微基生物
1.微生物學促進許多重大理論問題的突破 為分子生物學和分子遺傳學的發版展奠定了基礎 2.微生物權對生命科學研究技術做了重大貢獻 由於微生物學的消毒滅菌,分離培養等技術的滲透和應用的拓寬及發展,動植物細胞可以再培養在平板或三角瓶里,可以再顯微鏡下分離。今天的轉基因動物,轉基因植物的轉化技術也源於微生物的理論和技術。微生物的重大發現導致了DNA重組技術和遺傳工程的出現,使整個生命科學翻開了新的一頁,也將使人類定向改變生物、根治疾病、美化環境的夢想成為現實。 3微生物一方面在與其他學科交叉和相互促進中,獲得了令人矚目的發展。另一方面也為整個生命科學的發展做出了巨大的貢獻,並在生命科學的發展中佔有重要地位
❷ 考微生物好還是細胞生物學好
同學,選自己喜歡的而不是更好找工作的。即使說微生物好就業,但你不喜歡,也是很難走出去的。我讀的是SIBS巴斯德研究所的微生物學,它劃分的很細,注重人類公共性衛生疾病的免疫和疫苗開發,我想這就是你說的好找工作吧。其實,在基礎科學領域,細胞生物學與分子生物學,神經生物學和生態學並列為生命科學的四大基礎學科,我雖然選的是微生物學,但是我覺得,你在細胞上有造詣了,(它是基礎學科),像我考研考專業是微生物學,但是考試的科目卻是生物化學與分子生物學及細胞生物學,因為他們都基礎學科,我在這兒強調的是基礎學科的主要性。當你把基礎學科學精通了,你就考研有更大的空間去選擇其他學科了。至於你說的微生物就業好,確實有這么一回事,但是,相對而言,現在的微生物學就業更注重的是領域之間的相互滲透,需要的能力更大,再說也沒有說細胞生物學不好就業啊,雖然我不是搞這方面的,細胞生物學不算是一門科學,過多的是一個領域,他和每個學科都有滲透,這是個特點,現在屬於發展的第四階段了,從20世紀70年代基因重組技術的出現到當前,細胞生物學與分子生物學的結合愈來愈緊密,研究細胞的分子結構及其在生命活動中的作用成為主要任務,基因調控、信號轉導、腫瘤生物學、細胞分化和凋亡是當代的研究熱點,呵呵,這也是當今生物界的難題呀。
我這兒說這么多的意思是,選哪個專業都一樣,只要你喜歡,
就就業我說些,其實用科技來獲得財富不是單單就業這條途徑,你如果是科研人員,而且實力很好,也可以由豐厚財富,我舉例子:1.國家自然基金,你如果申請上了,至少10-20W是可以從中滲透些的吧,其實這也不叫滲透,就是算科研的報酬吧,暫且這樣理解。2.除了國家自然基金裡面的面上項目啊,重點項目啊,傑青項目啊,這些錢=申請的經費算是多的,你還可以同時申請省基金同上,也就是說你可以幾年拿很多課題。3.你可以橫向合作,比如,某公司和你簽約,提供你資金研發什麼,你也相當於半就要了,這個比課題更容易。我大學有個老師,別人請他去治理河裡面的污水,他是搞微生物的,前段時間治得可以,後來就不行了,居民污染太嚴重了。
❸ 微生物學
微生物學(microbiology)生物學的分支學科之一。它是在分子、細胞或群體水平上研究各類微小生物(細菌、放線菌、真菌、病毒、立克次氏體、支原體、衣原體、螺旋體原生動物以及單細胞藻類)的形態結構、生長繁殖、生理代謝、遺傳變異、生態分布和分類進化等生命活動的基本規律,並將其應用於工業發酵、醫學衛生和生物工程等領域的科學。
巴斯德被稱為 微生物學之父
❹ 要考研了,微生物學和細胞學那個就業前景好些啊
雖然自己做微生物的,感覺這個行業前景不太好。相反,現在做細胞生物學的同學工資基本在1W以上。我們公司給研究生的待遇為4K
❺ 利用什麼可以培養微小生物
簡單點的就是培養瓶和培養基.要復雜的嘛,一屏幕說不完.
❻ 微生物是什麼
微生物是一切肉眼看不見或看不清的微小生物,個體微小,結構簡單,通常要用光學顯微鏡和電子顯微鏡才能看清楚的生物,統稱為微生物。微生物包括細菌、病毒、黴菌、酵母菌等。(但有些微生物是肉眼可以看見的,像屬於真菌的蘑菇、靈芝等。)
❼ 微生物基因組學研究在北京有幾家單位在研究呢有去閱微基因做過的嗎
大量的微生物基因組學研究在北京。我們的學校「閱微真核生物基因組測序項目,是劉躍偉基因的研究實力的公司談合作是非常強的,最後看價格。
❽ 簡述轉基因微生物制葯的基本流程
第一步:目的基因的獲取
1.目的基因是指: 編碼蛋白質的結構基因 。
2.原核基因採取直接分離獲得,真核基因是人工合成。人工合成目的基因的常用方法有反轉錄法_和化學合成法_。
3.PCR技術擴增目的基因
(1)原理:DNA雙鏈復制
(2)過程:
第(一)步:加熱至90~95℃DNA解鏈;
第(二)步:冷卻到55~60℃,引物結合到互補DNA鏈;
第(三)步:加熱至70~75℃,熱穩定DNA聚合酶從引物起始互補鏈的合成。
第二步:基因表達載體的構建
1.目的:使目的基因在受體細胞中穩定存在,並且可以遺傳至下一代,使目的基因能夠表達和發揮作用。
2.組成:目的基因+啟動子+終止子+標記基因
(1)啟動子:是一段有特殊結構的DNA片段,位於基因的首端,是RNA聚合酶識別和結合的部位,能驅動基因轉錄出mRNA,最終獲得所需的蛋白質。
(2)終止子:也是一段有特殊結構的DNA片段,位於基因的尾端。
(3)標記基因的作用:是為了鑒定受體細胞中是否含有目的基因,從而將含有目的基因的細胞篩選出來。常用的標記基因是抗生素基因。
第三步:將目的基因導入受體細胞_
1. 轉化的概念:
是目的基因進入受體細胞內,並且在受體細胞內維持穩定和表達的過程。
2.常用的轉化方法:
將目的基因導入植物細胞:採用最多的方法是農桿菌轉化法,其次還有基因槍法和花粉管通道法等。
將目的基因導入動物細胞:最常用的方法是顯微注射技術。此方法的受體細胞多是受精卵。
將目的基因導入微生物細胞:原核生物作為受體細胞的原因是繁殖快、多為單細胞、遺傳物質相對較少 ,最常用的原核細胞是大腸桿菌,其轉化方法是:先用Ca2+ 處理細胞,使其成為感受態細胞,再將重組表達載體DNA分子溶於緩沖液中與感受態細胞混合,在一定的溫度下促進感受態細胞吸收DNA分子,完成轉化過程。
3.重組細胞導入受體細胞後,篩選含有基因表達載體受體細胞的依據是標記基因是否表達。
第四步:目的基因的檢測和表達
1.首先要檢測轉基因生物的染色體DNA上是否插入了目的基因,方法是採用DNA分子雜交技術。
2.其次還要檢測目的基因是否轉錄出了mRNA,方法是採用用標記的目的基因作探針與 mRNA雜交。
3.最後檢測目的基因是否翻譯成蛋白質,方法是從轉基因生物中提取蛋白質,用相應的抗體進行抗原-抗體雜交。
4.有時還需進行個體生物學水平的鑒定。如轉基因抗蟲植物是否出現抗蟲性狀。
「分子手術刀」——限制性核酸內切酶(限制酶)
(1)來源:
主要是從原核生物中分離純化出來的。
(2)功能:
能夠識別雙鏈DNA分子的某種特定的核苷酸序列,並且使每一條鏈中特定部位的兩個核苷酸之間的磷酸二酯鍵斷開,因此具有專一性。
(3)結果:
經限制酶切割產生的DNA片段末端通常有兩種形式:黏性末端和平末端。
「分子縫合針」——DNA連接酶
(1)兩種DNA連接酶(E•coliDNA連接酶和T4-DNA連接酶)的比較:
①相同點:都縫合磷酸二酯鍵。
②區別:
E•coliDNA連接酶來源於T4噬菌體,只能將雙鏈DNA片段互補的黏性末端之間的磷酸二酯鍵連接起來;而T4DNA連接酶能縫合兩種末端,但連接平末端的之間的效率較低。
(2)與DNA聚合酶作用的異同:
DNA聚合酶只能將單個核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯鍵。DNA連接酶是連接兩個DNA片段的末端,形成磷酸二酯鍵。
「分子運輸車」——載體
(1)載體具備的條件:
①能在受體細胞中復制並穩定保存。
②具有一至多個限制酶切點,供外源DNA片段插入。
③具有標記基因,供重組DNA的鑒定和選擇。
(2)最常用的載體是¬¬質粒,它是一種裸露的、結構簡單的、獨立於細菌染色體之外,並具有自我復制能力的雙鏈環狀DNA分子。
(3)其它載體:噬菌體的衍生物、動植物病毒。
————希望可以幫到您!覺得好就請點採納答案吧,給個好評,謝謝!—————
❾ 微生物的生物學特性有哪些
微生物是指一切肉眼看不到或看不清楚,因而需要藉助顯微鏡觀察的微小生物。微生物包括原核微生物(如細菌)、真核微生物(如真菌、藻類和原蟲)和無細胞生物(如病毒)三類。
主要特性
微生物最大的特點,不但在於體積微小,而且在結構上亦相當簡單。由於微生物體積極之微小,故相對面積較大,物質吸收快,轉化快。微生物在生長與繁殖上亦是很迅速的,而且適應性強。從寒冷的冰川到極酷熱的溫泉,從極高的山頂到極深的海底,微生物都能夠生存。
由於微生物適應性強,又容易在較短時間內積聚非常多的個體(例如10^10個/毫升的數量級),因此容易篩選並分離到突變株。容易得到微生物突變株的性質,給人類利用與開發微生物帶來廣闊契機,但也是導致抗葯性的內在原因。
微生物的代謝
微生物的代謝指微生物(細胞)內發生的全部化學反應。 微生物的代謝異常旺盛,這是由於微生物的表面積與體積比很大(約是同等重量的成年人的30萬倍),使它們能夠迅速與外界環境進行物質交換。
代謝產物 微生物在代謝過程中,會產生多種代謝產物。根據代謝產物與微生物生長繁殖的關系,可以分為初級代謝產物和次級代謝產物兩類。 初級代謝產物是指微生物通過代謝活動產生的、自身生長和繁殖所必須的物質,如氨基酸、核苷酸、多糖、脂質、維生素等。在不同種類的微生物細胞中,初級代謝產物的種類基本相同。 次級代謝產物是指微生物生長到一定階段才產生的化學結構十分復雜,對該微生物無明顯生理功能,或並非是微生物生長和繁殖所必須的物質,如抗生素、毒素、激素、色素等。不同種類的微生物所產生的次級代謝產物不相同,它們可能積累在細胞內,也可能排到外環境中。
代謝的調節 微生物在長期的進化過程中,形成了一整套完善的代謝調節系統,以保證證代謝活動經濟而高效地進行。微生物的代謝調節主要有兩種方式:酶合成的調節和酶活性的調節。 另外人工控制微生物代謝的措施包括改變微生物遺傳特徵,控制生產過程中的各種條件等。
微生物的作用
微生物與人類的生產、生活和生存息息相關。有很多食品(如醬油、醋、味精、酒、酸奶、乳酪、蘑菇)、工業品(如皮革、紡織、石化)、葯品(如抗生素、疫苗、維生素、生態農葯)是依賴於微生物製造的;微生物在礦產探測與開采、廢物處理(如水凈化、沼氣發酵)等各種領域中也發揮重要作用。微生物是自然界唯一認知的固氮者(如大豆根瘤菌)與動植物殘體降解者(如纖維素的降解),同時位於常見生物鏈的首末兩端,從而完成碳、氮、硫、磷等生物質在大循環中的銜接。若沒有微生物,眾多生物就失去必需的營養來源、植物的纖維質殘體就無法分解而無限堆積,就沒有自然界當前的繁榮與秩序或人類的產生與維續。
此外,微生物對地球上氣候的變化也起著重要作用。許多微生物直接參與了溫室氣體的排放或者吸收,而也有很多微生物可以成為未來的生物燃料。
微生物與人類健康
微生物與人類健康密切相關。多數微生物對人體是無害的。實際上,人體的外表面(如皮膚)和內表面(如腸道)生活著很多正常、有益的菌群。它們占據這些表面並產生天然的抗生素,抑制有害菌的著落與生長;它們也協助吸收或親自製造一些人體必需的營養物質,如維生素和氨基酸。這些菌群的失調(如抗生素濫用)可以導致感染發生或營養缺失。然而另一方面,人類與動植物的疾病也有很多是由微生物引起,這些微生物叫做病原微生物(pathogenic microorganism)或病原(pathogen)。
對現代生物學研究與醫學技術的貢獻
現代生物學的若干基礎性的重大發現與理論,是在研究微生物的過程中或以微生物為實驗材料與工具取得的。這些理論包括:
證明DNA(脫氧核糖核酸)是遺傳信息的載體(三大經典實驗:肺炎球菌的轉化實驗、噬菌體實驗、植物病毒的重組實驗)
DNA的半保留復制方式(雙螺旋的每一條子鏈分別、都是復制模板)
遺傳密碼子的解讀(64個密碼子各對應20種氨基酸及終止信號的哪一種)
基因的轉錄調節(operon, promoter, operator, repressor, activator的概念與調節方式)
信使RNA的翻譯調節(terminator)
等等……(請添加)
現在,很多常用、通用的生物學研究技術依賴於微生物,比如:
分子克隆
重組蛋白在細菌或酵母中的表達
很多醫學技術也依賴於微生物。比如:
以病毒為載體的基因治療