6棵,楊樹苗8棵。這樣,杉樹苗正好分完,而楊樹苗還剩2棵。原來杉樹苗與楊樹苗各有多少棵?
15.用8千克絲可以織6分米寬的綢4米,現在有10千克絲,要織7.5分米寬的綢,可以織幾米?
16.下面是一個11位數,每三個相鄰數字之和都是15,你知道問號表示的數是幾嗎?這個11位數是多少?
17..甲、乙、丙三人一共買了8個麵包平均分著吃,甲付5個麵包的錢,乙付3個麵包的錢,丙沒帶錢。經計算,丙應該付4元錢,甲應收回多少錢?
18.有甲、乙、丙、丁、戊五個足球代表隊進行比賽,每個隊都要和其他隊賽一場,總共要塞多少場?
19.12枚硬幣的總值是1元,其中只有5分和1角兩種,問每種硬幣多少個?
20..甲乙兩人去商店買衣服,甲原有100元錢,乙原有70元錢,兩人買了同樣價格的衣服後,結果發現甲剩下的錢恰好是乙剩下的錢的4倍。問甲乙買衣服各用了多少元錢?
21.57輛軍車排成一列通過一座橋,前後兩輛車之間都保持2米的距離。橋長200米,每輛軍車長5米。從第一輛車頭到最末一輛車尾共長多少米?
22.買18張桌子和6把椅子共要1560元,10張桌子的價錢比6把椅子的價錢多680元,問每張桌子多少錢?每把椅子多少錢?
23. .甲.乙兩個儲油罐,甲比乙的儲油量少,把1/4乙中的1/6輸入甲,甲中儲油量比乙多2噸.乙原有油多少噸?
24.工廠組織400-450人參加植樹活動,平均每人植32棵.男職工平均每人植樹48棵,女職工平均每人植樹13棵.參加植樹的男.女職工各有多少人?(用比例求人數)
25.甲.乙.丙三倉庫存有救災物資,甲有120件,乙是甲.丙兩倉庫之和,丙是甲.乙倉庫的一半,救災物資一共有多少件?
26..甲.乙.丙三組共裝電視機500台.甲.乙兩組裝配台數的比是5:3,丙比乙少裝39台.丙裝了幾台?(假設丙多裝39台)
27.甲.乙兩地相距243KM,一輛貨車和客車同時從甲.乙兩地出發,相向而行,經過1.5小時相遇.貨車和客車的速度比是4:5,那麼,客車行完全程要多少小時?(兩種方法)
28.一個日用化工廠生產洗衣皂9800想,比生產的香皂多5/9.生產洗衣皂和香皂一共多少箱?(變分率巧解題)
29.小明和小聰分別在60米跑道兩端同時出發來回跑步,小明每秒跑2米,小聰每秒跑3米,他倆不停地跑了5分鍾,這期間他倆迎面相遇幾次?
30.小強買了三支鉛筆,三支圓珠筆,八本筆記本和十二塊橡皮,售貨員說共要付13元1角,已知鉛筆4角一支,圓珠筆2元8角一支,問售貨員的帳有沒有算錯
31.一項工程,甲獨做要3天,乙獨坐要5天。現甲先做1天剩下的甲乙合作還要幾天完成?
32.乙倉大米是甲倉的4/5,如果從甲倉調4噸大米到乙倉,則甲,乙兩倉大米重量的比是3:4,甲。乙兩倉原來各存大米多少噸?
33.7點什麼分的時候,分針落後時針100度?
34.兩輛汽車從A、B兩地同時出發、相向而行,甲每小行50千米,乙每小行60千米,經過3.5小時相遇。A、B兩地相距多少千米?(用兩種方法解答)
35.小明與小清家相距4.5千米,兩人同時騎車從家出發相向而行,小明每分鍾行50米,小青每分鍾行40米,經過幾分鍾兩人相遇?
36.小明與小清家相距4.5千米,兩人同時騎車從家出發相向而行,小明每分鍾行50米,小青每分鍾行40米,經過幾分鍾兩人相遇?
37.客車和貨車同時從兩城出發,相向而行,客車每小時行45千米,比貨車每小時多行3千米,經過4小時兩車相遇。兩城相距多少千米?

兩個工程隊同時從兩端開一條長850米的隧道,甲隊每天開鑿26米,乙隊每天開鑿24米,經過幾天就可以打通?
6、師徒兩個人合作加工一批零件,師傅每小時加工68個,徒弟每小時加工55個,合作6小時完成任務,這批零件一共有多少個?
7、加工廠用兩台磨面機同時磨面17280千克,第一台磨面機每小時磨面364千克,第二台磨面每小時磨面356千克,如果每天加工8小時,磨完這些麵粉需要多少天?
二、同時出發,相背而行
1、甲、乙兩人同時從學校出發向反方向行去。甲每分鍾走60米,乙每分鍾走70米,5分鍾後兩人相距多少米?(用兩種方法解答)
第一種方法: 第二種方法:
2、兩輛汽車同時從一個工廠出發,相背而行,一輛汽車每小時行33千米,另一輛汽車每小時行42千米。多少分鍾後兩車相距15千米?
三、同時出發、相向而行,不相遇
1、甲、乙兩站間的鐵路長560千米,兩列火車同時從兩站相對開出,一列火車每小時行63.5千米,另一列火車每小時行80.5千米,3小時後兩列火車還相距多少千米?
2、貨車和客車同時從甲、乙兩地相對開出,貨車每小時行57.5千米,客車每小時行45.8千米,3小時後兩車相距100千米,甲、乙兩地相距多少千米?
3、師徒兩人共同加工312個零件,師傅每小時加工45個,徒弟每小時加工35個,加工幾小時後還剩40個?
四、不同時出發,相向而行
1、甲、乙兩列火車從兩地相對行駛。甲車每小時行75千米,乙車每小時行69千米,甲車開出1小時後,乙車才出發,5小相遇。兩地間的鐵路長多少千米?(用兩種方法解答)
第一種方法: 第二種方法:
2、甲、乙兩港的水路長726千米,一艘貨輪從甲港開往乙港,每小時行69千米,1小時後,一艘客輪從乙港開住甲港,每小時行77千米,客輪開出後幾小時與貨輪相遇?相遇時客輪和貨輪各行了多少千米?
3、一批零件478個,甲每小時加工50個,乙每小時加工32個,甲先加工3小時餘下的兩人合作完成,再過幾小時完成任務?
五、同時、同地點出發、同方向行駛
甲、乙兩人同時騎車從A地到B地,甲每小時行14.2千米,乙每小時行18.7千米。8小時後兩人相距多少千米?(用兩種方法解答)
第一種方法: 第二種方法:

行程應用題
1、客貨兩車分別相距387千米的甲、乙兩地相對開出,客車先行1小時,每小時行72千米,貨車開出後2.5小時與客車相遇。貨車每小時行多少千米?
2、甲、乙兩輛汽車同時同向而行,甲汽車每小時行42千米,乙汽車每小時行45千米,2.4小時後兩車相距多少千米?
3、甲、乙兩船同時從一個碼頭向相反方向開出,甲船每小時行23.5千米,乙船每小時行21.5千米,航行幾個小時後,兩船相距315千米?
4、甲、乙兩列火車同時從相距453千米的兩地相對開出,甲車每小時行45千米。5小時後兩車還相距28千米,乙車每小時行多少千米?
5、一輛汽車從甲地開往乙地,每小時行56千米,3小時後距離中點還有6千米,這時這輛汽車距乙地還有多少千米?
6、兩列火車同時從甲乙兩地相向開出,第一列火車從甲站出發,每小時行50千米,第二列火車從乙站出發,每小時行60千米,兩車相遇時,第一列火車正好行了全程的 ,離乙站還有300千米。甲乙兩地相距多少千米?
7、甲乙兩個同學在400米一圈的運動場跑道上,同時同地反向跑步,甲每秒鍾5米,乙每秒鍾6米,大約多少秒鍾後兩人相遇?
8、趙蘭步行上學,每分鍾行75米,趙蘭離家6分鍾後,媽媽發現趙蘭沒戴紅領巾,就騎車去追,每分鍾行375米,媽媽出發多少分鍾後能追上趙蘭?
9、甲乙兩車同時從兩地相向而行,甲每小時行83千米,乙每小時行95千米,兩車在距中點24千米處相遇,求兩地距離?
10、甲、乙兩列火車分別從兩個車站相向開出,甲車每小時行48千米,乙車每小時行52千米,如果相遇時,甲車比乙車一共少行20千米,那麼兩站之間的距離是多少千米
26. 有甲乙兩種糖水,甲含糖270克,含水30克,乙含糖400克,含水100克,現要得到濃度是82.5%的糖水100克,問每種應取多少克?

27. 一個容器里裝有10升純酒精,倒出1升後,用水加滿,再倒出1升,用水加滿,再倒出1升,用水加滿,這時容器內的酒精溶液的濃度是?

28. 有若干千克4%的鹽水,蒸發了一些水分後變成了10%的鹽水,在加300克4%的鹽水,混合後變成6.4%的鹽水,問最初的鹽水是多少千克?

29.已知鹽水若干克,第一次加入一定量的水後,鹽水濃度變為3%,第二次加入同樣多的水後,鹽水濃度變為2%。求第三次加入同樣多的水後鹽水的濃度。

30.有A、B、C三種鹽水,按A與B的數量之比為2:1混合,得到濃度為13%的鹽水;按A與B的數量之比為1:2混合,得到濃度為14%的鹽水;按A、B、C的數量之比為1:1:3混合,得到濃度為10.2%的鹽水,問鹽水C的濃度是多少?
[ 答案 ]

1. 從右邊開始數,他是第 19位 .

2. 4 月2 日上午9 時.

3.9名工人 .

4.有 5個 .

13× 7+7=98< 100,商數從 8開始 .但余數小於 13,最大是 12,有 13× 8+ 8= 112, 13× 9+ 9= 126, 13× 10+ 10=140, 13× 11+ 11=154, 13× 12+ 12= 168,共 5個數 .

5.至少有 11人 .

人數最多的房間至少有 3人,其餘三個房間至少有 8人,總共至少有 11人 .

6.最大的兩位約數是 74.

1998= 2× 3× 3× 3× 37

7.第四次最少要得 96分 .

88+( 90- 88)× 4=96(分)

8.最多有 5個月有 5個星期日 .

1月 1日是星期日,全年就有 53個星期日 .每月至少有 4個星期日, 53-4× 12=5,多出 5個星期日,在 5個月中 .

9.105.

和的前兩位是 1和 0,兩位數的十位是 9.因此加數的個位最大是 7和 8.

10.後兩位數是 14.

285700÷( 11× 13) =1997餘 129

余數 129再加 14就能被 143整除 .

11.男生比女生多 32人 .
男生 4%是 3+ 8=11(人),男生有 11÷ 4% =275(人),女生有 518-275=243(人), 275-243=32(人) .

12.最少 5元、 2元、 1元的硬幣共 11個 .

購物 3次,必須備有 3個 5元、 3個 2元、 3個 1元 .為了應付 3次都是 4元,至少還要 2個硬幣,例如 2元和 1元各一個,因此,總數 11個是不能少的 .准備 5元 3個, 2元 5個, 1元 3個,或者 5元 3個, 2元 4個, 1元 4個就能三次支付 1元至 9元任何錢數 .

14.A班每人能得 35張 .

設三班總人數是 1,則 B班人數是 6/15, C班人數是 6/14,因此 A班人數是:

15.第一個數報 6.

對方至少要報數 1,至多報數 8,不論對方報什麼數,你總是可以做到兩人所報數之和為 9.

123÷ 9= 13…… 6.

你第一次報數 6.以後,對方報數後,你再報數,使一輪中兩人報的數和為 9,你就能在 13輪後達到 123.

16.4

17.甲26又2/3天,乙40天

18.21

19.14又1/3

20.10

21.甲、乙兩地相距540千米,原來火車的速度為每小時90千米。

22.750

23.384

24.600

25.一班48人,二班42人

26.15

27.82

28.312

29.最少5個,最多7個

30.784
先別看答案

⑻ 初一數學應用題60題

1、運送29.5噸煤,先用一輛載重4噸的汽車運3次,剩下的用一輛載重為2.5噸的貨車運。還要運幾次才能完?
還要運x次才能完
29.5-3*4=2.5x
17.5=2.5x
x=7
還要運7次才能完

2、一塊梯形田的面積是90平方米,上底是7米,下底是11米,它的高是幾米?
它的高是x米
x(7+11)=90*2
18x=180
x=10
它的高是10米

3、某車間計劃四月份生產零件5480個。已生產了9天,再生產908個就能完成生產計劃,這9天中平均每天生產多少個?
這9天中平均每天生產x個
9x+908=5408
9x=4500
x=500
這9天中平均每天生產500個

4、甲乙兩車從相距272千米的兩地同時相向而行,3小時後兩車還相隔17千米。甲每小時行45千米,乙每小時行多少千米?
乙每小時行x千米
3(45+x)+17=272
3(45+x)=255
45+x=85
x=40
乙每小時行40千米

5、某校六年級有兩個班,上學期級數學平均成績是85分。已知六(1)班40人,平均成績為87.1分;六(2)班有42人,平均成績是多少分?
平均成績是x分
40*87.1+42x=85*82
3484+42x=6970
42x=3486
x=83
平均成績是83分

6、學校買來10箱粉筆,用去250盒後,還剩下550盒,平均每箱多少盒?
平均每箱x盒
10x=250+550
10x=800
x=80
平均每箱80盒

7、四年級共有學生200人,課外活動時,80名女生都去跳繩。男生分成5組去踢足球,平均每組多少人?
平均每組x人
5x+80=200
5x=160
x=32
平均每組32人

8、食堂運來150千克大米,比運來的麵粉的3倍少30千克。食堂運來麵粉多少千克?
食堂運來麵粉x千克
3x-30=150
3x=180
x=60
食堂運來麵粉60千克

9、果園里有52棵桃樹,有6行梨樹,梨樹比桃樹多20棵。平均每行梨樹有多少棵?
平均每行梨樹有x棵
6x-52=20
6x=72
x=12
平均每行梨樹有12棵

10、一塊三角形地的面積是840平方米,底是140米,高是多少米?
高是x米
140x=840*2
140x=1680
x=12
高是12米

11、李師傅買來72米布,正好做20件大人衣服和16件兒童衣服。每件大人衣服用2.4米,每件兒童衣服用布多少米?
每件兒童衣服用布x米
16x+20*2.4=72
16x=72-48
16x=24
x=1.5
每件兒童衣服用布1.5米

12、3年前母親歲數是女兒的6倍,今年母親33歲,女兒今年幾歲?
女兒今年x歲
30=6(x-3)
6x-18=30
6x=48
x=8
女兒今年8歲

13、一輛時速是50千米的汽車,需要多少時間才能追上2小時前開出的一輛時速為40千米汽車?
需要x時間
50x=40x+80
10x=80
x=8
需要8時間

14、小東到水果店買了3千克的蘋果和2千克的梨共付15元,1千克蘋果比1千克梨貴0.5元,蘋果和梨每千克各多少元?
蘋果x
3x+2(x-0.5)=15
5x=16
x=3.2
蘋果:3.2
梨:2.7

15、甲、乙兩車分別從A、B兩地同時出發,相向而行,甲每小時行50千米,乙每小時行40千米,甲比乙早1小時到達中點。甲幾小時到達中點?
甲x小時到達中點
50x=40(x+1)
10x=40
x=4
甲4小時到達中點

16、甲、乙兩人分別從A、B兩地同時出發,相向而行,2小時相遇。如果甲從A地,乙從B地同時出發,同向而行,那麼4小時後甲追上乙。已知甲速度是15千米/時,求乙的速度。
乙的速度x
2(x+15)+4x=60
2x+30+4x=60
6x=30
x=5
乙的速度5

17.兩根同樣長的繩子,第一根剪去15米,第二根比第一根剩下的3倍還多3米。問原來兩根繩子各長幾米?
原來兩根繩子各長x米
3(x-15)+3=x
3x-45+3=x
2x=42
x=21
原來兩根繩子各長21米

18.某校買來7隻籃球和10隻足球共付248元。已知每隻籃球與三隻足球價錢相等,問每隻籃球和足球各多少元?
每隻籃球x
7x+10x/3=248
21x+10x=744
31x=744
x=24
每隻籃球:24
每隻足球:8
小明家中的一盞燈壞了,現想在兩種燈裏選購一種,其中一種是11瓦(即0.011千瓦)的節能燈,售價60元;另一種是60瓦(即0.06千瓦)的白燈,售價3元,兩種燈的照明效果一樣,使用壽命也相同。節能燈售價高,但是較省電;白燈售價低,但是用電多。如果電費是1元/(千瓦時),即1度電1元,試根據課本第三章所學的知識內容,給小明意見,可以根據什麼來選擇買哪一種燈比較合理?
參考資料:
(1) 1千瓦=1000瓦
(2) 總電費(元)=每度電的電費(元/千瓦時)X燈泡功率(千瓦)X使用時間(小時)
(3) 1度電=1千瓦連續使用1小時
假設目前電價為1度電要3.5元
如果每隻電燈泡功率為21瓦,每小時用電則為0.021度。
每小時電費= 3.5元 X 0.021 =0.0735元
每天電費=0.0735 X 24小時 =1.764元
每月電費=1.764 X 30天 =52.92元

這是一個簡單的一元一次方程的求解平衡點問題,目標是從數個決策中找出各個平衡點,從不同的平衡點選擇中來找出較優的決策。

解答過程:
設使用時間為A小時,
1*0.011*A+60=1*0.06*A+3
這個方程的意義就是,當使用節能燈和白燈的時間為A小時的時候,兩種燈消耗的錢是相同的。解方程。
A=1163.265小時
也就是說當燈泡可以使用1163.265小時即48.47天的時候兩個燈泡所花費的錢的一樣多的。
那麼如果燈泡壽命的時間是48.47天以下,那麼白燈比較經濟,壽命是48.47天以上,節能燈比較經濟。
為節約能源,某單位按以下規定收取每月電費:用電不超過140度,按每度0.43元收費;如果超過140度,超過部分按每度0.57元收費。若墨用電戶四月費的電費平均每度0.5元,問該用電戶四月份應繳電費多少元?

設總用電x度:[(x-140)*0.57+140*0.43]/x=0.5
0.57x-79.8+60.2=0.5x
0.07x=19.6
x=280
再分步算: 140*0.43=60.2
(280-140)*0.57=79.8
79.8+60.2=140

1)某大商場家電部送貨人員與銷售人員人數之比為1:8。今年夏天由於家電購買量明顯增多,家電部經理從銷售人員中抽調了22人去送貨。結果送貨人員與銷售人數之比為2:5。求這個商場家電部原來各有多少名送貨人員和銷售人員?

設送貨人員有X人,則銷售人員為8X人。

(X+22)/(8X-22)=2/5
5*(X+22)=2*(8X-22)
5X+110=16X-44
11X=154

X=14

8X=8*14=112
這個商場家電部原來有14名送貨人員,112名銷售人員

現對某商品降價10%促銷,為了使銷售金額不變,銷售量要比按原價銷售時增加百分之幾?

設:增加x%
90%*(1+x%)=1
解得: x=1/9
所以,銷售量要比按原價銷售時增加11.11%

甲.乙兩種商品的原單價和為100元,因市場變化,甲商品降10%,乙商品提價5%調價後兩商品的單價和比原單價和提高2%,甲.乙兩商品原單價各是多少/

設甲商品原單價為X元,那麼乙為100-X
(1-10%)X+(1+5%)(100-X)=100(1+2%)
結果X=20元 甲
100-20=80 乙

甲車間人數比乙車間人數的4/5少30人,如果從乙車間調10人到甲車間去,那麼甲車間的人數就是乙車間的3/4。求原來每個車間的人數。

設乙車間有X人,根據總人數相等,列出方程:
X+4/5X-30=X-10+3/4(X-10)
X=250
所以甲車間人數為250*4/5-30=170.
說明:
等式左邊是調前的,等式右邊是調後的

甲騎自行車從A地到B地,乙騎自行車從B地到A地,兩人都均速前進,以知兩人在上午8時同時出發,到上午10時,兩人還相距36千米,到中午12時,兩人又相距36千米,求A.B兩地間的路程?(列方程)

設A,B兩地路程為X
x-(x/4)=x-72
x=288
答:A,B兩地路程為288

1.甲、乙兩車長度均為180米,若兩列車相對行駛,從車頭相遇到車尾離開共12秒;若同向行駛,從甲車頭遇到乙車尾,到甲車尾超過乙車頭需60秒,車的速度不變,求甲、乙兩車的速度。
二車的速度和是:[180*2]/12=30米/秒
設甲速度是X,則乙的速度是30-X

180*2=60[X-(30-X)]

X=18

即甲車的速度是18米/秒,乙車的速度是:12米/秒

兩根同樣長的蠟燭,粗的可燃3小時,細的可燃8/3小時,停電時,同時點燃兩根蠟燭,來電時同時吹滅,粗的是細的長度的2倍,求停電的時間.
設停電的時間是X
設總長是單位1,那麼粗的一時間燃1/3,細的是3/8
1-X/3=2[1-3X/8]

X=2。4
即停電了2。4小時。
1.甲、乙兩車長度均為180米,若兩列車相對行駛,從車頭相遇到車尾離開共12秒;若同向行駛,從甲車頭遇到乙車尾,到甲車尾超過乙車頭需60秒,車的速度不變,求甲、乙兩車的速度。

2.兩根同樣長的蠟燭,粗的可燃3小時,細的可燃8/3小時,停電時,同時點燃兩根蠟燭,來電時同時吹滅,粗的是細的長度的2倍,求停電的時間.
注意:說明理由!!!
列一元一次方程解!!!

二車的速度和是:[180*2]/12=30米/秒
設甲速度是X,則乙的速度是30-X

180*2=60[X-(30-X)]

X=18

即甲車的速度是18米/秒,乙車的速度是:12米/秒

補充回答:
設停電的時間是X
設總長是單位1,那麼粗的一時間燃1/3,細的是3/8
1-X/3=2[1-3X/8]

X=2。4
即停電了2。4小時。
1.再一次數學測驗中,老師出了25道選擇題,每個題都有四個選項,有且只有一個選項是正確的,老師的評分標準是:答對一道題給4分,不答或答錯一題倒扣1分,問:
(1)一名同學得了90分,這位同學答對了幾道題?
(2)一名同學得了60分,這位同學答對了幾道題?

2.光明中學組織七年級師生春遊,如果單租45座客車若干輛,則剛好坐滿;如果單租60座的客車,可少租一輛,且餘15個座位。
(1)求參加春遊的師生總人數

(2)已知45座客車的租金為每天250元,60座客車的租金為每天300元,單
租哪種客車省錢?

(3)如果同時租用這兩種客車,那麼兩種客車分別租多少輛最省錢?寫計程車方案。

3.一張圓桌由一個桌面和四條腿組成,如果1m三次方,木料可製作圓桌的桌面50個,或制桌腿300條,現有5m三次方,木料,請你設計一下,用多少木料做桌腿,恰好配成圓桌多少張。

解答後請思考
(1)在建立一元一次方程模型解決實際問題的過程中要把握什麼?

(2)解一元一次方程步驟有那些?

4.有一個三位數,其各數位的數字和是16,十位數字是個位數字和百位數字的和,如果把百位數字與個位數字對調,那麼新數比原數大594,求原數。(一元一次解答)

5.把99拆成4個數,使第一個數加2,第二個數減2,第三個數乘2,第四個數除以2,得到結果都相等,應該怎樣拆?

答案:
1.(1)解:設該同學答對X道題,根據題意答錯的為(25-X).
4*X-1*(25-X)=90
4*X-25+X=90
5*X=115
X=23
(2)解:設該同學答對X道題,根據題意答錯的為(25-X).
4*X-1*(25-X)=60
4*X-25+X=60
5*X=85
X=17
2.根據題意設租45座客車為X輛可坐滿,則需X-1輛60座的可餘15空座.
45*X=60*(X-1)-15
45*X=60*X-60-15
15*X=75
X=5
(1)參加春遊的總人數為45人*5輛=225人.
(2)45座的每天需要錢為250元*5輛=1250元,60座的每天需要錢為300元*(5-1)輛=1200元,所以租60座的較省錢.
(3)租3輛60座的1輛45座最劃算,3*300+1*250=1150

⑼ 五年級下冊數學應用題40道,帶答案

問:給一個茶筒貼紙,長7厘米,寬1分米。求這張紙的面積。(單位:分米)
答:10×7×4=280(c㎡)=28(d㎡)
答:紙的面積為28d㎡。

熱點內容
初中數學找規律題 發布:2025-06-17 21:50:21 瀏覽:610
英語作文模板及範文 發布:2025-06-17 21:25:08 瀏覽:833
八年級物理實驗教學計劃 發布:2025-06-17 16:34:58 瀏覽:940
安全教育考試試題 發布:2025-06-17 16:07:41 瀏覽:738
2013重慶高考語文答案 發布:2025-06-17 15:58:16 瀏覽:648
日韓舞蹈教學 發布:2025-06-17 14:12:12 瀏覽:222
2017小學教師師德總結 發布:2025-06-17 12:54:17 瀏覽:275
中國化學奧林匹克競賽 發布:2025-06-17 11:57:02 瀏覽:786
大學教師師德師風學習心得體會 發布:2025-06-17 11:46:07 瀏覽:415
嫩江教育局 發布:2025-06-17 10:43:44 瀏覽:340