光化學第二定律
"只有被反應體系吸收的輻射,才能引發反應。"這是 1 9世紀由格羅塞斯(Grotthus)(1817)和德雷珀(DraPer)(1843)總結出的第一個光化學定律。
1908年~1912年由 Stark 和 Einstein 分別提出光化學第二定律:"每一由光活化的原子或分子,只吸收一個引起它活化的光量子"
『貳』 光化學定律的相關內容
1818年C.J.D.格羅特斯等人曾提出光化學活化原則:只有被物質吸收的光,才能產生光化學變化。這就是光化學第一定律。因而,不僅應該知道反應的吸收光譜和光源的光譜能量分布,而且也應了解光源與反應物間存在的溶劑、產物和玻璃製品的吸收光譜。 一般,參與光化學反應的物質並沒有吸收全部的入射光能。光子的吸收幾率關繫到入射的光輻射能否改變基態分子的電子分布,以達到特定的激發態。 1908年J.斯塔克和1912年A.愛因斯坦把能量的量子概念應用到分子的光化學反應上,他們提出了量子活化原則—分子的光吸收是單量子(光子)過程,在初始光化學過程中活化一個分子,所以初始過程的量子產額之和應為1。這就是光化學第二定律。 在常規光化學系統中,屬低光強照射,被吸收光子數為10~10厘米·秒。由於激發態分子的壽命很短,處於電子激發態的分子也只能有很低的濃度,所以第二光子的吸收幾率極小。在高光強照射條件下,例如在閃光光解和某些激光光化學實驗中被吸收光子數為10厘米·秒以上,在高光子密度的光化學反應中有時會發生雙光子吸收。
『叄』 光化學是什麼
光化學是研究光與物質相互作用所引起的永久性化學效應的化學分支學科。由於歷史的和實驗技術方面的原因,光化學所涉及的光的波長范圍為100~1000納米,即由紫外至近紅外波段。
比紫外波長更短的電磁輻射,如 X或 γ射線所引起的光電離和有關化學變化,則屬於輻射化學的范疇。至於遠紅外或波長更長的電磁波,一般認為其光子能量不足以引起光化學過程,因此不屬於光化學的研究范疇。近年來觀察到有些化學反應可以由高功率的紅外激光所引發,但將其歸屬於紅外激光化學的范疇。
光化學過程是地球上最普遍、量重要的過程之一,綠色植物的光合作用,動物的視覺,塗料與高分子材料的光致變性,以及照相、光刻、有機化學反應的光催化等,無不與光化學過程有關。近年來得到廣泛重視的同位素與相似元素的光致分離、光控功能體系的合成與應用等,更體現了光化學是一個極活躍的領域。但從理論與實驗技術方面來看,在化學各領域中,光化學還很不成熟。
光化學反應與一般熱化學反應相比有許多不同之處,主要表現在:加熱使分子活化時,體系中分子能量的分布服從玻耳茲曼分布;而分子受到光激活時,原則上可以做到選擇性激發,體系中分子能量的分布屬於非平衡分布。所以光化學反應的途徑與產物往往和基態熱化學反應不同,只要光的波長適當,能為物質所吸收,即使在很低的溫度下,光化學反應仍然可以進行。
光化學的初級過程是分子吸收光子使電子激發,分子由基態提升到激發態。分子中的電子狀態、振動與轉動狀態都是量子化的,即相鄰狀態間的能量變化是不連續的。因此分子激發時的初始狀態與終止狀態不同時,所要求的光子能量也是不同的,而且要求二者的能量值盡可能匹配。
由於分子在一般條件下處於能量較低的穩定狀態,稱作基態。受到光照射後,如果分子能夠吸收電磁輻射,就可以提升到能量較高的狀態,稱作激發態。如果分子可以吸收不同波長的電磁輻射,就可以達到不同的激發態。按其能量的高低,從基態往上依次稱做第一激發態、第二激發態等等;而把高於第一激發態的所有激發態統稱為高激發態。
激發態分子的壽命一般較短,而且激發態越高,其壽命越短,以致於來不及發生化學反應,所以光化學主要與低激發態有關。激發時分子所吸收的電磁輻射能有兩條主要的耗散途徑:一是和光化學反應的熱效應合並;二是通過光物理過程轉變成其他形式的能量。
光物理過程可分為輻射弛豫過程和非輻射弛豫過程。輻射弛豫過程是指將全部或部分多餘的能量以輻射能的形式耗散掉,分子回到基態的過程,如發射熒光或磷光;非輻射弛豫過程是指多餘的能量全部以熱的形式耗散掉,分子回到基態的過程。
決定一個光化學反應的真正途徑往往需要建立若干個對應於不同機理的假想模型,找出各模型體系與濃度、光強及其他有關參量間的動力學方程,然後考察何者與實驗結果的相符合程度最高,以決定哪一個是最可能的反應途徑。
光化學研究反應機理的常用實驗方法,除示蹤原子標記法外,在光化學中最早採用的猝滅法仍是非常有效的一種方法。這種方法是通過被激發分子所發熒光,被其他分子猝滅的動力學測定來研究光化學反應機理的。它可以用來測定分子處於電子激發態時的酸性、分子雙聚化的反應速率和能量的長程傳遞速率。
由於吸收給定波長的光子往往是分子中某個基團的性質,所以光化學提供了使分子中某特定位置發生反應的最佳手段,對於那些熱化學反應缺乏選擇性或反應物可能被破壞的體系更為可貴。光化學反應的另一特點是用光子為試劑,一旦被反應物吸收後,不會在體系中留下其他新的雜質,因而可以看成是「最純」的試劑。如果將反應物固定在固體格子中,光化學合成可以在預期的構象(或構型)下發生,這往往是熱化學反應難以做到的。
地球與行星的大氣現象,如大氣構成、極光、輻射屏蔽和氣候等,均和大氣的化學組成與對它的輻照情況有關。地球的大氣在地表上主要由氮氣與氧氣組成。但高空處大氣的原子與分子組成卻很不相同,主要和吸收太陽輻射後的光化學反應有關。
大氣污染過程包含著極其豐富而復雜的化學過程,目前用來描述這些過程的綜合模型包含著許多光化學過程。如棕色二氧化氮在日照下激發成的高能態分子,是氧與碳氫化物鏈反應的引發劑。又如氟碳化物在高空大氣中的光解與臭氧屏蔽層變化的關系等,都是以光化學為基礎的。
『肆』 光化學的歷史
最早進行光抄化學研究的學者是義大利化學家G. L. Ciamician,從1886年開始,他與義大利化學家Paolo Silber共同完成了「苯醌向對苯二酚的轉化」以及「硝基苯在醇溶液中的光化學作用」等研究[3],他也可被認為是太陽能電池板之父。在1912年的第8屆國際應用化學大會上,他以「光化學的未來」為題發表了一篇演講,展望了光化學在未來可能起到的重要作用[4]。
『伍』 什麼叫光化學
光化學是研究光與物質相互作用所引起的永久性化學效應的化學分支學科。由於歷史的和實驗技術方面的原因,光化學所涉及的光的波長范圍為100~1000納米,即由紫外至近紅外波段。
比紫外波長更短的電磁輻射,如 X或 γ射線所引起的光電離和有關化學變化,則屬於輻射化學的范疇。至於遠紅外或波長更長的電磁波,一般認為其光子能量不足以引起光化學過程,因此不屬於光化學的研究范疇。近年來觀察到有些化學反應可以由高功率的紅外激光所引發,但將其歸屬於紅外激光化學的范疇。
光化學過程是地球上最普遍、量重要的過程之一,綠色植物的光合作用,動物的視覺,塗料與高分子材料的光致變性,以及照相、光刻、有機化學反應的光催化等,無不與光化學過程有關。近年來得到廣泛重視的同位素與相似元素的光致分離、光控功能體系的合成與應用等,更體現了光化學是一個極活躍的領域。但從理論與實驗技術方面來看,在化學各領域中,光化學還很不成熟。
光化學反應與一般熱化學反應相比有許多不同之處,主要表現在:加熱使分子活化時,體系中分子能量的分布服從玻耳茲曼分布;而分子受到光激活時,原則上可以做到選擇性激發,體系中分子能量的分布屬於非平衡分布。所以光化學反應的途徑與產物往往和基態熱化學反應不同,只要光的波長適當,能為物質所吸收,即使在很低的溫度下,光化學反應仍然可以進行。
光化學的初級過程是分子吸收光子使電子激發,分子由基態提升到激發態。分子中的電子狀態、振動與轉動狀態都是量子化的,即相鄰狀態間的能量變化是不連續的。因此分子激發時的初始狀態與終止狀態不同時,所要求的光子能量也是不同的,而且要求二者的能量值盡可能匹配。
由於分子在一般條件下處於能量較低的穩定狀態,稱作基態。受到光照射後,如果分子能夠吸收電磁輻射,就可以提升到能量較高的狀態,稱作激發態。如果分子可以吸收不同波長的電磁輻射,就可以達到不同的激發態。按其能量的高低,從基態往上依次稱做第一激發態、第二激發態等等;而把高於第一激發態的所有激發態統稱為高激發態。
激發態分子的壽命一般較短,而且激發態越高,其壽命越短,以致於來不及發生化學反應,所以光化學主要與低激發態有關。激發時分子所吸收的電磁輻射能有兩條主要的耗散途徑:一是和光化學反應的熱效應合並;二是通過光物理過程轉變成其他形式的能量。
光物理過程可分為輻射弛豫過程和非輻射弛豫過程。輻射弛豫過程是指將全部或部分多餘的能量以輻射能的形式耗散掉,分子回到基態的過程,如發射熒光或磷光;非輻射弛豫過程是指多餘的能量全部以熱的形式耗散掉,分子回到基態的過程。
決定一個光化學反應的真正途徑往往需要建立若干個對應於不同機理的假想模型,找出各模型體系與濃度、光強及其他有關參量間的動力學方程,然後考察何者與實驗結果的相符合程度最高,以決定哪一個是最可能的反應途徑。
光化學研究反應機理的常用實驗方法,除示蹤原子標記法外,在光化學中最早採用的猝滅法仍是非常有效的一種方法。這種方法是通過被激發分子所發熒光,被其他分子猝滅的動力學測定來研究光化學反應機理的。它可以用來測定分子處於電子激發態時的酸性、分子雙聚化的反應速率和能量的長程傳遞速率。
由於吸收給定波長的光子往往是分子中某個基團的性質,所以光化學提供了使分子中某特定位置發生反應的最佳手段,對於那些熱化學反應缺乏選擇性或反應物可能被破壞的體系更為可貴。光化學反應的另一特點是用光子為試劑,一旦被反應物吸收後,不會在體系中留下其他新的雜質,因而可以看成是「最純」的試劑。如果將反應物固定在固體格子中,光化學合成可以在預期的構象(或構型)下發生,這往往是熱化學反應難以做到的。
地球與行星的大氣現象,如大氣構成、極光、輻射屏蔽和氣候等,均和大氣的化學組成與對它的輻照情況有關。地球的大氣在地表上主要由氮氣與氧氣組成。但高空處大氣的原子與分子組成卻很不相同,主要和吸收太陽輻射後的光化學反應有關。
大氣污染過程包含著極其豐富而復雜的化學過程,目前用來描述這些過程的綜合模型包含著許多光化學過程。如棕色二氧化氮在日照下激發成的高能態分子,是氧與碳氫化物鏈反應的引發劑。又如氟碳化物在高空大氣中的光解與臭氧屏蔽層變化的關系等,都是以光化學為基礎的。
參考資料:http://www.ikepu.com/chemistry/chemistry_branch/photochemistry_total.htm
『陸』 光化學反應的基本定律
光化學第一定律
只有被體系內分子吸收的光,才能有效地引起該體系的分子發生光化學反應,此定律雖然是定性的,但卻是近代光化學的重要基礎。該定律在1818年由Grotthus和Draper提出,故又稱為Grotthus-Draper定律.
光化學第二定律
在初級過程中,一個被吸收的光子只活化一個分子.該定律在1908~1912年由Einstein和Stark提出,故又稱為 Einstein-Stark定律.
Beer-Lambert定律
平行的單色光通過濃度為c,長度為d的均勻介質時,未被吸收的透射光強度It與入射光強度I0之間的關系為(e為摩爾消光系數)
『柒』 光化學反應
光化學反應是自然科學的一種反應名稱。光化學反應又稱光化學反應或光化作用。物質一般在可見光或紫外線的照射下而產生的化學反應,是由物質的分子吸收光子後所引發的反應。
原理
光化學反應在環境中主要是受陽光的照射,污染物吸收光子而使該物質分子處於某個電子激發態,而引起與其它物質發生的化學反應。如光化學煙霧形成的起始反應是二氧化氮(NO2)在陽光照射下,吸收紫外線(波長2900~4300A)而分解為一氧化氮(NO)和原子態氧(O,三重態)的光化學反應,由此開始了鏈反應,導致了臭氧及與其它有機烴化合物的一系列反應而最終生成了光化學煙霧的有毒產物,如過氧乙醯硝酸酯(PAN)等。
大氣污染的化學原理比較復雜,它除了與一般的化學反應規律有關外,更多的由於大氣中物質吸收了來自太陽的輻射能量(光子)發生了光化學反應,使污染物成為毒性更大的物質(叫做二次污染物)。光化學反應是由物質的分子吸收光子後所引發的反應。分子吸收光子後,內部的電子發生能級躍遷,形成不穩定的激發態,然後進一步發生離解或其它反應。一般的光化學過程如下:
(1)引發反應產生激發態分子(A*)
A(分子)+hv→A*
(2)A*離解產生新物質(C1,C2…)
A*→C1+C2+…
(3)A*與其它分子(B)反應產生新物質(D1,D2…)
A*+B→D1+D2+…
(4)A*失去能量回到基態而發光(熒光或磷光)
A*→A+hv
(5)A* 與其它化學惰性分子(M)碰撞而失去活性
A*+M→A+M′
反應(1)是引發反應,是分子或原子吸收光子形成激發態A*的反應。引發反應(1)所吸收的光子能量需與分子或原子的電子能級差的能量相適應。物質分子的電子能級差值較大,只有遠紫外光、紫外光和可見光中高能部分才能使價電子激發到高能態。即波長小於700 nm才有可能引發光化學反應。產生的激發態分子活性大,可能產生上述(2)~(4)一系列復雜反應。反應(2)和(3)是激發態分子引起的兩種化學反應形式,其中反應(2)於大氣中光化學反應中最重要的一種,激發分子離解為兩個以上的分子、原子或自由基,使大氣中的污染物發生了轉化或遷移。反應(4)和(5)是激發態分子失去能量的兩種形式,結果是回到原來的狀態。
大氣中的N2,O2和O3能選擇性吸收太陽輻射中的高能量光子(短波輻射)而引起分子離解:
N2+hv→N+N λ<120 nm
O2+hv→O+O λ<240 nm
O3+hv→O2+O λ=220~290 nm
顯然,太陽輻射高能量部分波長小於 290 nm的光子因被O2,O3,N2的吸收而不能到達地面。大於800 nm長波輻射(紅外線部分)幾乎完全被大氣中的水蒸氣和CO2所吸收。因此只有波長 300~800 nm的可見光波不被吸收,透過大氣到達地面。
大氣的低層污染物NO2、SO2、烷基亞硝酸(RONO)、醛、酮和烷基過氧化物(ROOR′)等也可發生光化學反應:
NO2+bv→NO·+O
HNO2(HONO)+hv→NO+HO·
RONO+hv→NO·+RO·
CH2O+hv→H·+HCO
ROOR′+hv→RO·+R′O·
上述光化學反應光吸收一般在 300~400 nm。這些反應與反應物光吸收特性,吸收光的波長等因素有關。應該指出,光化學反應大多比較復雜,往往包含著一系列過程。
3作用
光化學反應可引起化合、分解、電離、氧化還原等過程。主要可分為兩類:一類是光合作用,如綠色植物使二氧化碳和水在日光照射下,借植物葉綠素的幫助,吸收光能,合成碳水化合物。另一類是光分解作用[1] ,如高層大氣中分子氧吸收紫外線分解為原子氧;染料在空氣中的褪色,膠片的感光作用等。
4基本定律
光化學第一定律
只有被體系內分子吸收的光,才能有效地引起該體系的分子發生光化學反應,此定律雖然是定性的,但卻是近代光化學的重要基礎。該定律在1818年由Grotthus和Draper提出,故又稱為Grotthus-Draper定律.
光化學第二定律
在初級過程中,一個被吸收的光子只活化一個分子.該定律在1908~1912年由Einstein和Stark提出,故又稱為 Einstein-Stark定律.
Beer-Lambert定律
平行的單色光通過濃度為c,長度為d的均勻介質時,未被吸收的透射光強度It與入射光強度I0之間的關系為(e為摩爾消光系數)
『捌』 "光化當量"定律是怎樣的
光化學第二定律
愛因斯坦在1905年提出,在初級光化學反應過程中,被活化的分子數(或原子數)等於吸收光的量子數,或者說分子對光的吸收是單光子過程(電子激發態分子壽命很短,吸收第二個分子的幾率很小),即光化學反應的初級過程是由分析吸收光子開始的,此定律又稱為Einstein光化當量定律。
E=hv= hc/λ
λ——光量子波長 h ——普朗克常數 c——光速
E=N0hv= N0hc/λ
N0——阿伏加德羅常數
Λ=400nm,E=299.1kJ/mol
Λ=700nm,E=170.9kJ/mol
由於通常化學鍵的鍵能大於167.4kJ/mol,所以波長大於700nm的光就不能引起光化學離解。
『玖』 光化學的內容
電磁輻射能的吸收與分子的激發態
光化學的初級過程是分子吸收光子使電子激發,分子由基態提升到激發態。分子中的電子狀態、振動與轉動狀態都是量子化的,即相鄰狀態間的能量變化是不連續的。因此分子激發時的初始狀態與終止狀態不同時,所要求的光子能量也是不同的,而且要求二者的能量值盡可能匹配。由於光子的能量ε=hv=hc/λ(式中h為普朗克常數;v為光的頻率;λ為光的波長;c為光速),所以能量匹配體現為光的波長的匹配。
分子在一般條件下處於能量較低的穩定狀態,稱作基態。受到光照射後,如果分子能夠吸收分子,就可以提升到能量較高的狀態,稱作激發態。如果分子可以吸收不同波長的電磁輻射,就可以達到不同的激發態。按其能量的高低,從基態往上依次稱做第一激發態、第二激發態等等;而把高於第一激發態的所有激發態統稱為高激發態。激發態分子的壽命一般較短,而且激發態越高,其壽命越短,以致於來不及發生化學反應,所以光化學主要與低激發態有關。激發時分子所吸收的電磁輻射能有兩條主要的耗散途徑:一是和光化學反應的熱效應合並;二是通過光物理過程轉變成其他形式的能量。光物理過程又可分為:①輻射弛豫過程,即將全部或一部分多餘的能量以輻射能的形式耗散掉,分子回到基態,如發射熒光或磷光;②非輻射弛豫過程,多餘的能量全部以熱的形式耗散掉,分子回到基態(見雅布隆斯基態圖解)。
如果分子中的電子是一一配對的(電子自旋方向相反),這種狀態在光譜學上稱為單重(線)態(在分子式左上角用上標1表示,如1A,或記作S,依能量由低至高分別用S0、S1、…表示)。若分子中有兩個電子的自旋平行,這種狀態稱為三重(線)態(用3A或T1、T2、…表示)。單重態的激發態壽命很短,一般在10-8~10-9秒的量級。當基態為單重態時,激發三重態的壽命一般較長,可達到10-3~100秒的量級。所以有機化合物的光化學大都是三重態的光化學。
分子處於激發態時,由於電子激發可引起分子中價鍵結合方式的改變〔如電子由成鍵的 π軌道躍遷到反鍵的π*軌道,記作(π,π*);或由非鍵的n軌道躍遷到反鍵的π*軌道,記作(n,π*)等〕,使得激發態分子的幾何構型、酸度、顏色、反應活性或反應機理可能和基態時有很大的差別,因此光化學比基態(熱)化學更加豐富多彩。 也叫量子效率或量子產額。是光化學重要的基本量之一。設反應為A hv→B,初級過程的量子產率定義為:
如果激發態的A分子在變成為B的同時,還平行地發生著其他光化學和光物理過程,那麼這個初級過程的量子產率將受到其他競爭的平行過程的「量子產率」的影響。由於在一般光強條件下,每個分子只能吸收1個光子,所以所有初級過程的量子產率的總和應等於1。
量子效率的測定有絕對測定法與相對測定法。相對法指與一種其絕對量產率為已知的體系相比較的方法。絕對法則要求直接建立起反應的量子產率和波長、溫度、光強以及各種離子(特別是氫離子)濃度間的函數關系。現在已經研究過的這類體系有氣體體系(如一氧化二氮、二氧化碳、溴化氫、丙酮等);液相體系(如草酸鐵(Ⅲ)鉀溶液、草酸鈾醯溶液、二苯酮-二苯甲醇、2-己酮、偶氮苯、苯甲酸等〕;固相體系(如硝基苯甲醛、二苯酮-二苯甲醇等)。這些方法所用的儀器統稱為化學露光計。 原子從分子中的一處移向他處的反應稱為分子重排反應。許多有機分子在光激發後發生的重排過程也屬於次級步驟。如苯經光激發後變為亞甲基環戊二烯的反應:
第一步只是苯環中6個比較自由的共軛 π電子的激發(一般只激發1個電子),這對苯分子中的碳氫鍵影響不大;而在次級步驟中由於原子的重排,生成了結構完全不同的產物。
有時,初級光化學過程可用作研究次級反應的工具,光敏化反應就屬於這類情況。如汞原子能有效地吸收汞燈發射的光而被激發,然後通過與其他分子的碰撞,傳遞所吸收的能量。例如:
Hg+hv─→Hg*
Hg*+N2O─→Hg+N2+O
氧原子可以和體系中存在的其他物質反應,從釋放出來的氮氣量可以計算出所產生的氧原子數量。
如果初級光化學步驟是分子光解成兩個自由基(有單個或未配對電子的分子碎片),通常,其次級步驟為鏈反應。氫與氯的反應是已經熟知的例子,其過程為:
hv+Cl2─→2Cl
Cl+H2─→HCl+H
H+Cl2─→HCl+Cl
在鏈反應中,每個量子可以產生多個產物分子,因此這類反應的總量子產率不僅可能大於1,有時可以達到幾百甚至幾千。所以當量子產率大於1時,一般可考慮反應具有鏈反應的機理。
決定一個光化學反應的真正途徑往往需要建立若干個對應於不同機理的假想模型,找出各模型體系與濃度、光強及其他有關參量間的動力學方程,然後考察何者與實驗結果的相符合程度最高,以決定哪一個是最可能的反應途徑。研究反應機理的常用實驗方法,除示蹤原子標記法外,在光化學中最早採用的猝滅法仍是非常有效的一種方法。這種方法是通過被激發分子所發熒光被其他分子猝滅的動力學測定來研究光化學反應機理的。它可以用來測定分子處於電子激發態時的酸性、分子雙聚化的反應速率和能量的長程傳遞速率。猝滅是一種雙分子過程,如原激發分子為A*,猝滅劑分子為Q,此過程為:
A*+Q─→A+Q*
顯然猝滅過程也是一種敏化過程。Q可以看成是 A*的猝滅劑,也可以把A看成是Q的敏化劑。
『拾』 什麼是光化學反應的初級過程和次級過程如何定義光化學反應和光解
初級反應過程是物質分子接受了光照的能量,產生自由基。
而自由基性質十分活潑(氧化性很強),會跟其他分子繼續反應,則為次級過程。