當前位置:首頁 » 歷物理化 » 圓周率的歷史

圓周率的歷史

發布時間: 2020-11-21 04:49:07

⑴ 圓周率的歷史資料有關內容

圓周率的歷史資料:

古希臘作為古代幾何王國對圓周率的貢獻尤為突出。古希臘大數學家阿基米德 開創了人類歷史上通過理論計算圓周率近似值的先河。

阿基米德從單位圓出發,先用內接正六邊形求出圓周率的下界為3,再用外接正六邊形並藉助勾股定理求出圓周率的上界小於4。

接著,他對內接正六邊形和外接正六邊形的邊數分別加倍,將它們分別變成內接正12邊形和外接正12邊形,再藉助勾股定理改進圓周率的下界和上界。

他逐步對內接正多邊形和外接正多邊形的邊數加倍,直到內接正96邊形和外接正96邊形為止。最後,他求出圓周率的下界和上界分別為223/71 和22/7, 並取它們的平均值3.141851 為圓周率的近似值。

(1)圓周率的歷史擴展閱讀:

把圓周率的數值算得這么精確,實際意義並不大。現代科技領域使用的圓周率值,有十幾位已經足夠了。

如果以39位精度的圓周率值,來計算宇宙的大小,誤差還不到一個原子的體積 。以前的人計算圓周率,是要探究圓周率是否循環小數。

自從1761年蘭伯特證明了圓周率是無理數,1882年林德曼證明了圓周率是超越數後,圓周率的神秘面紗就被揭開了,π在許多數學領域都有非常重要的作用。

⑵ 關於圓周率的歷史資料

古希臘作為古代幾何王國對圓周率的貢獻尤為突出。古希臘大數學家阿基米德(公元前287–212 年) 開創了人類歷史上通過理論計算圓周率近似值的先河。阿基米德從單位圓出發,先用內接正六邊形求出圓周率的下界為3,再用外接正六邊形並藉助勾股定理求出圓周率的上界小於4。

接著,他對內接正六邊形和外接正六邊形的邊數分別加倍,將它們分別變成內接正12邊形和外接正12邊形,再藉助勾股定理改進圓周率的下界和上界。他逐步對內接正多邊形和外接正多邊形的邊數加倍,直到內接正96邊形和外接正96邊形為止。

最後,他求出圓周率的下界和上界分別為223/71 和22/7, 並取它們的平均值3.141851 為圓周率的近似值。阿基米德用到了迭代演算法和兩側數值逼近的概念,稱得上是「計算數學」的鼻祖。

南北朝時代著名數學家祖沖之進一步得出精確到小數點後7位的π值(約5世紀下半葉),給出不足近似值3.1415926和過剩近似值3.1415927,還得到兩個近似分數值,密率355/113和約率22/7。他的輝煌成就比歐洲至少早了1000年。

其中的密率在西方直到1573才由德國人奧托得到,1625年發表於荷蘭工程師安托尼斯的著作中,歐洲不知道是祖沖之先知道密率的,將密率錯誤的稱之為安托尼斯率。

阿拉伯數學家卡西在15世紀初求得圓周率17位精確小數值,打破祖沖之保持近千年的紀錄。

德國數學家柯倫於1596年將π值算到20位小數值,後投入畢生精力,於1610年算到小數後35位數,該數值被用他的名字稱為魯道夫數。

斐波那契算出圓周率約為3.1418。

韋達用阿基米德的方法,算出3.1415926535<π<3.1415926537

他還是第一個以無限乘積敘述圓周率的人。

魯道夫萬科倫以邊數多過32000000000的多邊形算出有35個小數位的圓周率。

華理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......

歐拉發現的e的iπ次方加1等於0,成為證明π是超越數的重要依據。

(2)圓周率的歷史擴展閱讀:

魏晉時,劉徽曾用使正多邊形的邊數逐漸增加去逼近圓周的方法(即「割圓術」),求得π的近似值3.1416。

漢朝時,張衡得出π的平方除以16等於5/8,即π等於10的開方(約為3.162)。雖然這個值不太准確,但它簡單易理解,所以也在亞洲風行了一陣。 王蕃(229-267)發現了另一個圓周率值,這就是3.156,但沒有人知道他是如何求出來的。

公元5世紀,祖沖之和他的兒子以正24576邊形,求出圓周率約為355/113,和真正的值相比,誤差小於八億分之一。這個紀錄在一千年後才給打破。

印度,約在公元530年,數學大師阿耶波多利用384邊形的周長,算出圓周率約為√9.8684。 婆羅門笈多採用另一套方法,推論出圓周率等於10的算術平方根。

圓周率(Pai)是圓的周長與直徑的比值,一般用希臘字母π表示,是一個在數學及物理學中普遍存在的數學常數。π也等於圓形之面積與半徑平方之比。是精確計算圓周長、圓面積、球體積等幾何形狀的關鍵值。 在分析學里,π可以嚴格地定義為滿足sin x = 0的最小正實數x。

圓周率用字母 π(讀作pài)表示,是一個常數(約等於3.141592654),是代表圓周長和直徑的比值。它是一個無理數,即無限不循環小數。

在日常生活中,通常都用3.14代表圓周率去進行近似計算。而用十位小數3.141592654便足以應付一般計算。即使是工程師或物理學家要進行較精密的計算,充其量也只需取值至小數點後幾百個位。

⑶ 關於圓周率的歷史資料

實驗時期:一塊古巴比倫石匾(約產於公元前1900年至1600年)清楚地記載了圓周率 = 25/8 = 3.125。 同一時期的古埃及文物,萊因德數學紙草書(Rhind Mathematical Papyrus)也表明圓周率等於分數16/9的平方,約等於3.1605。

幾何法時期:古希臘大數學家阿基米德(公元前287–212 年) 開創了人類歷史上通過理論計算圓周率近似值的先河。他求出圓周率的下界和上界分別為223/71 和22/7, 並取它們的平均值3.141851 為圓周率的近似值。

阿拉伯數學家卡西在15世紀初求得圓周率17位精確小數值,打破祖沖之保持近千年的紀錄。德國數學家魯道夫·范·科伊倫(Ludolph van Ceulen)於1596年將π值算到20位小數值,後投入畢生精力,於1610年算到小數後35位數,該數值被用他的名字稱為魯道夫數。

1989年美國哥倫比亞大學研究人員用克雷-2型(Cray-2)和IBM-3090/VF型巨型電子計算機計算出π值小數點後4.8億位數,後又繼續算到小數點後10.1億位數。

2011年10月16日,日本長野縣飯田市公司職員近藤茂利用家中電腦將圓周率計算到小數點後10萬億位,刷新了2010年8月由他自己創下的5萬億位吉尼斯世界紀錄。56歲的近藤茂使用的是自己組裝的計算機,從10月起開始計算,花費約一年時間刷新了紀錄。

(3)圓周率的歷史擴展閱讀:

圓周率(Pi)是圓的周長與直徑的比值,一般用希臘字母π表示,是一個在數學及物理學中普遍存在的數學常數。π也等於圓形之面積與半徑平方之比。

是精確計算圓周長、圓面積、球體積等幾何形狀的關鍵值。 在分析學里,π可以嚴格地定義為滿足sin x = 0的最小正實數x。

圓周率用希臘字母 π(讀作pài)表示,是一個常數(約等於3.141592654),是代表圓周長和直徑的比值。它是一個無理數,即無限不循環小數。在日常生活中,通常都用3.14代表圓周率去進行近似計算。

而用十位小數3.141592654便足以應付一般計算。即使是工程師或物理學家要進行較精密的計算,充其量也只需取值至小數點後幾百個位。

1965年,英國數學家約翰·沃利斯(John Wallis)出版了一本數學專著,其中他推導出一個公式,發現圓周率等於無窮個分數相乘的積。2015年,羅切斯特大學的科學家們在氫原子能級的量子力學計算中發現了圓周率相同的公式。

⑷ 圓周率的歷史資料

古希臘作為古代幾何王國對圓周率的貢獻尤為突出。古希臘大數學家阿基米德(公元前287–212 年) 開創了人類歷史上通過理論計算圓周率近似值的先河。

中國南北朝時期的著名數學家祖沖之(429-500)首次將「圓周率」精算到小數第七位,即在3.1415926和3.1415927之間,他提出的「密率與約率」對數學的研究有重大貢獻。

直到15世紀,阿拉伯數學家阿爾·卡西才以「精確到小數點後17位」打破了這一紀錄。

代表「圓周率」的字母是第十六個希臘字母的小寫。也是希臘語 περιφρεια(表示周邊,地域,圓周)的首字母。

1706年英國數學家威廉·瓊斯(William Jones, 1675-1749)最先使用「」來表示圓周率。1736年,瑞士數學家歐拉(Leonhard Euler, 1707-1783)也開始用表示圓周率。從此,便成了圓周率的代名詞。

(4)圓周率的歷史擴展閱讀:

電子計算機的出現使π值計算有了突飛猛進的發展。1949年,美國製造的世上首部電腦-ENIAC(ElectronicNumerical Integrator And Computer)在阿伯丁試驗場啟用了。

次年,里特韋斯納、馮紐曼和梅卓普利斯利用這部電腦,計算出π的2037個小數位。這部電腦只用了70小時就完成了這項工作,扣除插入打孔卡所花的時間,等於平均兩分鍾算出一位數。

五年後,IBM NORC(海軍兵器研究計算機)只用了13分鍾,就算出π的3089個小數位。

⑸ 圓周率歷史簡介

圓的周長與直徑之比是一個常數,人們稱之為圓周率。通常用希臘字母π 來表示。1706年,英國人瓊斯首次創用π 代表圓周率。他的符號並未立刻被採用,以後,歐拉予以提倡,才漸漸推廣開來。現在π 已成為圓周率的專用符號, π的研究,在一定程度上反映這個地區或時代的數學水平,它的歷史是饒有趣味的。
在古代,實際上長期使用 π=3這個數值,巴比倫、印度、中國都是如此。到公元前2世紀,中國的《周髀算經》里已有周三徑一的記載。東漢的數學家又將 π值改為 (約為3.16)。直正使圓周率計算建立在科學的基礎上,首先應歸功於阿基米德。他專門寫了一篇論文《圓的度量》,用幾何方法證明了圓周率與圓直徑之比小於22/7而大於223/71 。這是第一次在科學中創用上、下界來確定近似值。第一次用正確方法計算π 值的,是魏晉時期的劉徽,在公元263年,他首創了用圓的內接正多邊形的面積來逼近圓面積的方法,算得π 值為3.14。我國稱這種方法為割圓術。直到1200年後,西方人才找到了類似的方法。後人為紀念劉徽的貢獻,將3.14稱為徽率。
公元460年,南朝的祖沖之利用劉徽的割圓術,把π 值算到小點後第七位3.1415926,這個具有七位小數的圓周率在當時是世界首次。祖沖之還找到了兩個分數:22/7 和355/113 ,用分數來代替π ,極大地簡化了計算,這種思想比西方也早一千多年。
祖沖之的圓周率,保持了一千多年的世界記錄。終於在1596年,由荷蘭數學家盧道夫打破了。他把π 值推到小數點後第15位小數,最後推到第35位。為了紀念他這項成就,人們在他1610年去世後的墓碑上,刻上:3.這個數,從此也把它稱為盧道夫數。
之後,西方數學家計算 π的工作,有了飛速的進展。1948年1月,費格森與雷思奇合作,算出808位小數的π 值。電子計算機問世後, π的人工計算宣告結束。20世紀50年代,人們藉助計算機算得了10萬位小數的 π,70年代又突破這個記錄,算到了150萬位。到90年代初,用新的計算方法,算到的π 值已到4.8億位。π 的計算經歷了幾千年的歷史,它的每一次重大進步,都標志著技術和演算法的革新。

⑹ 圓周率的歷史(我國古代)

中國最早大約前12世紀的《周髀算經》里得出圓周率為3,西漢末劉歆得出3.1547,130年張衡得出3.1465,三國時王蕃得到3.155,又有三國時劉徽得到3.1416,南北朝時何承天算出3.14288,南朝劉宋的祖沖之算得3.1415929

⑺ 求圓周率的歷史故事

祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以專"徑一周三"做為圓周率,這就屬是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形,
求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取22/7為約率,取355/133為密率,其中355/133取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.

⑻ 圓周率的歷史作用

圓周率,一般以π來表示,是一個在數學及物理學普遍存在的數學常數。它定義為圓形之周長與直徑之比。它也等於圓形之面積與半徑平方之比。是精確計算圓周長、圓面積、球體積等幾何形狀的關鍵。分析學上,π 可定義為是最小的x>0 使得 sin(x) = 0。

把圓周率的數值算得這么精確,實際意義並不大。現代科技領域使用的圓周率值,有十幾位已經足夠了。如果用Ludolph Van Ceulen算出的35位精度的圓周率值,來計算一個能把太陽系包起來的一個圓的周長,誤差還不到質子直徑的百萬分之一。以前的人計算圓周率,是要探究圓周率是否循環小數。自從1761年Lambert證明了圓周率是無理數,1882年Lindemann證明了圓周率是超越數後,圓周率的神秘面紗就被揭開了。現在的人計算圓周率, 多數是為了驗證計算機的計算能力,還有就是為了興趣。

很多人都喜歡記憶圓周率,一為興趣愛好;二為考驗記憶力。背誦圓周率的世界記錄是100000位,日本人原口證(en:Akira Haraguchi)於2006年10月3日背誦圓周率π至小數點後100000位。中文用諧音記憶的有「山巔一寺一壺酒」,就是3.14159。

⑼ 圓周率的歷史資料(急需!!!)

古希臘歐幾里得《幾何原本》(約公元前3世紀初)中提到圓周率是常數,中國古算書《周髀算經》( 約公元前2世紀)中有「徑一而周三」的記載,也認為圓周率是常數。

中國數學家劉徽在注釋《九章算術》(263年)時只用圓內接正多邊形就求得π的近似值,也得出精確到兩位小數的π值,他的方法被後人稱為割圓術。

南北朝時代數學家祖沖之進一步得出精確到小數點後7位的π值(約5世紀下半葉).

電子計算機的出現使π值計算有了突飛猛進的發展。1949年美國馬里蘭州阿伯丁的軍隊彈道研究實驗室首次用計算機(ENIAC)計算π值,一下子就算到2037位小數,突破了千位數。1989年美國哥倫比亞大學研究人員用克雷-2型和IBM-VF型巨型電子計算機計算出π值小數點後4.8億位數,後又繼續算到小數點後10.1億位數,創下新的紀錄。

⑽ 關於圓周率的歷史資料

圓周率—π
▲什麼是圓周率?
圓周率是一個常數,是代表圓周和直徑的比例。它是一個無理數,即是一個無限不循環小數。但在日常生活中,通常都用3.14來代表圓周率去進行計算,即使是工程師或物理學家要進行較精密的計算,也只取值至小數點後約20位。
▲什麼是π?
π是第十六個希臘字母,本來它是和圓周率沒有關系的,但大數學家歐拉在一七三六年開始,在書信和論文中都用π來代表圓周率。既然他是大數學家,所以人們也有樣學樣地用π來表圓周率了。但π除了表示圓周率外,也可以用來表示其他事物,在統計學中也能看到它的出現。
▲圓周率的發展史
在歷史上,有不少數學家都對圓周率作出過研究,當中著名的有阿基米德(Archimedes of Syracuse)、托勒密(Claudius Ptolemy)、張衡、祖沖之等。他們在自己的國家用各自的方法,辛辛苦苦地去計算圓周率的值。下面,就是世上各個地方對圓周率的研究成果。
亞洲
中國:
魏晉時,劉徽曾用使正多邊形的邊數逐漸增加去逼近圓周的方法(即「割圓術」),求得π的近似值3.1416。
漢朝時,張衡得出π的平方除以16等於5/8,即π等於10的開方(約為3.162)。雖然這個值不太准確,但它簡單易理解,所以也在亞洲風行了一陣。
王蕃(229-267)發現了另一個圓周率值,這就是3.156,但沒有人知道他是如何求出來的。
公元5世紀,祖沖之和他的兒子以正24576邊形,求出圓周率約為355/113,和真正的值相比,誤差小於八億分之一。這個紀錄在一千年後才給打破。
印度:
約在公元530年,數學大師阿耶波多利用384邊形的周長,算出圓周率約為√9.8684。
婆羅門笈多採用另一套方法,推論出圓周率等於10的平方根。
歐洲
斐波那契算出圓周率約為3.1418。
韋達用阿基米德的方法,算出3.1415926535<π<3.1415926537
他還是第一個以無限乘積敘述圓周率的人。
魯道夫萬科倫以邊數多過32000000000的多邊形算出有35個小數位的圓周率。
華理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......
歐拉發現的 e的iπ次方加1等於0,成為證明π是超越數的重要依據。
之後,不斷有人給出反正切公式或無窮級數來計算π,在這里就不多說了。
π與電腦的關系
在1949年,美國製造的世上首部電腦—ENIAC(Electronic Numerical Interator and Computer)在亞伯丁試驗場啟用了。次年,里特韋斯納、馮紐曼和梅卓普利斯利用這部電腦,計算出π的2037個小數位。這部電腦只用了70小時就完成了這項工作,扣除插入打孔卡所花的時間,等於平均兩分鍾算出一位數。五年後,NORC(海軍兵器研究計算機)只用了13分鍾,就算出π的3089個小數位。科技不斷進步,電腦的運算速度也越來越快,在60年代至70年代,隨著美、英、法的電腦科學家不斷地進行電腦上的競爭,π的值也越來越精確。在1973年,Jean Guilloud和M. Bouyer發現了π的第一百萬個小數位。
在1976年,新的突破出現了。薩拉明(Eugene Salamin)發表了一條新的公式,那是一條二次收歛算則,也就是說每經過一次計算,有效數字就會倍增。高斯以前也發現了一條類似的公式,但十分復雜,在那沒有電腦的時代是不可行的。之後, 不斷有人以高速電腦結合類似薩拉明的算則來計算π的值。目前為止,π的值己被算至小數點後51,000,000,000個位。
為什麼要繼續計算π
其實,即使是要求最高、最准確的計算,也用不著這麼多的小數位,那麼,為什麼人們還要不斷地努力去計算圓周率呢?
這是因為,用這個方法就可以測試出電腦的毛病。如果在計算中得出的數值出了錯,這就表示硬體有毛病或軟體出了錯,這樣便需要進行更改。同時,以電腦計算圓周率也能使人們產生良性的競爭,,科技也能得到進步,從而改善人類的生活。就連微積分、高等三角恆等式,也是有研究圓周率的推動,從而發展出來的。
▲π的年表
圓周率的發展
年代 求證者 內容
古代 中國周髀算經 周一徑三
圓周率 = 3
西方聖經
元前三世 阿基米德(希臘) 1. 圓面積等於分別以半圓周和徑為邊長的矩形
的面積
2.圓面積與以直徑為長的正方形面積之比為11:14
3. 圓的周長與直徑之比小於3 1/7 ,大於
3 10/71
三世紀 劉徽
中國 用割圓術得圓周率=3.1416稱為'徽率'
五世紀 祖沖之
中國 1. 3.1415926<圓周率<3.1415927
2. 約率 = 22/7
3. 密率 = 355/113
1596年 魯道爾夫
荷蘭 正確計萛得的35 位數字
1579年 韋達
法國 '韋達公式'以級數無限項乘積表示
1600年 威廉.奧托蘭特
英國 用/σ表示圓周率
π是希臘文圓周的第一個字母
σ是希臘文直徑的第一個字母
1655年 渥里斯
英國 開創利用無窮級數求的先例
1706年 馬淇
英國 '馬淇公式'計算出的100 位數字
1706年 瓊斯
英國 首先用表示圓周率
1789年 喬治.威加
英國 准確計萛至126 位
1841年 魯德福特
英國 准確計萛至152 位
1847年 克勞森
英國 准確計萛至248 位
1873年 威廉.謝克斯
英國 准確計萛至527 位
1948年 費格森和雷恩奇
英國 美國 准確計萛至808 位
1949年 賴脫威遜
美國 用計算機將計算到2034位
現代 用電子計算機可將計算到億位

▲背誦π
歷來都有不少人想挑戰自己的記憶力,他們通常以圓周率為目標。目前的世界記錄是由敬之後藤創下的,他在1995年花了9個多小時,背誦出圓周率的42,000個位數。
目前,最常用的記憶圓周率技巧就是字長法,以每個字的字數代表圓周率的一個位數。在這種方法中最簡單的就是「How I wish I could calculate pi.」
用中文去背圓周率也很簡單,因為每個數字都只有一個音節,這樣背起來就如背詩一樣,只不過有點言不及義,例如:
山巔一石一壺酒
3.14159
二侶舞扇舞
26535
把酒砌酒扇又搧
8979323
飽死羅.....
846.....
關於π的有趣發現
將π的頭144個小數位數字相加,結果是666。144也等於(6+6)*(6+6)
愛因斯坦的生日恰好是在π日(3/14/1879)
從π的第523,551,502個小數位開始,是數列123456789。
從第359個位數開始,是數字360。也就是說第360個位數正好位於數字360的中央。
在頭一百萬個小數中,除了2和4,其他數字都曾連續出現7次。

資料來源
<<神奇的π>> David Blatner 著 商周出版
http://www.geocities.com/monicachan006/know.html
http://netcity1.web.hinet.net/UserData/lsc24285/circle.html
<<新世紀數學>>1A 第7課 牛津大學出版社

熱點內容
南科生物 發布:2025-07-09 04:15:57 瀏覽:993
蹲踞式跳遠教學反思 發布:2025-07-09 03:09:33 瀏覽:84
高中歷史嶽麓 發布:2025-07-09 02:45:51 瀏覽:353
新開的英語 發布:2025-07-09 01:27:47 瀏覽:276
物理實驗教師 發布:2025-07-09 00:46:01 瀏覽:21
怎麼刪除朋友圈 發布:2025-07-09 00:19:21 瀏覽:154
包鋼股份歷史 發布:2025-07-08 22:01:23 瀏覽:878
囚禁教師電影 發布:2025-07-08 20:48:26 瀏覽:962
化學鍵復習 發布:2025-07-08 20:42:29 瀏覽:831
北京教學視頻 發布:2025-07-08 19:38:24 瀏覽:58