当前位置:首页 » 语数英语 » 陈省身数学研究所

陈省身数学研究所

发布时间: 2020-11-20 11:44:30

A. 全国大学数学系排名

这个东西只有07年由高等学校与科研院所学位与研究生教育评估过一次.具体是这样的.

名次 学校名称 整体水平 学术队伍 科学研究 人才培养 学术声誉

1 北京大学 1 (100) 1 (100) 1 (100) 1 (100) 1 (100)

2 复旦大学 2 (89.74 ) 2 (90.87 ) 4 (84.83 ) 2 (87.69 ) 2 (97.99 )

3 浙江大学 3 (83.98 ) 4 (80.22 ) 3 (87.46 ) 6 (75.25 ) 7 (90.06 )

4 南开大学 4 (83.26 ) 5 (79.3 ) 7 (78.86 ) 3 (78.71 ) 3 (96.36 )

5 中山大学 5 (81.39 ) 8 (75.4 ) 2 (89.14 ) 13 (69.23 ) 11 (86.26 )

6 中国科学技术大学 6 (79.11 ) 10 (73.95 ) 9 (77.63 ) 12 (69.66 ) 4 (93.7 )

7 四川大学 7 (79.06 ) 6 (77.43) 6 (79.1 ) 15 (69.17 ) 8 (89.88 )

8 南京大学 8 (77.63 ) 23 (65.75) 8 (77.84 ) 14 (69.22 ) 5 (92.89 )

9 清华大学 9 (77.59) 9 (74.08) 11 (74.79) 10 (69.86) 6 (91.37)

10 北京师范大学 10 (77.42) 3 (83.44) 14 (72.48) 11 (69.76) 10 (88.41)

11 华东师范大学 11 (75.87) 11 (73.13) 12 (74.03) 7 (71.75) 12 (84.19)

12 吉林大学 12 (72.46) 27 (64.08) 24 (65.6) 9 (70.34) 9 (89.18)

13 中南大学 13 (71.97) 17 (68.9) 5 (79.53) 18 (66.26) 27 (68.91)

14 大连理工大学 14 (71.91) 21 (67.43) 13 (73.43) 19 (65.29) 14 (79.06)

15 西安交通大学 15 (71.81) 30 (60.51) 21 (67) 4 (76.9) 13 (80.22)

16 哈尔滨工业大学 16 (71.61) 20 (67.58) 19 (68.12) 5 (76.04) 15 (74.46)

厦大的数学系也是很不错的,培养了以柯召院士,陈景润院士,林群院士为杰出代表的一大批著名数学家,你可以去考.

B. 考研考南开大学的数学科学学院和考南开大学的陈省身数学研究所哪个

有,必须的!一般大学的复试听力一般与司机考试听力差不多!但是像南开这样的学校估计就难了,你要认真准备下了

C. 谁是中国现代最伟大的数学家

应用数学方面是华罗庚
他是中国解析数论、矩阵几何学、典型群、自守函数论与多元复变函数论等多方面研究的创始人和开拓者,并被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。国际上以华氏命名的数学科研成果有“华氏定理”、“华氏不等式”、

D. 著名的数学家有哪些,并有哪些资料

华罗庚,1910年11月12日出生于江苏金坛县,父亲以开杂货铺为生。他幼时爱动脑筋,因思考问题过于专心常被同伴们戏称为“罗呆子”。他进入金坛县立初中后,其数学才能被老师王维克发现,并尽心尽力予以培养。初中毕业后,华罗庚曾入上海中华职业学校就读,因拿不出学费而中途退学,故一生只有初中毕业文凭。
此后,他开始顽强自学,每天达10个小时以上。他用5年时间学完了高中和大学低年级的全部数学课程。1928年,他不幸染上伤寒病,靠新婚妻子的照料得以挽回性命,却落下左腿残疾。20岁时,他以一篇论文轰动数学界,被清华大学请去工作。
从1931年起,华罗庚在清华大学边工作边学习,用一年半时间学完了数学系全部课程。他自学了英、法、德文,在国外杂志上发表了三篇论文后,被破格任用为助教。1936年夏,华罗庚被保送到英国剑桥大学进修,两年中发表了十多篇论文,引起国际数学界赞赏。1938年,华罗庚访英回国,在西南联合大学任教授。在昆明郊外一间牛棚似的小阁楼里,他艰难地写出名著《堆垒素数论》。1946年3月,他应邀访问苏联,回国后不顾反动当局的限制,在昆明为青年作“访苏三月记”的报告。1946年9月,华罗庚应纽约普林斯顿大学邀请去美国讲学,并于1948年被美国伊利诺依大学聘为终身教授。不久,妻子带着三个儿子来到美国与其团聚。
1949年,华罗庚毅然放弃优裕生活携全家返回祖国。1950年3月,他到达北京,随后担任了清华大学数学系主任、中科院数学所所长等职。50年代,他在百花齐放、百家争鸣的学术空气下著述颇丰,还发现和培养了王元、陈景润等数学人才。1956年,他着手筹建中科院计算数学研究所。1958年,他担任中国科技大学副校长兼数学系主任。从1960年起,华罗庚开始在工农业生产中推广统筹法和优选法,足迹遍及27个省市自治区,创造了巨大的物质财富和经济效益。1978年3月,他被任命为中科院副院长并于翌年入党。
晚年的华罗庚不顾年老体衰,仍然奔波在建设第一线。他还多次应邀赴欧美及香港地区讲学,先后被法国南锡大学、美国伊利诺依大学、香港中文大学授予荣誉博士学位,还于1984年以全票当选为美国科学院外籍院士。1985年6月12日,他在日本东京作学术报告时,因心脏病突发不幸逝世,享年74岁。

E. 数学家人物有哪些人

中国数学家

在中国,数学的起源也可追溯到远古。到西周时期(公元前11世纪~前八世纪),“数”作为贵族弟子必习的“六艺”(礼、乐、射、御、书、数)之一,已形成专门的学问,有些知识后成为中国最早的两部传世数学著作——《周捭算经》与《九章算术》的部分内容。

《周捭算经》同时也是一部天文著述,作者不详,成书年代据考当不晚于公元前2世纪。《周捭算经》在数学方面最主要的有勾股定理、分数运算及测量术等。

《周捭算经》本文没有给出勾股定理的证明,但《周捭算经》赵爽注中的“勾股圆方图”说,却蕴涵了迄今所知中国古代最早的勾股定理证明。赵爽,字君卿,生平不详,大约生活于后汉三国时期(公元三世纪前期)。“勾股圆方图”说短短五百余字,概括了整个汉代勾股算术的主要成就。

《九章算术》是中国古代最重要的数学经典,对中国古代数学的发展有深远影响。刘徽《九章算术注序》称《九章》是由周代“九数”发展而来,并由西汉张苍、耿寿昌等人删补。近年发现的湖北张家山汉初古墓竹简《算数书》(1984年出土),有些内容与《九章算术》类似。可以认为,《九章算术》是从先秦开始在长时期里经众多学者编纂、修改,约于西汉中叶(公元前一世纪)最后成书。

《九章算术》采用术文统率例题形式,全书共收246个数学问题,分成九章(①方田,②粟米,③衰分,④少广,⑤商功,⑥均输,⑦盈不足,⑧方程,⑨勾股)。《九章算术》所包含的数学成就是丰富的和多方面的,最著名的如分数运算法则、双设法(“盈不足”术)、开方法、线性方程组消元解法(“方程术”)及负数的引进(“正负术”)等,都具有世界意义。

《孙子算经》中国是世界上最早采用十进位值制记数的国家,春秋战国之际已普遍应用的筹算,即严格遵循了十进位值制。关于算筹记数法现在仅见的资料载于《孙子算经》。《孙子算经》三卷,作者名不详,成书年代约为公元4世纪,该书上卷是关于筹算法则的系统介绍,下卷则有著名的“物不知数”题,亦称“孙子问题”。

《张丘建算经》——百鸡术

《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间.张丘建,北魏时清河(今山东临清一带)人,生平不详。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西<<算术之钥》等著作中均出现有相同的问题。

贾宪:〈〈黄帝九章算经细草〉〉

中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”。

贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。

秦九韶:〈〈数书九章〉〉

秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的〈〈数书九章〉〉。〈〈数书九章〉〉全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。

李冶:《测圆海镜》——开元术

随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。

李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。

朱世杰:《四元玉鉴》

朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)

华罗庚

“数学,如音乐一样,以奇才辈出而著称,这些人即便没有受过正规的教育也才华横溢。虽然华罗庚谦虚地避免使用奇才这个词,但它却恰当地描述了这位杰出的中国数学家。” --G·B·Kolata

华罗庚是一个传奇式的人物,是一个自学成才的数学家。

他1910年11月12日出生于江苏省金坛县一个城市贫民的家庭,1985年6月12日,中国数学届陨灭一颗巨星-华罗庚在日本讲学时不幸因心肌梗塞逝世了。

华罗庚是蜚声中外的数学家。他是中国解析数论、典型群、矩阵几何学、自守与多复便函数等多方面研究的创始人与开拓者。他的著名学术论文《典型域上的多元复变函数论》,由于应用了前人没有用过的方法,在数学领域内做了开拓性的工作,于1957年荣获我国科学一等奖。他研究的成果被国际数学界命名为“华氏定理”,“布劳威尔-加当-华定理”。华罗庚一生精勤不倦,奋斗不息,著作很多,研究领域很广。他共发表学术论文约二百篇,专著有《堆垒素数论》、《高等数学引论》、《指数和的估计及其在数论中的应用》、《典型群》、《多复变数函数论中的典型域的分析》、《数论引导》、《数值积分及其应用》、《从单位圆谈起》、《优选法》、《二阶两个自变数两个未知函数的常系数偏微分方程》、《华罗庚论文选集》等12部。

名师与高徒——陈省生和丘成桐

当今世界数坛,设有两项奖励,可谓举世瞩目,堪于诺贝尔奖相比.一项是在国际数学家大会颁发的菲尔兹(Fields)奖,这项奖只授予不超过40岁的年轻数学家;一项是由以色列沃尔夫基金会于1978年颁发的沃尔夫奖;每奖10万美元(数目最初于诺贝尔奖接近),授予当代最大的数学家.

1983年,旅美中国年轻数学家丘成桐教授荣获沃尔夫大奖,而他的老师美籍中国数学家陈省身教授则获沃尔夫大奖.

陈省身教授是美国科学院院士,1975年美国国家科学奖获得者,当代世界最有影响的数学家之一,现代微分几何的奠基人.

陈省身1911年10月26日出生于浙江省嘉兴县,陈省身教授是国际数学届整体微分几何研究的领导人物.

他1931年在清华大学研究发表的第一篇研究论文,其题材就是有关"投影微分几何"的.

他写的积分几何,把希拉克学派的积分几何工作推到了更高的阶段.

陈省身对当时数学界知之甚少的示性类理论很感兴趣.1945年他发现复流上有反映复结构特征的不变量,后来被命名为陈省身示性类是微分几何学、代数几何学、复解析几何学中最重要的不变量。“它的应用及于整个数学及理论物理”。(沃尔夫奖评语)魏伊说:“示性类的概念被陈的工作整个地改观了。”陈省身因建立代数拓补与微分几何的联系,推进了整体几何的发展彪炳于数学史册。

在将近半个世纪里,陈省身教授在微分几何研究中,取得了一系列丰硕的成果,其最突出的有:(1)关于卡勒(Kahleian)G结构的同调和形式的分解定理:(2)欧几里得空间中闭子流的全曲率和紧嵌入的理论;(3)满足几何条件的子流形成唯一性定理;(4)积分几何中的运动公式。(5)他同格里菲恩(P.Griffiths)关于网上几何(Web geometry)的工作使这方面获得新生命,最近的发展(I.Gelfand,R.Mcpherson);(6)他同莫泽(J.Moser)关于CR-流形的工作最近多复变函数论进展的基础;(7)他同西蒙斯(J.Simons)的特征式是量子力学异常(anomaly)现象的基本数学工具;(8)他同沃尔夫森(J.Wolfson)关于调和映射的工作是整体微分几何的一个问题,在理论物理有重要应用.1959年他在芝加哥大学所撰写的《微分几何》是一部经典名著。

丘成桐1949年4月4日出生在广东省,不久他们全家移居香港,1976年,年仅27岁的丘成桐就解决了微分几何中的一个著名难题-“卡拉比猜想”。卡拉比猜想的解决,使丘成桐成为数学天空新升起的一颗名星,他除解决了卡拉比猜想外,他还解决了许多停多年毫无进展的问题,例如:(1)正质猜想,(2)实与复的蒙日-安培方程。(3)丘成桐的一系列文章对某些紧流形(或有边界的流型)上的拉普拉斯算子的第一特征值,以及其它的特征值都作了深刻的估计。(4)丘成桐和肖荫堂合作,利用极小曲面对弗兰克尔猜想给出一个漂亮的证明,也就是证明了完备的单连通的、具有正的全纯截面曲率的恺勒流形与一个复射空间双全纯等价;(5)丘成桐和米斯克利用三维流形的拓补方法解决极小曲面的经典理论中一些老问题。反过来,他们利用极小曲面理论得出三维拓补学的一些结果:得恩引理和等变环圈定理及等球定理等。

由于丘成桐的出色成就,他1981年获美国数学颁发的维布伦奖,1983年,他在华沙举行的国际数学家大会上荣获菲尔兹奖是当之无愧的.

吴文俊

数学家。1919年5月12日生于上海市。1940年毕业于上海交通大学。1947年赴法国留学。在巴黎法国国家科学研究中心进行数学研究,1949年获法国国家科学博士学位。1951年回国。1957年被聘选为中国科学院院士(学部委员)。历任北京大学数学系教授,中国科学院数学研究所研究员及副所长,中国科学院系统科学研究所研究员及副所长、名誉所长、数学机械化研究中心主任。曾任中国数学会理事长、名誉理事长,中国科学院数学物理学部副主任、主任等职。 吴文俊主要从事拓扑学、机器证明学等方面的研究并取得多项突出成果,是中国数学机械化研究的创始人,为中国数学研究和科学事业的发展作出了重要贡献。1952年刊印出版的博士论文《球纤维示性类》是对球纤维理论基本问题的重要贡献。从40年代起示性类、示嵌类等研究方面取得一系列突出成果,并有许多重要应用,被国际数学界称为“吴文俊公式”、“吴文俊示性类”,已被编入许多名著。这方面成果曾获1956年度国家自然科学奖(中国科学院自然科学奖金)一等奖。60年代继续进行示嵌类方面的研究,独创性地发现了新的拓扑不变量,其中关于多面体的嵌入和浸入方面的成果至今仍居世界领先地位。在庞特雅金示性类方面的成果,是拓扑学纤维丛理论和微分流形的几何学的一项基本理论研究,有深刻的理论意义。近年来创立了定理机器证明的吴文俊原理(国际上称为“吴方法”),实现了初等几何与微分几何定理的机器证明,居于世界领先地位。这一重要创新改变了自动推理研究的面貌,在定理机器证明领域产生了巨大影响,并有重要的应用价值,它将引起数学研究方式的变革。这方面的研究成果曾获1978年全国数学大会重大成果奖和1980年中国科学院科技进步奖一等奖。在机器发现和创造定理的研究方面,以及代数几何、中国数学史、对策论等研究中也作出了重要贡献。

杨乐

数学家。1939年11月10日生于江苏南通。1956年考入北京大学数学系,1962年毕业,同年考取中国科学院数学研究所研究生,1966年研究生毕业后留所工作。曾任中国科学院数学研究所所长、中国数学会秘书长、理事长。现任中国科学院数学研究所研究员、学术委员会主任。1980年当选为中国科学院院士(学部委员)。 杨乐在函数模分布论、辐角分布论、正规族等领域,以其众多极富创造性的重要贡献,20年来一直站在世界最前列,是国际上的领头数学家之一。 一、对整函数、亚纯函数的亏值、亏量函数进行了深入研究 与张广厚合作在亚纯函数的亏值数目与Borel方向数目间首次建立了密切联系;在引进亏函数后,给出有穷下级亚纯函数总亏量的估计,从而证明了其亏函数是可数的;给出亚纯函数结合于导数的总亏量的估计,彻底解决了著名学者D.Drasin70年代提出的3个问题。 二、对正规族作了系统研究,获得了一些新的重要的正规定则 杨乐建立了正规族与不动点之间的联系正规族与微分多项式之间的联系,解决了著名学者W.K.Hayman提出的一个正规族问题等。 三、对整函数和亚纯函数的辐角分布进行了系统、深入的研究 杨乐研究在亚纯函数涉及的导数的辐角分布时,获得了一种新型的奇异方向;对辐角分布与重值间的关系得到了深入的结果;完全刻划了亚纯函数Borel方向的分布规律;与Hayman合作解决了Littlewood的一个猜想。 杨乐的上述各项重要研究成果受到国内外同行的高度评价与许多引用,他所得到的亏量关系,被国外学者称为“杨乐亏量关系‘等。

F. 数学资料

陈省身(国语罗马字:Shiing-shen Chern,1911年10月28日—2004年12月3日),美国华裔数学家、教育家,国际微分几何大师。美国国家科学院院士、中央研究院院士,同时是法国科学院、意大利国家科学院、英国皇家学会和中国科学院的外籍院士。

1911年生于浙江嘉兴秀水县。1922年秀州中学毕业,来到天津。1923年入扶轮中学(今天津铁路一中)。1926年毕业,入南开大学数学系,1930年毕业,获学士学位。同年入清华大学任助教并攻读研究生,师从中国微分几何先驱孙光远,研究射影微分几何,1934年毕业,获硕士学位,为中国自己培养的第一名数学研究生。同年获中华文化教育基金会奖学金(一说受清华大学资助),赴德国汉堡大学学习,师从著名几何学家布拉希开(Blaschke),1936年2月获科学博士学位;毕业时奖学金还有剩余,于是又转去法国巴黎跟从嘉当(E.Cartan)研究微分几何。

1937年,陈省身担任清华大学教授;后因抗战随学校内迁至云南昆明,在北京大学、清华大学、南开大学合组的西南联合大学讲授微分几何。

1943年,应美国数学家维布伦(O.Veblen)之邀,到普林斯顿高级研究所工作。此后两年间,他完成了一生中最重要的工作:证明高维的高斯-邦内公式(Gauss-Bonnet Formula),构造了现今普遍使用的陈示性类,为整体微分几何奠定了基础。

1946年抗战胜利后,回到上海,主持中央研究院数学研究所的工作,此后两三年中,他培养了一批青年拓扑学家。1949年初,中央研究院迁往台湾,陈省身应普林斯顿高级研究所所长奥本海默之邀举家迁往美国。1949年夏,在芝加哥大学接替了E.P.Lane的教授职位;E.P.Lane正是陈省身的导师孙光远当年在美留学时的导师;在此为复兴美国的微分几何做出了重要贡献。1960年,陈省身受聘为加州大学伯克利分校教授,直到1980年退休为止。1961年当选为美国科学院院士,1963年至1964年间,任美国数学会副主席。陈省身晚年的一项重要贡献是1981年在加州大学柏克莱分校筹建以纯粹数学为主的美国国家数学研究所,他是第一任所长。

1984年退休,陈省身先后受聘为北京大学、南开大学名誉教授。1985年,受中华人民共和国教育部之聘担任南开大学数学研究所所长。同年南开大学授予他名誉博士学位。

自1986年起,中国数学会设立并承办“陈省身数学奖”。

北京时间2004年12月3日19时14分,陈省身在天津逝世。

丘成桐、吴文俊、廖山涛、郑绍远等著名学者都曾师从陈省身。

[编辑]
成就
陈省身结合微分几何与拓扑方法,先后完成了两项划时代的重要工作:其一为黎曼流形的高斯-博内一般公式,另一为埃尔米特流形的示性类论。他引进的一些概念、方法与工具,已远远超出微分几何与拓扑学的范围而成为整个现代数学中的重要构成部分。陈省身其他重要的数学工作有:

紧浸入与紧逼浸入,由他和R.莱雪夫开始,历30余年,其成就已汇成专著。
复变函数值分布的复几何化,其中一著名结果是陈-博特定理。
积分几何的运动公式,其超曲面的情形系同严志达合作。
复流形上实超曲面的陈莫泽理论,是多复变函数论的一项基本工作。
极小曲面和调和映射的工作。
陈-西蒙斯微分式是量子力学异常现象的基本工具。
[编辑]
荣誉
陈省身获得了许多科学荣誉。

1961年,陈省身继物理学家吴健雄之后当选为第二位华裔美国国家科学院院士,这是美国科学界的最高荣誉职位。
1970年,获得美国数学协会的肖夫内奖。
1976年,获美国福特总统颁发的美国国家科学奖章,这是美国在科学、数学、工程方面的最高奖;陈省身和吴健雄是最早获得该项荣誉的华人科学家。
1983年,美国数学会“全体成就”的斯蒂尔奖。
1984年获以色列总统贺索颁发的沃尔夫数学奖,这是世界数学领域的最高奖项;陈省身是获得沃尔夫奖荣誉的第一位华裔数学家、第二位华裔科学家。
此外,他还曾获得美国数学学会颁发的Chau-venet奖(1970年)、Steele奖(1983年)。并曾获得德国洪堡奖、俄罗斯罗巴切夫斯基数学奖等奖项。另外,他在2004年获首届邵逸夫数学科学奖。11月2日,经国际天文学联合会下属的小天体命名委员会讨论通过,1998CS2小行星被命名为“陈省身星”。

陈省身曾经三次应邀在国际数学家大会上作演讲:1950年在美国波士顿的剑桥,1958年在苏格兰的爱丁堡,1970年在法国的尼斯。1950年和1970年都是一小时报告,这是国际数学家大会上最高规格的学术演讲。

陈省身曾出任美国数学学会副主席。他还是法国、意大利、中国等国的外籍院士。他也是第三世界科学院的创始发起者,英国皇家学会国外会员,巴西科学院的通讯院士,印度数学会名誉会员等。他曾被瑞士联邦理工大学、柏林工业大学、香港科技大学等多所著名大学授予荣誉博士学位。

陈省身被认为是20世纪最伟大的微分几何学家。陈省身和华罗庚、冯康被认为是三位具有世界顶尖成果和国际性影响的华人数学家。他还是菲尔茨奖得主丘成桐在伯克莱加州大学的导师。

吴文俊

吴文俊,中国人,1919年5月12日生于上海。1940年毕业于上海交通大学,1949年在法国斯特拉斯堡大学获博士学位。1951年回国,1957年任中国科学院学部委员,1984年当先为中国数学会理事长。吴文俊在数学上作出了许多重大的贡献。

拓扑学方面,在示性类、示嵌类等领域获得一系列成果,还得到了许多著名的公式,指出了这些理论和方法的广泛应用。他还在拓扑不变量、代数流形等问题上有创造性工作。1956年吴文俊因在拓扑学中的示性类和示嵌类方面的卓越成就获中国自然科学奖一等获。

机器证明方面,从初等几何着手,在计算机上证明了一类高难度的定理,同时也发现了一些新定理,进一步探讨了微分几何的定理证明。提出了利用机器证明与发现几何定理的新方法。这项工作为数学研究开辟了一个新的领域,将对数学的革命产生深远的影响。1978年获全国科学大会重大科技成果奖。

中国数学史方面,吴文俊认为中国古代数学的特点是:从实际问题出发,经过分析提高,再抽象出一般的原理、原则和方法,最终达到解决一大类问题的目的。他对中国古代数学在数论、代数、几何等方面的成就也提出了精辟的见解

吴文俊 科技名人

数学家。 上海人。 1940年毕业于上海交通大学。 1949年获法国国家科学研究中心博士学位。 1991年当选为第三世界科学院院士。中国科学院数学与系统科学研究院系统科学研究所研究员、名誉所长,中国数学会名誉理事长。中国数学机械化研究的创始人之一。 50年代在示性类、示嵌类等研究方面取得吴文俊公式、吴文......

吴文俊(1919~ )

中国数学家。中国科学院院士。1919年5月12日生于上海。1940年毕业于上海交通大学。1947年赴法国留学,先后在斯特拉斯堡、巴黎、法国科学研究中心进行数学研究,1949年获博士学位。1951年回国。历任北京大学数学系教授,中国科学院数学研究所研究员、副所长,中国科学院系统科学研究所研究员、副所长、名誉所长,数学机械化研究中心主任,中国数学会理事长、名誉理事长,中国科学院数学物理学部常务委员、主任等职。曾任全国政协常务委员。主要从事拓扑学、机器证明学等方面的研究并取得多项突出成果,是中国数学机械化研究的创始人之一。1952年刊印出版的博士论文《球纤维空间示性类理论》是对纤维空间基本问题的重要贡献。50年代在示性类、示嵌类等研究方面取得一系列突出成果,并有许多重要应用,被国际数学界称为“吴文俊公式”、“吴文俊示性类”,已被编入许多名著。这项成果曾获1956年国家自然科学奖一等奖。60年代继续进行示嵌类方面的研究,独创性地发现了新的拓扑不变量,其中关于多面体的嵌入和浸入方面的成果至今仍居世界领先地位。在庞特雅金示性类方面的成果,是拓扑学纤维丛理论和微分流形的几何学的一项基本理论研究,有深刻的理论意义。近年来创立了定理机器证明的吴文俊原理(国际上称为吴方法),实现了初等几何与微分几何定理的机器证明,达到了世界先进水平。这一重要创新改变了自动推理研究的面貌,在定理机器证明领域产生了巨大影响,并有重要的应用价值,它将引起数学研究方式的变革。这方面的研究成果曾获全国科学大会重大成果奖和中国科学院科技进步奖一等奖。在机器发现和创造定理的研究方面也取得了重要成果。
刘 徽
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.

贾 宪
贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。

他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。
秦九韶
秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
李冶
李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。
朱世杰
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).
祖冲之
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。

祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。
祖 暅
祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。
杨辉
杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。
他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。
赵 爽
赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。

赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。

华罗庚
华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。
1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。
1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。 40年代,解决了高斯完整三角和的估计这
历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈
代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至 今仍是最佳纪录。
代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出
了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉
当-布饶尔-华定理。其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍
德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居
世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之
一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在
调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等
奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作
并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为
“华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多 篇,并有专著和科普性著作数十种。
陈景润
数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学
数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数
学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国
际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王
元教授、潘承洞教授共同获得1978年国家自然科学奖一等奖。其后对上述定理又作了改
进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到 16
,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类
生活密切关系等问题也作了研究。发表研究论文70余篇,并有《数学趣味谈》、《组合 数学》等著作

中国著名数学家 许宝騄 华罗庚 陈省身 林家翘 吴文俊
陈景润 丘成桐 张 衡 刘 徽 祖冲之
杨 辉 姜立夫 陈建功 熊庆来 苏步青
江泽涵
回答者:hqm4721 - 高级经理 七级 4-21 14:20
评价已经被关闭 目前有 4 个人评价

100% (4) 不好
0% (0)

对最佳答案的评论
太好了
评论者: 136569769 - 试用期 一级

陈景润 华罗庚 杨辉 祖暅 祖冲之
评论者: 122400 - 魔法学徒 一级

很齐全呢!
评论者: 不二的芥末寿司 - 试用期 一级

其他回答共 1 条
刘徽(生于公元250年左右)
是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产

贾宪
中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。
主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。

秦九韶(约1202--1261)
字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。

李冶(1192----1279)
原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。

朱世杰(1300前后)
字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).

祖冲之(公元429~500年)
祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。
在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。

祖暅
祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。

杨辉
中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。
他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。
他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。

华罗庚
中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。
1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。
代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多篇,并有专著和科普性著作数十种。

陈景润
数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学
数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王元教授、潘承洞教授共同获得1978年国家自然科学奖一等奖。其后对上述定理又作了改进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到 16 ,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类生活密切关系等问题也作了研究。发表研究论文70余篇,并有《数学趣味谈》、《组合 数学》等著作。

G. 请问哪一个城市是“数学家之乡”

自20世纪20年代至今的大半个世纪中,在中国江南水乡的温州,涌现了一大批卓有成就的数学家。温籍数学家群体在现代中国的数学研究,数学教育,以及数学活动的组织和传播方面都作出了重大贡献,产生了广泛的社会影响。以至作为这些数学家家乡的温州,被人们美称为“数学家之乡”。2003年10月,国际数学大师陈省身教授访问温州时,就曾为此题写了“数学家之乡”5个大字(见右)[1]。下面,就10位温籍数学家院士的主要成就,及其在现代中国数学界的影响作一概要介绍。

姜立夫
(1890—1978,中央研究院院士),浙江平阳(现温州苍南县)人。他1910年以庚子赔款赴美国入加利福尼亚大学伯克利分校学习数学,1915年获学士学位,1919年获美国哈佛大学哲学博士学位,1934年到德国汉堡大学进修,1935—1936年又转德国哥廷根大学作访问研究。先后担任南开大学,厦门大学,西南联合大学,岭南大学和中山大学数学教授,曾任“新中国数学会”会长(1940),中央研究院数学研究所所长(1947),1948年当选为中央研究院院士[2]。他专长用代数和分析方法来处理几何问题,特别在“圆素几何与矩阵理论方面”有精深研究。在数学教育方面,他1920年回国一人创办了南开大学算学系并任第一任系主任,培养了如刘晋年,陈省身,江泽涵,申又枨,吴大任和廖山涛等一批国内外著名的数学家[3]。培育高质量数学人才,是姜立夫的突出成就之一。在科研和教学之外,他还兼顾中国数学队伍的组织工作,如领导“新中国数学会”,筹建中央研究院数学研究所,积极联系推荐青年数学学者出国深造等。此外,他还担任数学名词审查委员会主席(1923),为中、英、德、日对应的数学名词的审定,出版《算学名词汇编》(1938)作出贡献。关于姜立夫在现代中国数学界的地位和影响,国际数学大师陈省身教授说:“在许多年的时间里,姜先生是中国数学界最主要的领袖①。苏步青院士评说:“他对中国现代数学事业功劳重大,影响至深,没有他,中国数学面貌将会是另一个样子”。[3]

①陈省身.在姜立夫教授诞辰100周年纪念会上的讲话,南开校友通讯,第一期(1990)。

苏步青
(1902—2003,中央研究院院士,中国科学院院士),浙江平阳(现温州平阳县)人。1920年进日本东京高等工业学校电机系学习,1923年入东北帝国大学数学系深造,1927年直接升入该校当研究生,1931年获理学博士学位。他先后担任浙江大学(1931)和复旦大学(1952)数学教授,创办了复旦大学数学研究所并任所长多年,曾任复旦大学校长(1980)和名誉校长(1983)。并且,是中国有史以来第一份数学杂志《中国数学会学报》的总编辑(1936),创办了国际性数学杂志《数学年刊》任第一任主编(1980),先后当选为中央研究院院士(1948)和中国科学院院士(1955,当时称学部委员,1994年改为院士)[2]。苏步青在微分几何和计算几何领域成就卓著,特别是专长仿射微分几何,射影微分几何和一般空间微分几何。他创立的中国微分几何学派,在国内外均具广泛影响。自1927年以来,他发表学术论文160余篇,出版专著和教材10多部。苏步青是一位杰出的数学教育家,1931年从日本回国后,担任了浙江大学数学系主任。除了和陈建功教授一起开设了多门近代数学的基础课程以外,还在中国首创开设数学讨论班,先后培养了张素诚,熊全治,方德植,白正国,杨忠道,谷超豪和胡和生等一批卓有成就的数学家。苏步青热心数学学术交流和普及工作,著有《谈谈如何学习数学》等科普册子。自1952年以后长期担任上海市数学会理事长,并任中国数学会副理事,1983年选为名誉理事长,多次组织上海和全国性的数学竞赛活动。他还是著名的社会活动家,曾任中国民主同盟中央参议委员会主任和第7届全国政协副主席。对于苏步青的成就和影响,1934年德国著名数学家布拉希克(W.Blaschke)就曾评价认为:“苏步青是东方第一个几何学家!”,1976年美国数学代表团在访问中国后总结指出:浙江大学曾建立了“以苏步青为首的中国微分几何学派”。1987年,在庆贺他85岁寿辰和执教60周年的科学报告会上,他的学生谷超豪教授说:“苏老是国际上公认的几何学权威,他对仿射微分几何和射影微分几何的高水平工作,至今在国际数学界占有无可争辩的地位。苏老对我国数学学科的建设建立了功勋,他在浙大、复旦为创建国内外有影响的学科,呕心沥血。他为我国文教事业的改革也作出了不可磨灭的贡献”。[3]“他是我国现代数学的奠基人之一”。[4]

柯召
(1910—2003,中国科学院院士),浙江温岭(1937,1954-1957,1958-1962温州专区温岭县,现台州温岭县)人。1926年考上厦门大学预科,1928年升入该校数学系,1931年转学清华大学算学系,1933年毕业,1935年以庚子赔款公费留学英国曼彻斯特大学,1937年获博士学位。先后任南开大学数学系助教,四川大学和重庆大学数学教授,重庆大学数学研究所所长(1949—1950),四川大学数学研究所所长(1953),校长。曾任《四川大学学报》主编和《数学年刊》副主编。1955年当选为中国科学院院士[2]。柯召是数论专家,在数论,组合论和代数等领域有杰出成就。1937年以来在国内外发表学术论文上百篇,出版专著3部。1940年担任四川大学数学系主任后,重视教师科研工作和学生能力的培养,发起创办有老师和同学共同参加的数学专题研究课。他提倡开展应用数学研究,推动了四川大学的泛函分析与控制论,偏微分方程和计算数学学科建设的快速发展。并且,亲自与中青年教师一道参加数学的应用与普及工作。柯召的贡献和影响不限于四川,他为中国的数学发展作过大量工作,1983年被推举为中国数学会名誉理事长。1990年,美国数学家斯托勒(J.A.Stoane)对柯召成果的评价是:“很惊异中国人那么早就己作出了巨大的成就”,还说“关于二次型的大作,棒极了!”。在四川大学的校史上则记载,柯召发起的专题研究课“造就了一批在数学上锐进不已的人才”[5]

徐贤修
(1912—2002,中央研究院院士(台湾)),浙江永嘉(现温州永嘉县)人。1935年毕业于清华大学数学系,1946年赴美国就读布朗大学,1948年获应用数学博士学位,1949年在普林斯顿文学研究院一年,暑期在麻省理工学院攻读博士后,中央研究院院士(台湾)。他先后受聘任美国普渡大学工程科学教授,伊利诺理工学院应用数学讲座教授,普渡大学航空系教授,以及台湾大学,清华大学(新竹)和交通大学(新竹)兼任教授。徐贤修是一位应用型学者,他1973一1980年主管台湾的“国家科学委员会”,1979—1989年任“工业研究院”董事长,建议设立了台湾新竹科学工业园,为台湾的现代科技和工业发展作出巨大贡献。同时,他1961年为新竹清华大学创办数学系,1962年起每年举办暑期数学研讨会,1970—1975年任新竹清华大学校长。他积极推动台湾数学教育,使大学的水平和规模取得迅速发展。鉴于徐贤修1955—1963年以及1968—1978年两度为普渡大学作出突出贡献,1980年普渡大学颁授他杰出贡献奖,1993年又授予他名誉博士学位。同时,由于他对台湾的科技和教育所作出的特殊贡献,1989年台湾当局还颁给他景星奖章。[6]

项黼宸
(1916—1990,中央研究院院士(台湾)),浙江瑞安(现温州瑞安市)人。1944年毕业于厦门大学数学系,1944—1946年任浙江大学数学研究所助理研究员,后赴美国加利福尼亚大学伯克利分校访问研究,1970年当选为中央研究院院士(台湾)。1947年起任台湾大学数学系讲师,副教授,教授,并曾任系主任以及台湾中央研究院数学研究所所长。项黼宸专长分析数学,成果累累,著述丰富。特别是,在富里埃级数和泛函分析的研究方面取得突出成就。他在数学教学方面对学生谆谆善诱,诲人不倦,成绩卓著。曾先后在美国纽约州立大学布法罗分校,日本仙台东北大学,马来西亚大学,新加坡南洋大学和荷兰的荷兰大学任教数学,还曾兼任台湾的东吴大学和淡江大学数学教授,可谓桃李满天下。为表彰他的杰出成就,1958—1968年荣获台湾第一届中山奖和台湾当局教育部的第一届著作奖。②

②蔡韵箫 项黼宸教授 台湾大学数学系资料,No.272(2002).

杨忠道
(1923— ,中央研究院院士(台湾)),浙江平阳(现温州苍南县)人。1946年毕业于浙江大学数学系,1948年任中央研究院数学研究所助理员,1949年进美国杜伦大学学习,1954年获数学博士学位,同年去伊利诺大学攻读博士后,1954年在美国普林斯顿高级研究院作访问研究。长期担任美国宾夕法尼亚大学数学教授,曾兼任数学系研究生部主任4年,数学系主任5年,1968年当选为中央研究院院士(台湾)。杨忠道专长代数拓扑和拓扑变换群。主要成就有建立了拓扑学中的“杨忠道定理”,证明了代松(F.J.Dyson)猜测和最后解决了布拉希克(W.Blaschke)猜测等,还曾与众多国外著名数学家合作研究取得了许多重要成果。先后发表学术论文上百篇和出版拓扑学方面的著作多部。他在宾夕法尼亚大学任教35年,培养了一批数学人才,如担任马萨诸塞大学数学系主任多年的拉利·马文(larryMawn)即出自他的门下。[7]自1989年以来,他多次回国讲学,为中国培养现代数学人才作出贡献。

谷超豪
(1926— ,中国科学院院士),浙江温州(现温州鹿城区)人。1948年毕业于浙江大学数学系,1957年赴前苏联莫斯科大学数学力学系进修,1959年获物理一数学科学博士学位,1980年当选为中国科学院院士[3]。先后任教浙江大学数学系(1948)和复旦大学数学系(1952),曾任复旦大学数学研究所所长,研究生院院长和副校长,中国科技大学校长(1988)和温州大学校长(1999)。他的研究领域遍及微分几何,偏微分方程和数学物理。在无限连续变换拟群,双曲型方程组和混合型偏微分方程,以及规范场的数学结构方面取得国际数学界瞩目的成就。自1951年以来,发表论文一百余篇,专著多部。为表彰他在科学研究上的突出成就,2003年上海市授予他第一届科技功臣称号。他带领的偏微分方程课题组现已发展成为在国内外享有声誉的研究室,同时培养了新一代在国内外有影响的数学家。曾任中国数学会副理事长和上海数学会理事长。他先后应邀访问美国,墨西哥,西德,法国,意大利,日本,英国,苏联,保加利亚等国进行学术交流,并在国内许多大学和台湾讲学。他的博士论文《论变换拟群的某些通性及其在微分几何中的应用》,评述人认为是“继近代最有名的微分几何大师嘉当(E.Cartan)之后,在这一领域里第一个做出了有实质性发展和推进的”工作。著名美国数学家弗里特里克斯(Friedrichs)评价:“谷超豪的工作实现了他想把正对称方程进一步用于混合型方程的夙愿”。谷超豪的卓越成就饮誉国内外。

项武忠
(1935— ,中央研究院院士(台湾)),浙江乐清(现温州乐清市)人。1953年入台湾大学数学系学习,1957年获学士学位,1962年获美国普林斯顿大学博士学位。1980年当选为中央研究院院士(台湾),1989年当选美国国家艺术与科学学院院士。先后任美国耶鲁大学和普林斯顿大学数学教授,以及加利福尼亚大学伯克利分校,斯坦福大学,荷兰阿姆斯特丹大学和德国波恩大学访问教授。1982—1985年曾任普林斯顿大学数学系主任③。项武忠是著名拓扑学家,在低维拓扑学方面多有建树,成就卓著。由于他在拓扑学研究方面不断取得突出成果,1970年和1983年曾两次被邀请在法国尼斯和波兰华沙举行的国际数学家大会上作45分钟和1小时的邀请报告。可见,他的成就享誉国际数学界。他还是美国出版的国际性期刊《数学年刊》等多份学术杂志的编辑委员。

③美国普林斯顿大学资料(2004)。

姜伯驹
(1937— ,中国科学院院士),浙江平阳(现温州苍南县,出生于天津)人,著名数学家姜立夫之子。1953年进北京大学数学力学系学习,1978—1979年为美国普林斯顿高等研究所访问学者,1980一1981年在加利福尼亚大学伯克利分校和洛杉矶分校讲学,1980年当选为中国科学院士,1985年当选为第三世界科学院院士。他自1957年起一直任职北京大学,1985—1992年兼任南开数学研究所副所长,1995—1998年任北京大学数学科学学院第一任院长,1989—1997年担任北京数学会理事长[注6]。姜伯驹主攻拓扑学,在不动点理论领域做出杰出贡献。由于他的一系列卓越成就,曾获得全国科学大会奖,多次获国家自然科学奖等奖项。特别是,还曾获第一届陈省身数学奖(1988)和何梁何利基金科学技术进步奖(1996)。姜伯驹以发展中国的数学事业为己任,总是把教学和指导研究生工作放在第一位,讲课精益求精,多年来主持数学教改小组积极参与数学教育改革。他热心数学普及工作,积极参与中学生数学竞赛和数学讲座,还出版多册科普数学著作,在青少年中产生很大影响。

李邦河
(1942— ,中国科学院院士),浙江乐清(现温州乐清市)人。1965年毕业于中国科学技术大学应用数学系,同年到中国科学院数学研究所工作,曾担任该所基础数学研究室主任,现任中国科学院数学与系统科学研究院研究员。2003年,他当选为中国科学院院士。李邦河的研究领域相当广泛,在微分拓扑,低维拓扑,偏微分方程,广义函数,非标准分析,以及代数几何和代数机械化诸方向均取得重要成果或重大突破。先后发表研究论文90余篇。例如,在偏微分方程解的定性研究中,他否定了俄国科学院院士奥列尼克关于间断线条数可数的论断,解答了美国科学院院士拉克斯和格利姆关于通有性和分片解析性的三个猜想。前苏联科学院通讯院士伊万诺夫对他在非标准分析用于广义函数方面的工作曾评说:“对广义函数的乘法,以前只在很少的情况下成功,李邦河运用非标准分析得到了一系列结果”。他关于微分拓扑的工作曾获第二届陈省身数学奖(1989),他的许多研究结果被国内外学者所引用,在国际上产生了较大影响。在20世纪,温州曾孕育了众多著名数学家。为了发扬温州重视数学基础教育传统,在21世纪培育出更多数学英才,温州市于2002年创立了旨在培养青少年新苗的“数学家摇篮工程。”相信在这一数学史上不多见的创新举措下,温州在造就数学人才方面将再创辉煌,为在21世纪把中国建为数学大国做出贡献!赞同62| 评论(4)

向TA求助 回答者: Eulre | 六级

擅长领域: 暂未定制

参加的活动: 暂时没有参加的活动
相关问题
其他回答 共2条 2006-10-23 09:01 zjlszw | 二级
苏步清 赞同0| 评论 2006-10-23 13:14 热心网友
苏步青(1902-2003) 浙江平阳人。1927年毕业于日本东北帝国大学数学系,后入该校研究院,获理学博士学位。回国后,受聘于浙江大学数学系。1952年全国院系调整,到复旦大学任教,任教务长、副校长、校长等职,1983年起任复旦大学名誉校长。历任第七、八届全国政协副主席,第五、六届全国人大常委,民盟中央副主席。1955年当选 为中国科学院数学物理学部委员,兼任学术委员会常委,专长微分几何,创立了国内外公认的微分几何学派。撰有《射影曲线概论》、《射影曲面概论》等专著10部。研究成果“船体放样项目”、“曲面法船体线型生产程序”分别荣获全国科学大会奖和国家科技进步二等奖。

苏步青是国际公认的几何学权威,我国微分几何学派的创始人,中国现代数学家,中国数学会的发起人之一,担任过中国数学会学报的主编,参与筹建中国科学院数学研究所,后又创办复旦大学数学研究所,创办《数学年刊》杂志并任主编。

苏步青中学毕业后去日本求学,1927年毕业于日本东北帝国大学数学系,随后进入该校研究院,1931年获理学博士,同年回国。

他的主要研究领域为微分几何学。

早期对仿射微分几何学和射影微分几何学作出了突出贡献。他建立了独到的方法,用几何构图来表现曲线和曲面的不变量和协变图形,取得了丰富的成果,如仿射曲面论中的锥面、射影曲线的一般的协变理论、射影曲面论中的Q1伴随曲面、主切曲线属于一个线性丛的曲面、射影极小曲面和闭拉普拉斯序列等方面的研究,得到了国际上的高度评价。

四、五十年代开始研究一般空间微分几何学,特别是一般面积度量的二次变分的计算和 K展空间。

60年代又研究高维空间共轭网理论,获得系统而深入的成果。

70年代以来,苏步青又注意把微分几何运用于工程中的几何外型设计,在中国开创了新的研究方向——计算几何。

苏步青历任浙江大学教授、数学系主任;历任复旦大学教授、教务长、数学研究所所长、研究生部主任、副校长、校长和名誉校长。中华人民共和国成立后任该校教务长。他和陈建功教授共同把浙江大学和复旦大学的数学系建成一个具有相当高水平的教学和科学研究的基地,为国家培养出许多优秀的数学人才。在他的领导下,形成了具有特色的微分几何研究集体。

苏步青一共发表论文 168篇,出版了《苏步青论文选集》、《射影曲线概论》、《射影曲面论》、《一般空间微分几何学》、《计算几何》等专著,有的已在国外翻译出版。

苏步青同志因病于2003年3月17日16时45分在上海逝世,享年101岁。

H. 关于数学的资料

陈省身(国语罗马字:Shiing-shen Chern,1911年10月28日—2004年12月3日),美国华裔数学家、教育家,国际微分几何大师。美国国家科学院院士、中央研究院院士,同时是法国科学院、意大利国家科学院、英国皇家学会和中国科学院的外籍院士。

1911年生于浙江嘉兴秀水县。1922年秀州中学毕业,来到天津。1923年入扶轮中学(今天津铁路一中)。1926年毕业,入南开大学数学系,1930年毕业,获学士学位。同年入清华大学任助教并攻读研究生,师从中国微分几何先驱孙光远,研究射影微分几何,1934年毕业,获硕士学位,为中国自己培养的第一名数学研究生。同年获中华文化教育基金会奖学金(一说受清华大学资助),赴德国汉堡大学学习,师从著名几何学家布拉希开(Blaschke),1936年2月获科学博士学位;毕业时奖学金还有剩余,于是又转去法国巴黎跟从嘉当(E.Cartan)研究微分几何。

1937年,陈省身担任清华大学教授;后因抗战随学校内迁至云南昆明,在北京大学、清华大学、南开大学合组的西南联合大学讲授微分几何。

1943年,应美国数学家维布伦(O.Veblen)之邀,到普林斯顿高级研究所工作。此后两年间,他完成了一生中最重要的工作:证明高维的高斯-邦内公式(Gauss-Bonnet Formula),构造了现今普遍使用的陈示性类,为整体微分几何奠定了基础。

1946年抗战胜利后,回到上海,主持中央研究院数学研究所的工作,此后两三年中,他培养了一批青年拓扑学家。1949年初,中央研究院迁往台湾,陈省身应普林斯顿高级研究所所长奥本海默之邀举家迁往美国。1949年夏,在芝加哥大学接替了E.P.Lane的教授职位;E.P.Lane正是陈省身的导师孙光远当年在美留学时的导师;在此为复兴美国的微分几何做出了重要贡献。1960年,陈省身受聘为加州大学伯克利分校教授,直到1980年退休为止。1961年当选为美国科学院院士,1963年至1964年间,任美国数学会副主席。陈省身晚年的一项重要贡献是1981年在加州大学柏克莱分校筹建以纯粹数学为主的美国国家数学研究所,他是第一任所长。

1984年退休,陈省身先后受聘为北京大学、南开大学名誉教授。1985年,受中华人民共和国教育部之聘担任南开大学数学研究所所长。同年南开大学授予他名誉博士学位。

自1986年起,中国数学会设立并承办“陈省身数学奖”。

北京时间2004年12月3日19时14分,陈省身在天津逝世。

丘成桐、吴文俊、廖山涛、郑绍远等著名学者都曾师从陈省身。

[编辑]
成就
陈省身结合微分几何与拓扑方法,先后完成了两项划时代的重要工作:其一为黎曼流形的高斯-博内一般公式,另一为埃尔米特流形的示性类论。他引进的一些概念、方法与工具,已远远超出微分几何与拓扑学的范围而成为整个现代数学中的重要构成部分。陈省身其他重要的数学工作有:

紧浸入与紧逼浸入,由他和R.莱雪夫开始,历30余年,其成就已汇成专著。
复变函数值分布的复几何化,其中一著名结果是陈-博特定理。
积分几何的运动公式,其超曲面的情形系同严志达合作。
复流形上实超曲面的陈

I. 请介绍中国的一些数学大师

中国当代著名数学家介绍

1.国际著名数学大师,沃尔夫数学奖得主,陈省身
1931年入清华大学研究院,1934军获硕士学位.1934年去汉堡大学从Blaschke学习.1937年回国任西南联合大学教授.1943年到1945年任普林斯顿高等研究所研究员.1949年初赴美,旋任芝加哥大学教授.1960年到加州大学伯克利分校任教授,1979年退休成为名誉教授,仍继续任教到1984年.1981年到1984年任新建的伯克利数学研究所所长,其后任名誉所长。陈省身的主要工作领域是微分几何学及其相关分支.还在积分几何,射影微分几何,极小子流形,网几何学,全曲率与各种浸入理论,外微分形式与偏微分方程等诸多领域有开拓性的贡献.陈省身本有极多荣誉,包括中央研究院院士(1948).美国国家科学院院士(1961)及国家科学奖章(1975),伦敦皇家学会国外会员(1985),法国科学院国外院士’(1989),中国科学院国外院士等。荣获1983/1984年度Wolf奖,及1983年度美国科学会Steele奖中的终身成就奖.

2.享有国际盛誉的大数学家,新中国数学事业发展的重要奠基人 华罗庚
华罗庚是一位人生经历传奇的数学家,早年辍学,1930年因在《科学》上发表了关于代数方程式解法的文章,受到熊庆来的重视,被邀到清华大学学习和工作,在杨武之指引下,开始了数论的研究。1936年,作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应美国普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年开始,他为伊利诺伊大学教授。1950年回国,先后任清华大学教授,中国科学院数学研究所所长,数理化学部委员和学部副主任,中国科学技术大学数学系主任、副校长,中国科学院应用数学研究所所长,中国科学院副院长、主席团委员等职。还担任过多届中国数学会理事长。此外,华罗庚还是第一、二、三、四、五届全国人民代表大会常务委员会委员和中国人民政治协商会议第六届全国委员会副主席。华罗庚是在国际上享有盛誉的数学家,他的名字在美国施密斯松尼博物馆与芝加哥科技博物馆等著名博物馆中,与少数经典数学家列在一起。他被选为美国科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。又被授予法国南锡大学、香港中文大学与美国伊利诺伊大学荣誉博士。华罗庚在解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等广泛数学领域中都作出卓越贡献。由于华罗庚的重大贡献,有许多用他他的名字命名的定理、引理、不等式、算子与方法。他共发表专著与学术论文近三百篇。华罗庚还根据中国实情与国际潮流,倡导应用数学与计算机研制。他身体力行,亲自去二十七个省市普及应用数学方法长达二十年之久,为经济建设作出了重大贡献。

3.仅次于哥德尔的逻辑数学大师,王浩
1943年于西南联合大学数学系毕业。1945年于清华大学研究生院哲学部毕业。1948年获美国哈佛大学哲学博士学位。1950~1951年在瑞士联邦工学院数学研究所从事研究工作1951~1953年任哈佛大学助理教授。1954~1961年在英国牛津大学作第二套洛克讲座讲演,又任逻辑及数理哲学高级教职。1961~1967 年任哈佛大学教授。1967年后任美国洛克斐勒大学教授,主持逻辑研究室工作。1985年兼任中国北京大学名誉教授。1986年兼任中国清华大学名誉教授。50年代 初被选为美国国家科学院院士,后又被选为不列颠科学院外国院士,美籍华裔数学家、逻辑学家、计算机科学家、哲学家。

4.著名数学家力学家,美国科学院院士,林家翘
1937年毕业于清华大学物理系。1941年获加拿大多伦多大学硕士学位。1944年获美国加州理工学院博士学位。1953 年起先后担任美国麻省理工学院数学教授、学院教授、荣誉退休教授。 林家翘教授曾获:美国机械工程师学会Timoshenko奖,美国国家科学院应用数学和数值分析奖,美国物理学会流体力学奖。他是美国国家文理学院院士(1951),美国国家科学院院士(1962),台湾“中央研究院”院士(1960)。从40年代开始,林家翘教授在流体力学的流动稳定性和湍流理论方面的工作带动了整整一代人在这一领域的研究探索。从60年代开始,他进入天体物理的研究领域,开创了星系螺旋结构的密度波理论,并为国际所公认。1994年6月8日当选为首批中国科学院外籍士。

5.我国泛函分析领域研究先驱者,曾远荣
1919年入清华学校(清华大学前身)留美预备部,一直读到1927年7月。由于学习成绩优异,先后在美国芝加哥大学,普林斯顿大学及耶鲁大学学习并研究数学,1933年取得博士学位。1934年8月至1942年7月一直任教于清华大学(1938年与北京大学、南开大学在昆明组成西南联合大学)。1950年2月,受国立南京大学数学系系主任孙光远教授写信聘请到南京大学任教直至退休,曾在南京大学建立国内最早的计算数学专业。长期从事泛函分析研究,是我国开展这一领域研究的先驱者之一,在广义逆等研究领域成就卓著。

6.我国最早提倡应用数学与计算数学的学者,赵访熊
1922年考取北京清华学校。当时清华学校是公费留美预备学校,竞争激烈,在江苏只招3名学生,他在众多考生中名列榜首。毕业后即到美国麻省理工学院(MIT)电机系学习。他1930年在电机系毕业,被哈佛大学数学系录取为研究生,且于1931年获硕士学位。1933年他受聘回国在清华大学数学系任教,1935年被聘为教授,从此一直在清华大学任教,参与创办国内第一个计算数学专业。赵访熊于1962年和1978年先后两次出任清华大学副校长,1980-1984年兼任新成立的应用数学系主任,并受聘担任国务院学位委员会学科评议组委员。他担任过中国数学会理事、名誉理事。1978年至1989年担任第一、二届计算数学学会理事长及第三届名誉理事长和《计算数学学报》主编等一系列职务。数学家,数学教育家。我国最早提倡和从事应用数学与计算数学的教学与研究的学者之一。自编我国第一部工科《高等微积分》教材。在方程求根及应用数学研究方面颇有建树。

7.著名数学家,数学教育家。吴大任
1930年与陈省身以最优等成绩在南开大学毕业,考取清华大学研究生,1933年夏,在姜立夫的鼓励下,吴大任参加了中英庚款第一届公费留学考试,被录取到英国学习。他本想到剑桥大学攻读,因抵伦敦时间错过了该校入学的时机,改入伦敦大学的大学学院,注册为博士研究生。1937年9月初,吴大任到武汉大学任教,之后即随武汉大学迁到四川乐山。后来长期担任南开大学领导工作与教学工作,著、译数学教材及名著多种。对我国高等教育事业作出了积极贡献。研究领域涉及积分几何、非欧几何、微分几何及其应用(齿轮理论)。1981年他任国家学位委员会第一届数学组成员,《中国大网络全书数学卷》编委兼几何拓扑学科的副主编以及全国自然科学名词审定委员会第一和第二届委员。

8。著名数学家,北大教授,庄圻泰
1927年考入清华学校,1932年毕业于清华大学数学系,1934年,熊庆来教授接受庄圻泰为自己的研究生,1936年于该校理科研究所毕业。1938年获法国巴黎大学数学博士学位。曾任云南大学教授。1952年院系调整后,庄圻泰留任北京大学。此后除继续担任复变函数课程的教学任务外,他还陆续讲过保角变换,拟保角变换,整函数与亚纯函数等专业课。九三学社社员。长期从事函数论研究,在整函数与亚纯函数的值分布理论上取得重要成果。著有《亚纯函数的奇异方向》,合编《AnalyticFunctionsOfOneCom·plexVariable》(在美国出版)

9.著名数学家,数学教育家,四川大学校长,柯召
1931年,入清华大学算学系。1933年,柯召以优异成绩毕业。1935年,他考上了中英庚款的公费留学生,去英国曼彻斯特大学深造,在导师L.J.莫德尔(Mordell)的指导下研究二次型,在表二次型为线性型平方和的问题上,取得优异成绩,回国后先后任教于重庆大学,四川大学。1953年,他调回四川大学任教至今。在这40余年间,他以满腔的热情投入教学和科研工作,为国家培养了许多优秀数学人材,在科研上硕果累累。与此同时,他还先后担任了四川大学教务长、副校长、校长、数学研究所所长等职,作为学术带头人和学校负责人,他卓有成效地抓了几个重要方面的工作:努力提高教学质量,积极开展基础理论研究,发展应用数学,培养一批高水平的人材。其研究领域涉及数论、组合数学与代数学。在二次型、不定方程领域获众多优秀成果。1955年选聘为中国科学院院士(学部委员)。

10.中央研究院院士,首批学部委员,许宝騄
1929年入清华大学数学系,1933年毕业获理学士学位,1936年许宝騄考取赴英留学,派往伦敦大学学院,在统计系学习数理统计,攻读博士学位。1940年到昆明,在西南联合大学任教。1948年他当选为中央研究院院士。回国后不久就发现已患肺结核。他长期带病工作,教学科研一直未断,在矩阵论,概率论和数理统计方面发表了10余篇论文。1955年,他当选为中国科学院学部委员。在中国开创了概率论、数理统计的教学与研究工作。在内曼-皮尔逊理论、参数估计理论、多元分析、极限理论等方面取得卓越成就,是多元统计分析学科的开拓者之一。1955年选聘为中国科学院院士(学部委员)。

11.中科院院士,原北大数学系主任,段学复
1932年考入了清华大学数学系(当时称为“算学系”)。 1936年夏,段学复获得理学士学位,毕业留校任助教。1941年8月进入美国普林斯顿大学数学系攻读博士学位。1946年回国任清华大学教授,自1952年院系调整后,任北京大学数学系系主任近40年。长期从事代数学的研究。在有限群的模表示论特别是指标块及其在有限单群和有限复线性群构造研究中的应用方面取得突出成果。指导学生用表示论和有限单群分类定理彻底解决了著名的Brauer第39问题、第40问题。在代数李群研究方面与国外学者合作完成了早期奠基性成果。在有限P群方面取得一系列研究成果。在数学应用于国防科研和国防建设方面作了大量工作。1955年选聘为中国科学院院士(学部委员)。

12.我国拓扑学的奠基人 江泽涵
毕业于南开大学,1927年参加清华大学留美专科生的考试,考取了那年唯一的学数学的名额,后在美国哈佛大学数学系留学,1930年获得博士学位。1930在美国普林斯顿大学数学系做研究助教。1931年起,长期担任任北京大学数学系教授,并任北京大学数学系主任,曾兼任理学院代理院长。数学家,数学教育家。早年长期担任北京大学数学系主任,为该系树立了优良的教学风尚。致力于拓扑学,特别是不动点理论的研究,是我国拓扑学研究的开拓者之一。1955年当选为中国科学院数理学部委员。

13.中国科学院数学研究所的筹建者 田方增
1934年考入清华大学,第一年读机械工程系,第二年起转入算学系。1940年秋受聘为清华大学算学系助教,1947年秋考选为中法公费留学生,1948年转巴黎大学,回国后被中国科学院聘为数学研究所筹备处副研究员,筹建中国科学院批准成立的数学研究所,几十年来田方增为数学研究所的建设以及中国数学学科特别是泛函分析这一分支学科的发展做出了重要贡献。他参与了中华人民共和国成立以来中国的一些重大的数学活动。他被聘为全国科学技术委员会数学组成员,参与了1956年制订的十二年远景规划的有关项目,1978年、1983年接连两届被选为中国数学会理事,在理事会任期内受托为泛函分析学科组负责人,致力于泛函分析基本理论及其应用研究。是在中国建立中子迁移数学理论研究组的主要学者之一。为发展我国的泛函分析研究做出了积极贡献。
14,陈景润

数学家,中国科学院院士。
1933年5月22日生于福建福州。1953 年毕业于厦门大学数学系。1957 年进入中国科学院数学研究所并在华罗庚教授 指导下从事数论方面的研究。历任中国科学院 数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、 福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王元教授、潘承洞教授共同获得 1978 年国家自然科学奖一等奖。其后对上述定理又作了改进,并于 1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的 80 推进到 16 ,受到国际数学界好评。对组合数学与现代经济管理、科学实验、 尖端技术、人类生活密切关系等问题也作了研究。发表研究论文 70 余篇,并有《数学趣味谈》、《组合数学》等著作。

中国古代著名数学家:
赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。

刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为157/50和3927/1250。

刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。

东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他们的数学工作主要有:计算出圆周率在3.1415926——3.1415927之间;提出祖(日恒)原理;提出二次与三次方程的解法等。

据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久。

祖冲之之子祖(日恒)总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖(日恒)公理。祖(日恒)应用这个公理,解决了刘徽尚未解决的球体积公式。

唐初王孝通的《缉古算经》,主要讨论土木工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。

J. 如果以后想从事科学研究,报考研究所比大学是不是会好些呢另外数学专业报考哪些研究所比较好呢

北京大学,复旦大学,中国科学院大学,清华大学这些都是知名的数学强校。山东大学的数学也很棒。纯数学研究所比较少,研究方向不同,只要有以下几个:

北京大学数学研究所
中国科学院数学研究所

陈省身数学研究所(原南开数学研究所)
武汉物理与数学研究所

热点内容
教师招聘考试答题技巧 发布:2025-07-09 11:50:06 浏览:586
高中数学教学案例范文 发布:2025-07-09 11:21:11 浏览:269
汪丽老师 发布:2025-07-09 11:20:21 浏览:982
贵阳哪个 发布:2025-07-09 10:48:16 浏览:993
高中历史框架 发布:2025-07-09 10:15:25 浏览:76
安全座椅哪个好 发布:2025-07-09 10:10:30 浏览:335
幻想老师漫画 发布:2025-07-09 07:13:31 浏览:900
六年级语文补充答案 发布:2025-07-09 06:19:21 浏览:21
保证书写给班主任100字 发布:2025-07-09 06:00:31 浏览:240
南科生物 发布:2025-07-09 04:15:57 浏览:993