九年級下冊數學答案
『壹』 九年級下冊初中數學學練優優翼答案
代數幾何學的興起,主要是源於求解一般的多項式方程組,開展了由這種方程組的解答所構成的空間,也就是所謂代數簇的研究。解析幾何學的出發點是引進了坐標系來表示點的位置,同樣,對於任何一種代數簇也可以引進坐標,因此,坐標法就成為研究代數幾何學的一個有力的工具。
代數幾何的研究是從19世紀上半葉關於三次或更高次的平面曲線的研究開始的。例如,阿貝爾在關於橢圓積分的研究中,發現了橢圓函數的雙周期性,從而奠定了橢圓曲線理論基礎。
黎曼1857年引入並發展了代數函數論,從而使代數曲線的研究獲得了一個關鍵性的突破。黎曼把他的函數定義在復數平面的某種多層復迭平面上,從而引入了所謂黎曼曲面的概念。運用這個概念,黎曼定義了代數曲線的一個最重要的數值不變數:虧格。這也是代數幾何歷史上出現的第一個絕對不變數。
在黎曼之後,德國數學家諾特等人用幾何方法獲得了代數曲線的許多深刻的性質。諾特還對代數曲面的性質進行了研究。他的成果給以後義大利學派的工作建立了基礎。
從19世紀末開始,出現了以卡斯特爾諾沃、恩里奎斯和塞維里為代表的義大利學派以及以龐加萊、皮卡和萊夫謝茨為代表的法國學派。他們對復數域上的低維代數簇的分類作了許多非常重要的工作,特別是建立了被認為是代數幾何中最漂亮的理論之一的代數曲面分類理論。但是由於早期的代數幾何研究缺乏一個嚴格的理論基礎,這些工作中存在不少漏洞和錯誤,其中個別漏洞直到還沒有得到彌補。
20世紀以來代數幾何最重要的進展之一是它在最一般情形下的理論基礎的建立。20世紀30年代,扎里斯基和范·德·瓦爾登等首先在代數幾何研究中引進了交換代數的方法。在此基礎上,韋伊在40年代利用抽象代數的方法建立了抽象域上的代數幾何理論,然後20世紀50年代中期,法國數學家塞爾把代數簇的理論建立在層的概念上,並建立了凝聚層的上同調理論,這個為格羅騰迪克隨後建立概型理論奠定了基礎。概型理論的建立使代數幾何的研究進入了一個全新的階段。
『貳』 九年級數學基訓答案
數學課程基礎訓練九年級下冊答案
答:解:由已知得:△CDP∽△CAB,△BPE∽△BCA
∴DP:AB=CP:CA,PE:CA=BP:BC
又∵在RT△BAC中,∠BAC=90°∴AB...望採納O(∩_∩)O哈!
『叄』 數學課程基礎訓練九年級下冊答案
由已知得:△CDP∽△CAB,△BPE∽△BCA
∴DP:AB=CP:CA,PE:CA=BP:BC
又∵在RT△BAC中,∠BAC=90°∴AB�� AC��=BC��
∴BC=√AB�� AC��=5
∴PD=(內AB×CP)÷CA=【3×(BC-X)】÷容4=3(5-X)÷4
PE=(CA×BP)÷BC=4X÷5
∴PD PE=3(5-X)÷4 4X÷5
(你在紙上化簡一下,電腦上不好化簡.)
『肆』 九年級數學上冊答案
你好,雨過丶彩虹:
我覺得你寫錯了吧?應該是九年級數學下冊吧?九年級數學上冊根本就找不到這些題目?
以下是人教版九年級數學下冊你所說的題目的答案:
P31 1—7
1、根據題意,得AE=4-x,EG=4+x
∴y=(4-x)(4+x)=-x²+16(0<x<4)
2、根據題意,得第2年的銷售量為5000(1+x)台,則第3年的銷售量為5000(1+x)²台,即y=5000(x+1)²
3、D
4、圖略
(1)y=x²+2x-3,開口方向向上,對稱軸x=-1,頂點坐標(-1,-4)
(2)y=1+6x-x²,開口方向向下,對稱軸x=3,頂點坐標(3,10)
(3)y=1/2x²+2x+1,開口方向向上,對稱軸x=-2,頂點坐標(-2,-1)
(4)y=-1/4x²+x-4,開口方向向下,對稱軸x=2,頂點坐標(2,-3)
5、∵s=15t-6t²=-6(t-5/4)²+75/8
∴當t=5/4時,s有最大值75/8
∴汽車剎車後到停下來前進了75/8m
6、(1)y=7/8x²+2x+1/8
(2)y=20/3x²-20/3x-5
7、設長為x m,則寬為(30-x)/2 m
∴菜園的面積可表示為y=x(15-x/2)=-(x²/2)+15x=-1/2(x-15)²+112.5
當x=15時,y有最大值112.5
∴矩形長為15m、寬為7.5m時,菜園面積最大,最大面積為112.5m²
P32 8—9
8、當s=85時,85=1.8t+0.064t²,則t=25,故他通過這段山坡需要25s
9、設矩形的長為x cm,則寬為(36-2x)/2=(18-x)cm
繞一邊旋轉後所成圓柱的側面積y=2πx ×(18-x)=-2π(x-9)²+162π
∴當x=9時,側面積最大,即當矩形長、寬都為9cm時,圓柱的側面積最大
P70 1—6
1、∵相似多邊形的各對應角相等,各對應邊的比相等
∴∠E=∠K,∠G=∠M,∠F=∠360°-(∠E+∠H+∠G),∠F=∠N
∴∠E=67°,∠G=107°,∠N=360°-(67°+107°+143°)=43°
∵x/35=6/y=10/z=4/10,∴x=14,y=15,x=25
2、∵相似三角形對應邊的比相等,設△DEF另兩條邊分別為x,y,周長為C
∴5/15=12/x=13/y,C=15+x+y
∴x=36,y=39,C=90
3、(1)∵∠1=∠2,∠G=∠I=90°,∴△FGH∽△JIH,∴3/6=x/8=5/y,∴x=4,y=10
(2)∵∠FHG+∠GHJ=∠KHJ+∠KHF,∠KHF=∠GHJ=90°,∴∠GHF=∠KHJ
又∵GH/KH=FH/HJ=3/2,∴△GFH∽△KHJ,∴x=124°,y/22=3/2,∴y=33
4、∵面積比等於邊長比的平方
∴廣告面積變為原來的9倍,即要付廣告費180×9=1620(元)
5、圖略
先選定位似中心O,然後根據位似圖形的特點畫圖
6、根據位似的性質可知,黑板上的字與教科書上的字的相似比為6:0.3=20:1
∴設黑板上的字長為x cm、寬為y cm時,才能使學生看時與教科書上的字感覺相同,則
x/0.4=y/0.35=20/1,x=8,y=7
∴黑板上的字大小應為7cm×8cm
P71 7—10
7、∵OA/OC=OB/OD,∠DOC=∠AOB,∴△DOC∽△AOB
∴CD/AB=OC/OA,即b/AB=1/n,∴AB=nb,∴x=1/2(a-nb)
8、∵C為圓周上一點,∴∠ACB=90°
∴∠ACP+∠PCB=90°
又∵CD⊥AB,∴∠PCB+∠PBC=90°
∴∠ACP=∠BPC
又∵∠APC=∠BPC=90°
∴△APC∽△CPB,∴PA/PC=PC/PB,∴PC²=PA×PB
9、過程略,球能碰到牆面離地5.4m高的地方
10、35mm=0.035m,50mm=0.05m,70mm=0.07m,由題意知,△XYL∽△ABL
當焦距為50mm時,0.035m/AB=0.07m/5m
∴AB=2.5m
故焦距為70mm時,能拍攝5m處的景物有2.5m寬
P72 11—12
11、∵DB‖AC,∴△DOB∽△COA,∴OD/OC=OB/OA,∴OA×OD=OB×OC
12、設陰影部分的寬為x cm,則陰影部分的長為6cm
∵原來的矩形與陰影部分相似
∴10/6=6/x,∴x=3.6
∴留下的矩形面積為S=3.6×6=21.6cm²
P97 1—9
1、∵在Rt△ABC中,∠C=90°,a=2,sinA=1/3,∴c=a/sinA=2/(1/3)=6
∴b=√6²-2²=4√2
∴cosA=b/c=(4√2)/6=(2√2)/3,tanA=a/b=2/(4√2)=(√2)/4
2、∵∠C=90°,cosA=(√3)/2,∴AC/AB=(√3)/2
又∵AC=4√3,∴AB=(4√3)/(√3/2)=8
∴BC=√8²-(4√3)²=4
3、(1)原式=√2×(√2)/2-1=0
(2)原式=√3×(√3/2)+√3-2×(√3/2)²=3/2+√3-2×(3/4)=√3
4、(1)0.54 (2)0.43 (3)7.27 (4)-0.04
5、(1)A=40.08° (2)A=69.12° (3)A=88.38° (4)A=35.26°
6、
(1)若頂角為30°,腰為2√3,則AB=AC=2√3,則BC=2×AC×cos75°=4√3 cos75°
∴△ABC的周長為AB+AC+BC≈8.6
(2)若頂角為30°,底邊為2√3,則BC=2√3,則AB=AC=(√3)/cos75°
∴△ABC的周長為AB+AC+BC≈16.8
(3)若頂角為30°,腰為2√3,則AB=AC=2√3,BC=2ABcos30°=4√3×(√3/2)=6
∴△ABC的周長為AB+AC+BC=6+4√3
(4)若底角為30°,底邊為2√3,則BC=2√3,則AB=(√3)/(√3/2)=2=AC
∴△ABC的周長為AB+AC+BC=4+2√3
7、過程略,船離海岸42/tan33°≈65m遠
8、由題意得tan43°24′=AB/BC,∴AB=BC×tan43°24′≈30.8m
過點D作DE⊥AB於點E,∵tan35°12′=AE/DE,AE=DE×tan35°12′≈23.0m
∴DC=AB-AE=30.8-23.0=7.8m,故這兩個建築物的高度分別為30.8m,7.8m
9、作CG⊥CD,與BA延長線交於點G;作BF⊥AB,與CD延長線於F;過D作DE⊥AB交於E
∵∠EDB=30°,∴∠DBF=30°,AG=CG=BF=5cm,∴BD=BF/cos30°=10/1.732≈5.8m
DF=5/√3≈2.9,∵∠GCA=45°,∴AC=5/(√2/2)=5√2≈7.3m
∴AB=CF-AG=3.4+5/√3-5=1.3m
P98 10—13
10、(1)5.8米(2)66°,可以安全使用這個梯子
11、(1)△AFB∽△FEC
(2)設CE=3x,CF=4x,則AB=8x,BF=6x,AF=10x,在Rt△AEF中,AF²+EF²=AE²
∴(5x)²+(10x)²=(5√5)²,解得x=1,則周長是2(10x+8x)=36cm
12、已知AB,BC及其夾角∠B,能求出平行四邊形ABCD的面積S
S=AB×BC×sin∠B
13、
(1)內接正n邊形的周長為:2nRsin(180°/n)
內接正n邊形的面積為:nR²sin(180°/n)cos(180°/n)
(2)
內接正n邊形 正六邊形 正十二邊形 正二十四邊形 ……
周長 6R 6.21R 6.26R ……
面積 2.6R² 3R² 3.1R² ……
P125 1—3
1、圖中三視圖對應的直觀圖是(3)
2、圖略(自己畫吧,這里操作不方便)
3、底層有三個正方體,第二層有2個正方體,且與最底層的正方體錯位1/2,最上層有一個正方體,放在第二層右邊的正方體上
P126 4—7
4、圖略
5、正六稜柱
6、三視圖略
物體為一底面半徑為5、高為20的圓柱體
∴體積為V=π×5²×20=500π
表面積為S=2π×5×20+2π×5²=250π
7、展開圖略
表面積為S=π×(5√2)²×(1/√2)+20×2π×5+π×5²=25(√2 +9)π
『伍』 人教版九年級下冊數學小題精練的答案
作業最好是自己做哦,這樣對學習中的學生來說才能提高成績。如果手機是安卓內手機,就請在各容應用市場更新最新版本作業幫,在拍照搜題頁面上方點擊「作業答案」,即可進行掃碼搜索
我目前有辦法給你的是,第一,加班上群里找同學的抄(當然並不建議你這么做;第二,就是自己好好做,提高自己。當然,最好的辦法還是自己做,對成績有好處。
作業怎麼能發到網上來問答案呢,這樣對你學習成績沒什麼用。多問問老師才對學習成績能提高,多思考一下,一般的練習題並不難的。