當前位置:首頁 » 歷物理化 » 光伏歷史

光伏歷史

發布時間: 2021-08-02 08:11:57

㈠ 您知道光伏發電的歷史起源嗎

1839年,19歲的法國貝克勒爾做物理實驗時,發現在導電液中的兩種金屬電極用光照內射時電流會加強,容從而發現了「光生伏打效應」。1930年,郞格首次提出用「光伏效應」製造太陽能電池,使太陽能變成電能。 1932年奧杜博特和斯托拉製成第一塊「硫化鎘」太陽能電池。 1941年奧杜在硅上發現光伏效應。 1954年5月美國貝爾實驗室恰賓、富勒和皮爾松開發出效率為6%的單晶硅太陽能電池,這是世界上第一個有實用價值的太陽能電池,同年威克首次發現了砷化鎳有光伏效應,並在玻璃上沉積硫化鎳薄膜,製成了太陽能電池,太陽光轉化為電能的實用光伏發電技術由此誕生並發展起來。 2014年初我省金寨縣為落實省委政府精準扶貧新要求,實施產業扶貧「到村、到戶、到人、到產業」,在全省率先開展了光伏發電扶貧項目。

㈡ 光伏的國內歷史

1958,中國研製出了首塊硅單晶。
1968年至1969年底,半導體所承擔了為「實踐1號衛星」研製和生產硅太陽能電池板的任務。在研究中,研究人員發現,P+/N硅單片太陽電池在空間中運行時會遭遇電子輻射,造成電池衰減,使電池無法長時間在空間運行。
1969年,半導體所停止了硅太陽電池研發,隨後,天津18所為東方紅二號、三號、四號系列地球同步軌道衛星研製生產太陽電池陣。
1975年寧波、開封先後成立太陽電池廠,電池製造工藝模仿早期生產空間電池的工藝,太陽能電池的應用開始從空間降落到地面。
1998年,中國政府開始關注太陽能發電,擬建第一套3MW多晶硅電池及應用系統示範項目,這個消息讓現在的天威英利新能源有限公司的董事長苗連生看到了一線曙光。可是,當時太陽能產業發展前景尚不明朗,加之受政策因素制約,令不少人對這一新能源項目望而卻步。在合作夥伴退出的情況下,苗連生毅然逆勢而上,爭取到了這個項目的批復,成為中國太陽能產業第一個「吃螃蟹」的人。
2001年,無錫尚德建立10MWp(兆瓦)太陽電池生產線獲得成功,2002年9月,尚德第一條10MW太陽電池生產線正式投產,產能相當於此前四年全國太陽電池產量的總和,一舉將我國與國際光伏產業的差距縮短了15年。
2003到2005年,在歐洲特別是德國市場拉動下,尚德和保定英利持續擴產,其他多家企業紛紛建立太陽電池生產線,使我國太陽電池的生產迅速增長。
2004年,洛陽單晶硅廠與中國有色設計總院共同組建的中硅高科自主研發出了12對棒節能型多晶硅還原爐,以此為基礎,2005年,國內第一個300噸多晶硅生產項目建成投產,從而拉開了中國多晶硅大發展的序幕。
2007,中國成為生產太陽電池最多的國家,產量從2006年的400MW一躍達到1088MW。
2008年,中國太陽電池產量達到2600MW。
2009年,中國太陽電池產量達到4000MW。
2006年世界太陽能電池年產量2500MW。
2007年世界太陽能電池年產量4450MW。
2008年世界太陽能電池年產量7900MW。
2009年世界太陽能電池年產量10700MW。
2013年3月無錫市中級人民法院發公告稱,無錫尚德太陽能電力有限公司無法歸還到期債務,依法裁定破產重整。
2015年前三季度,我國光伏製造業總產值已超2000億元。其中,多晶硅產量約為10.5萬噸,同比增長20%;矽片產量約為68億片,同比增長10%以上;電池片產量約為28GW,同比增長10%以上;組件產量約為31GW,同比增長26.4%。光伏企業盈利情況得到明顯好轉,產業鏈各環節均有較大幅度增長。2015年前三季度,我國光伏產品進出口、下游電站建設、企業盈利等領域全面向好。其中,矽片、電池片、組件等主要光伏產品出口額達到100億美元。光伏新增裝機約10.5GW ,同比增長177%,其中地面電站約為6.5GW。 目前我國光伏企業的自主研發實力普遍不強,主要的半導體原材料和設備均靠進口,技術瓶頸已嚴重製約我國光伏產業的發展。
在整個光伏產業鏈中,封裝環節技術和資金門檻最低,致使我國短時間內涌現出170多家封裝企業,總封裝能力不少於200萬千瓦。但由於原材料價格暴漲、封裝產能過剩,這些企業基本上沒有多少利潤,產品質量也參差不齊。
相對而言,處於產業鏈上游、擁有先進技術的無錫尚德、南京中電光伏等太陽能電池製造商,日子要好過得多。他們生產的多為第一代晶體太陽能電池,性能穩定,是市場上的主流產品。
不過,在世界范圍內,太陽能電池產品正由第一代向第二代過渡,第二代產品的薄膜太陽能電池的硅材料用量少得多,其成本已低於晶體太陽能電池。在專家看來,薄膜太陽能電池今後將和晶體太陽能電池展開激烈競爭。
中科院電工所研究員、中國可再生能源學會副理事長孔力認為,我國在晶體太陽能電池的後續研發,以及薄膜太陽能電池的研發等方面與國外存在較大差距,至少落後10年。
光伏技術的世界紀錄保持者基本上是國外公司。例如,日本京瓷推出了光電轉換效率為18.5%的多晶體硅太陽能電池;日本三洋利用晶體硅基板和非晶硅薄膜製成的混合型太陽能電池,光電轉換效率達22%;美國聯合太陽能公司以微米級不銹鋼帶為襯底的柔性非晶硅薄膜太陽能電池,與其他公司的玻璃硬襯底太陽能電池相比具有重量輕、可彎曲等優點。
世界光伏技術不斷突破,產業成本不斷下降。《2007中國光伏發展報告》稱,隨著技術的不斷進步和產業規模的不斷擴大,光伏發電的成本有望在2030年以後與常規電力相競爭,成為主流能源利用形式。
在9月份於北京舉行的2007世界太陽能大會暨展覽會上,國際太陽能學會副主席、日本京瓷公司顧問湯川榮男介紹,日本計劃在2010年、2020年和2030年將光伏發電的成本分別降到相當於每度電1.5元、0.93元和0.47元人民幣的水平。另據國際能源署預測,2020年世界光伏發電的發電量將占總發電量的2%,2040年則會佔到20%-28%。 我國光伏產業發展正處在上升期,如果能夠突破政策和技術方面的瓶頸,必然前途無限。上海交通大學太陽能研究所所長、博士生導師崔榮強認為,當前國家應加強政策引導,促進行業縮短與國際先進水平的差距。
首先,制定以培養光伏應用市場和促進光伏產業發展為目標的中長期規劃,從法律上規定和細化可再生電力采購比例和重點用途。
其次,鼓勵民用上網。借鑒國外經驗,逐步啟動和實施真正意義的光伏屋頂計劃,確立光伏發電在全國電力能源結構中的地位。
第三,建立專項扶持資金,在金融財稅等環節實施費用減免政策。如目前國內電費中抽出專用資金補貼到光伏產業中;貧困地區發展光伏用電,政府補貼一部分,企業支持一部分,以成本價支持等。
第四,借鑒發達國家普通建築必須要有光伏產品的經驗,在發達地區實施公共設施、政府建築必須採用太陽能的剛性政策。
第五,扶持上游高純度硅原材料產業,降低光伏電池成本,進而加快光伏並網電站成本的降低和應用推廣。 全國1200多所高職院校中,真正開設光伏發電技術應用專業的不超過30家。 教育部高職高專新能源分教指委主任委員戴裕崴教授說,因為國內缺少專門的高技能人才,一般只好招用電子、化工等專業畢業生,根據需要再培養。光伏產業大部分需要的是復合型技能人才,巨大的缺口亟待高職畢業生填補。
某知名太陽能公司負責人也表示:光伏產業蓬勃發展,太陽能的應用領域愈來愈廣,但是專業對口的人才太少了,每年缺口約有20萬。

㈢ 太陽能歷史多少年

據記載,人類利用太陽能已有3000多年的歷史。將太陽能作為一種能源和動力加以利用,只有300多年的歷史。真正將太陽能作為「近期急需的補充能源」,「未來能源結構的基礎」,則是近來的事。20世紀70年代以來,太陽能科技突飛猛進,太陽能利用日新月異。近代太陽能利用歷史可以從1615年法國工程師所羅門·德·考克斯在世界上發明第一台太陽能驅動的發動機算起。該發明是一台利用太陽能加熱空氣使其膨脹做功而抽水的機器。在1615年~1900年之間,世界上又研製成多台太陽能動力裝置和一些其它太陽能裝置。這些動力裝置幾乎全部採用聚光方式採集陽光,發動機功率不大,工質主要是水蒸汽,價格昂貴,實用價值不大,大部分為太陽能愛好者個人研究製造。20世紀的100年間,太陽能科技發展歷史大體可分為七個階段。
第一階段(1900~1920年)
在這一階段,世界上太陽能研究的重點仍是太陽能動力裝置,但採用的聚光方式多樣化,且開始採用平板集熱器和低沸點工質,裝置逐漸擴大,最大輸出功率達73.64kW,實用目的比較明確,造價仍然很高。建造的典型裝置有:1901年,在美國加州建成一台太陽能抽水裝置,採用截頭圓錐聚光器,功率:7.36kW;1902 ~1908年,在美國建造了五套雙循環太陽能發動機,採用平板集熱器和低沸點工質;1913年,在埃及開羅以南建成一台由5個拋物槽鏡組成的太陽能水泵,每個長62.5m,寬4m,總採光面積達1250m2。
第二階段(1920~1945年)
在這20多年中,太陽能研究工作處於低潮,參加研究工作的人數和研究項目大為減少,其原因與礦物燃料的大量開發利用和發生第二次世界大戰(1935~1945年)有關,而太陽能又不能解決當時對能源的急需,因此使太陽能研究工作逐漸受到冷落。
第三階段(1945~1965年)
在第二次世界大戰結束後的20年中,一些有遠見的人士已經注意到石油和天然氣資源正在迅速減少, 呼籲人們重視這一問題,從而逐漸推動了太陽能研究工作的恢復和開展,並且成立太陽能學術組織,舉辦學術交流和展覽會,再次興起太陽能研究熱潮。 在這一階段,太陽能研究工作取得一些重大進展,比較突出的有:1945年,美國貝爾實驗室研製成實用型硅太陽電池,為光伏發電大規模應用奠定了基礎;1955年,以色列泰伯等在第一次國際太陽熱科學會議上提出選擇性塗層的基礎理論,並研製成實用的黑鎳等選擇性塗層,為高效集熱器的發展創造了條件。此外,在這一階段里還有其它一些重要成果,比較突出的有: 1952年,法國國家研究中心在比利牛斯山東部建成一座功率為50kW的太陽爐。1960年,在美國佛羅里達建成世界上第一套用平板集熱器供熱的氨——水吸收式空調系統,製冷能力為5冷噸。1961年,一台帶有石英窗的斯特林發動機問世。在這一階段里,加強了太陽能基礎理論和基礎材料的研究,取得了如太陽選擇性塗層和硅太陽電池等技術上的重大突破。平板集熱器有了很大的發展,技術上逐漸成熟。太陽能吸收式空調的研究取得進展,建成一批實驗性太陽房。對難度較大的斯特林發動機和塔式太陽能熱發電技術進行了初步研究。
第四階段(1965~1973年)
這一階段,太陽能的研究工作停滯不前,主要原因是太陽能利用技術處於成長階段,尚不成熟,並且投資大,效果不理想,難以與常規能源競爭,因而得不到公眾、企業和政府的重視和支持。
第五階段(1973~1980年)
自從石油在世界能源結構中擔當主角之後,石油就成了左右經濟和決定一個國家生死存亡、發展和衰退的關鍵因素,1973年10月爆發中東戰爭,石油輸出國組織採取石油減產、提價等辦法,支持中東人民的斗爭,維護本國的利益。其結果是使那些依靠從中東地區大量進口廉價石油的國家,在經濟上遭到沉重打擊。 於是,西方一些人驚呼:世界發生了「能源危機」(有的稱「石油危機」)。這次「危機」在客觀上使人們認識到:現有的能源結構必須徹底改變,應加速向未來能源結構過渡。從而使許多國家,尤其是工業發達國家,重新加強了對太陽能及其它可再生能源技術發展的支持,在世界上再次興起了開發利用太陽能熱潮。1973年,美國制定了政府級陽光發電計劃,太陽能研究經費大幅度增長,並且成立太陽能開發銀行,促進太陽能產品的商業化。日本在1974年公布了政府制定的「陽光計劃」,其中太陽能的研究開發項目有:太陽房 、工業太陽能系統、太陽熱發電、太陽電池生產系統、分散型和大型光伏發電系統等。為實施這一計劃,日本政府投入了大量人力、物力和財力。

㈣ 太陽能光伏電池是什麼時候發明的

太陽光發電的歷史可以追溯到1800年,貝克勒爾發現對某種半導體材料照射光後,會引起其伏安特性改變。最終,發現了光伏效應,並以此半導體製成太陽能光伏電池。1876年,英國科學家亞當斯等在研究半導體材料時發現了硒的光伏效應。1884年,美國科學家查爾斯製成了硒太陽能光伏電池,其轉換效率很低,僅有1%。其後,對氧化銅等半導體材料研究,同樣發現有光伏效應,所以也製成了以氧化銅等半導體材料為原料的太陽能光伏電池。
1954年,美國貝爾實驗室的皮爾松、佛朗等三名科學家利用硅晶體材料開發出性能良好的太陽能光伏電池,其轉換效率達6%,經過不斷改良後,成為現在的硅太陽能光伏電池。
太陽能光伏電池是1958年開始得到應用的。當時前蘇聯發射了人造衛星,美國也發射了人造衛星,在太空領域上,展開了激烈的競爭。前蘇聯發射的人造衛星使用的是原子能電池,美國發射的先驅者1號通信衛星採用的就是太陽能光伏電池。
由於太陽能光伏電池的價格特別高(高達1500美元/w),而且剛開始性能還不穩定,因此僅用於航天器。到了20世紀60年代初才慢慢趨於穩定,70年代開始在航天器上大量使用。太陽能光伏電池的性能雖然已穩定,但價格還是很高,所以直到20世紀70年代初太陽能光伏電池還沒有得到廣泛應用,只可用於航天器、人造衛星、山頂上的差轉電台、海上航標燈、海島燈塔電源等,一些不計成本,必須用的場所。
到了1973年後,在石油危機的推動下,太陽能光伏電池進入了蓬勃發展時期,太陽能光伏電池開始在地面使用,而且地面用太陽能光伏電池的數量很快就大大超過了在航天器上的使用量。這個時期,不但出現了許多新型電池,而且因為引進了許多新技術,出現了鈍化技術、減反射技術、絨面技術、背表面場技術、異質結太陽能電池技術及聚光電池等非常有效的新技術。
1976年,美國ca公司的卡爾松發明了非晶硅太陽能光伏電池。該電池的轉換效率雖低於單晶硅,但製造時可以任意選配電壓電流比。
太陽能光伏電池的應用,到了20世紀80年代就比較廣泛了,特別是在民用電器上得到了廣泛應用,如太陽能計算器、太陽能手錶和太陽能手機充電器等。
這主要有兩個原因:一個是半導體集成電路的發展,使得電子產品消耗的電量大幅度下降,在室內燈光下,太陽能光伏電池也能產生電力,可以充分地使計算器等電子產品正常工作;另一個原因是電子產品工作所必需的電壓能從一個基片上得到,這樣一種新的集成型非晶硅太陽能光伏電池可以便宜地製造。太陽能光伏電池計算器實用化後,從手錶開始,逐漸推廣到各種電子產品的應用。
太陽能光伏電池除了可以用簡單的裝置就能夠直接發電這一優點外,在使用時還有如下的優點。
(1)不產生對環境有不良影響的排放氣體及有害物質,沒有雜訊。
(2)不僅在太陽光下可以發電,在熒光燈、白熾燈等擴散光下也可以發電。
(3)不需要更換電池。
(4)可以直接接到dc機械上。
(5)在使用場合就可以發電。
我國的太陽能光伏電池誕生的也比較早,而且我國也是應用較早的國家之一。
1959年,我國就誕生了第一隻有實用價值的太陽能光伏電池。1971年3月太陽能光伏電池首次應用於我國第二顆人造衛星(實踐1號)。而後,1973年太陽能光伏電池首次用於浮標燈。
20世紀70年代,我國開始生產太陽能光伏電池,70年代中末期引進國外關鍵設備和成套生產線,我國太陽能光伏電池的生產產業有了進一步的發展。

㈤ 太陽能應用的歷史情況是怎樣的

四龍紋陽燧據史料記載,早在3000多年前人類就已經開始利用太陽能了。西周(公元前11世紀)時,我們的祖先就用凹面銅鏡會聚陽光點燃艾絨取得火種,即「陽燧取火」技術,並設有專門掌管陽燧的官,這是人類應用太陽能的最早記載。2000多年前的戰國時期,人們就知道利用太陽能來乾燥農副產品。利用陽燧來聚集太陽光點火。我國考古發掘陸續出土的陽燧,說明我國利用太陽能的歷史非常久遠。浙江紹興在1982年的一座戰國墓葬中發掘出一面戰國時期的四龍紋陽燧,1995年,在對一個西周墓進行搶救性發掘時又出土了一面西周陽燧。西周和戰國陽燧的出土,表明我們的祖先在兩三千年前就知道用太陽能,這是古代勞動人民智慧的結晶。

利用太陽能比較歷史悠久的還有古希臘。據說在2200多年前,古羅馬帝國派艦隊攻打地中海西西里島東部的錫臘庫扎。當時希臘著名物理學家阿基米德也在島上,當時他已經70多歲。大敵當前,阿基米德並沒有驚慌失措,他發動全城的婦女拿著自己鋥亮的銅鏡來到海岸邊。烈日當空,阿基米德舉起一面鏡子,讓它反射的日光恰好射到敵艦的船帆上。婦女們按照阿基米德的要求,都把鏡子的反射光投到了船帆上。沒用多久,艦船起火,羅馬軍隊大敗而歸。

用冰塊可以取得太陽的能量嗎?答案是肯定的,並且應用的歷史還比較古老。我國晉代張華在其所著的《博物志》中,有「削冰成圓,舉以向日,以艾承其影,則得火」的記載。但是,將太陽能作為一種能源和動力開始利用的卻只有300多年的歷史。沈括在《夢溪筆談》中又進一步對陽燧的原理作了科學的論述:「陽燧面窪,向日照之,光皆向內,離鏡一、二寸,光聚為一點,大如麻菽,著物即發火,此則腰鼓最細處也。」

人們把太陽能轉化為機械能時已經是17世紀。近代太陽能利用歷史可以從1615年法國工程師所羅門·德·考克斯在世界上發明第一台太陽能驅動的發動機算起。這個發動機是一台利用太陽能加熱空氣使其膨脹做功而抽水的機器,第一次實現了把太陽能轉換為機械能。在1615~1900年,世界上又成功研製出多台太陽能動力裝置和一些其他太陽能裝置設備,只是這些動力裝置幾乎全部採用聚光方式採集陽光,發動機功率不大,實用價值不大,而且造價較高,大部分屬於太陽能愛好者個人研究製造。1774年,在法國巴黎進行了用兩塊透鏡聚焦陽光使金屬融化的表演。

我們可能都知道燜爐烤鴨、掛爐烤鴨,但是未必知道太陽能烤鴨。在清代末期,曾有人自製太陽能灶,利用太陽能來烤炙鴨子。據清代徐珂《清稗類鈔》記載,在19世紀末光緒年間,有一位名叫蕭開泰的四川貢生,他是一位精「算學」通「光學」的才子。他在北京同文館擔任算學教習,正值甲午中日戰爭爆發。蕭開泰曾向清政府建議建造一具厚一尺、方八尺的巨大「鑒鏡」,利用「太陽真火」,「引日光以發火,則雖敵艦在三十里外,不難立成灰燼」。可是,蕭開泰的建議不但沒有被採納,反而受到嘲諷。蕭開泰「鬱郁歸蜀」,但他堅信太陽光是可以應用的,既然這項技術不能在軍事防禦上應用,他就把它應用在日常生活中。回到老家四川後,「於成都市上設肆賣燒鴨」。他自製「鑒鏡」引火熏炙,這種太陽能烤鴨「其味甚佳,與火爐所烤者無異」。由於他使用不花錢的能源加工鴨子,因而「每值天晴,利市三倍」。

1854~1874年,世界上第一台太陽能蒸汽發動機問世。英國天文學家赫胥黎於1837年在去非洲好望角的探險途中,把一個黑箱子埋入沙土中,箱上用雙層玻璃保溫,使箱內溫度達到116℃,他就用這種簡易的太陽能裝置燒飯。1872年,智利建成面積約4682平方米的太陽能蒸餾裝置。1878年,在巴黎世界博覽會上展出了轟動世界的太陽能印刷機。1883年,建成過一台幾乎用手動跟蹤全部採用太陽能採集陽光的太陽能發動機。20世紀70年代以來,太陽能科技突飛猛進,太陽能的利用也不斷得到發展。

歷史的車輪駛入21世紀,人類對太陽能的利用又進入一個新時代。太陽能的利用領域進一步擴大,太陽能利用新技術不斷涌現。2008年9月25日,我國「神舟」七號載人宇宙飛船成功發射。在載人航天工程七大系統中,飛船的電力系統是飛船系統的分系統,為飛船提供飛行動力。太陽能電池就是「神舟」七號的電力系統件。電池板上密密麻麻地布滿單晶硅高效單體電池,整個飛船上共使用一萬多片,成為一個電池陣。飛船的電能的直接來源就是太陽能電池陣,沒有它,飛船就不能工作。電池陣把光能轉換成電能,源源不斷地輸送給飛船中的其他系統。電池陣集合了供電陣和充電陣等幾大單元。其中供電陣能為飛船直接供電,充電陣為蓄電池組充電。在陰影區,蓄電池組再將儲存的電能輸出為飛船供電。

飛船在軌道運行時,飛船唯一主動提供能源的子系統便是太陽能電池陣。這些電池板在飛船進入軌道後展開,像一雙翅膀,保證飛船正常飛行。這雙翅膀由於在太陽角計算儀器、光敏感測器的自動調節下,始終跟著太陽走,無論飛船飛行姿態如何變化,這雙翅膀都與太陽保持垂直,讓太陽光直射到電池陣,這樣光直射強度最大,發電效率最高。與「神舟」七號一起升入太空的還有一顆伴飛衛星,伴飛衛星的星體結構為六面體,其中五個面粘貼太陽能電池,科研人員選用了轉換效率較高的三結砷化鎵太陽能電池作為基本發電單元,單體電池平均光電轉換效率達27%,是我國首次將此類電池批量應用於衛星工程。小小太陽能電池為我國航天事業做出了重要貢獻。

㈥ 太陽能光伏發電的發展歷史是什麼

1839年,19歲的法國貝克勒爾做物理實驗時,發現在導電液中的兩種金屬電極用光照射時電流會加強,從而發現了「光生伏打效應」。1930年,郞格首次提出用「光伏效應」製造太陽能電池,使太陽能變成電能。1932年奧杜博特和斯托拉製成第一塊「硫化鎘」太陽能電池。1941年奧杜在硅上發現光伏效應。1954年5月美國貝爾實驗室恰賓、富勒和皮爾松開發出效率為6%的單晶硅太陽能電池,這是世界上第一個有實用價值的太陽能電池,同年威克首次發現了砷化鎳有光伏效應,並在玻璃上沉積硫化鎳薄膜,製成了太陽能電池,太陽光轉化為電能的實用光伏發電技術由此誕生並發展起來。2014年初我省金寨縣為落實省委政府精準扶貧新要求,實施產業扶貧「到村、到戶、到人、到產業」,在全省率先開展了光伏發電扶貧項目。

光伏(PVorphotovoltaic),是太陽能光伏發電系統(photovoltaicpowersystem)的簡稱,是一種利用太陽電池半導體材料的光伏效應,將太陽光輻射能直接轉換為電能的一種新型發電系統,有獨立運行和並網運行兩種方式。同時,太陽能光伏發電系統分類,一種是集中式,如大型西北地面光伏發電系統;一種是分布式(以>6MW為分界),如工商企業廠房屋頂光伏發電系統,民居屋頂光伏發電系統。光伏板組件是一種暴露在陽光下便會產生直流電的發電裝置,由幾乎全部以半導體物料(例如硅)製成的薄身固體光伏電池組成。由於沒有活動的部分,故可以長時間操作而不會導致任何損耗。簡單的光伏電池可為手錶及計算器提供能源,較復雜的光伏系統可為房屋提供照明,並為電網供電。光伏板組件可以製成不同形狀,而組件又可連接,以產生更多電力。近年,天台及建築物表面均會使用光伏板組件,甚至被用作窗戶、天窗或遮蔽裝置的一部分,這些光伏設施通常被稱為附設於建築物的光伏系統。

㈦ 求光伏電站一段時間內的歷史數據

只是發電功率預測的話,如果只是簡單的話,NASA資料庫裡面就有了,如果是要較精確的,中國氣象局網上有01和02的各地全年太陽能輻射數據,很細到天,要逐時的八成不好搞,至於氣象數據,如果你只是氣象站出具的光伏發電功率預測方面的數據也主要是溫度,雷暴天數等等的數據。

建議你搞氣象站的日太陽能輻射量來算日發電量,這個比較靠譜點

熱點內容
六年級語文補充答案 發布:2025-07-09 06:19:21 瀏覽:21
保證書寫給班主任100字 發布:2025-07-09 06:00:31 瀏覽:240
南科生物 發布:2025-07-09 04:15:57 瀏覽:993
蹲踞式跳遠教學反思 發布:2025-07-09 03:09:33 瀏覽:84
高中歷史嶽麓 發布:2025-07-09 02:45:51 瀏覽:353
新開的英語 發布:2025-07-09 01:27:47 瀏覽:276
物理實驗教師 發布:2025-07-09 00:46:01 瀏覽:21
怎麼刪除朋友圈 發布:2025-07-09 00:19:21 瀏覽:154
包鋼股份歷史 發布:2025-07-08 22:01:23 瀏覽:878
囚禁教師電影 發布:2025-07-08 20:48:26 瀏覽:962