当前位置:首页 » 语数英语 » 数学奥数题

数学奥数题

发布时间: 2021-08-02 08:21:42

① 初中数学奥数题10道(有答案)

从课堂到奥数(朱华伟、齐世萌)
培优辅导(学而思)
探究应用新思维(黄东坡)

② 初一数学奥数题

成达杯数学竞赛初赛(二)
一、填空题:(每小题5分,共50分)
1、计算:
(1)125×888=___________;
(2) =___________。
2、把 用“<”连接起来:________________。
3、下面有两串按某种规律排列的数,请按规律填上空缺的数。
(1) ( );
(2)15,20,10,( ),5,30,( ),35。
4、有甲、乙、丙三个数,已知甲、乙;乙、丙;丙、甲两数的平均数分别为40、46、43,那么甲、乙、丙三个数的平均数是___________。
5、下边的加法竖式的申、办、奥、运四个汉字,分别代表四个不同的数字,请问:申办奥运分别为何数字时算式成立。申=______;办=______;奥=______;运=______。
6、甲班有学生48人,其中1/2是女生;乙班有学生45人,其中1/3是女生,那么两班的男生共有_______人。
7、配置3%的葡萄糖50千克,需要1%与6%的葡萄糖分别为______千克、______千克。
8、五个人都属龙,他们岁数的乘积是589225,这五个人的岁数和是__________。
9、加工一批零件,如果师傅先加工20天后,剩下的由徒弟再加工30天正好完成;如果徒弟先加工37天,剩下的由师傅再加工17天也正好完成。现在师傅、徒弟一起加工若干天后,剩下的由徒弟再加工40天正好完成。问:师傅和徒弟一起加工了_______天。
10、用两个同样长3厘米,宽2厘米,高1厘米的长方体,拼成一个大长方体,它的表面积最大是________平方厘米。(即cm2)

二、综合题:(每小题6分,共30分)
1、某商店购买小狗和小熊玩具共80只,已卖出小狗只数的1/5,小熊只数的2/3,共计30只。购进小狗和小熊的只数分别为多少只?
2、有一本书,如果第一天读35页,以后每天都比前一天多读5页,结果最后一天只读35页,就读完了;还是这本书,如果第一天读45页,以后每天都比前一天多读5页,结果最后一天只读40页也读完了。问:这本书有多少页?
3、将一个表面是红色的长方体(3×4×5),切成若干个1×1×1的小立方体,问表面中只有一面是红色的小立方体和表面中没有红色的小立方体各有多少块?
4、有红、黄、蓝、白、紫五种颜色珠子各一颗,分别放在编号为1、2、3、4、5号的五只箱内,A、B、C、D、E五人的猜想结果如下:
A:2号内装紫色珠子,3号内装黄色珠子。
B:2号内装蓝色珠子,4号内装红色珠子。
C:1号内装红色珠子,5号内装白色珠子。
D:3号内装蓝色珠子,4号内装白色珠子。
E:2号内装黄色珠子,5号内装紫色珠子。
结果每人都猜对了一种,每箱也只有一人猜对,A、B、C、D、E各猜对的珠子的颜色分别为什么颜色?

一.选择题(以下每题的四个选择中,仅有一个是正确的)

1.-7的绝对值是( )
(A)-7 (B)7 (C)- (D)

2.1999-的值等于( )
(A)-2001 (B)1997 (C)2001 (D)1999

3.下面有4个命题:
①存在并且只存在一个正整数和它的相反数相同。
②存在并且只存在一个有理数和它的相反数相同。
③存在并且只存在一个正整数和它的倒数相同。
④存在并且只存在一个有理数和它的倒数相同。
其中正确的命题是:( )
(A)①和② (B)②和③
(C)③和④ (D)④和①
4.4abc的同类项是( )
(A)4bca (B)4cab (C)acb (D)acb

5.某工厂七月份生产某产品的产量比六月份减少了20%,若八月份产品要达到六月份的产量,则八月份的产量比七月份要增加( )

(A)20% (B)25% (C)80% (D)75%

6.,,,四个数中,与的差的绝对值最小的数是( )

(A) (B) (C) (D)
7.如果x=―, Y=0.5,那么X―Y―­­­­­­­2X的值是( )
(A)0 (B) (C) (D) ―

8.ax+b=0和mx+n=0关于未知数x的同解方程,则有( )

(A)a+m>0. (B)mb≥an.
(C)mb≤an. (D)mb=an.

9.(-1)+(-1)-(-1)×(-1)÷(-1)的结果是( )

(A)-1 (B)1 (C)0 (D)2

10.下列运算中,错误的是( )

(A)2X+3X=5X (B)2X-3X=-1
(C)2X·3X=6X (D)2X÷4X=
11.已知a<0,化简,得( )

(A) 2 (B) 1 (C) 0 (D) -2

12.计算(-1) +(-1)÷|-1|的结果是( )

(A)0 (B)1 (C)-1 (D)2

13.下列式子中,正确的是( )

(A)a·a=a. (B)(x)=x.
(C)3=9. (D)3b·3c=9bc.

14.-|-3|的相反数的负倒数是( )

(A)- (B) (C)-3 (D)3

15.十月一日亲朋聚会,小明统计大家的平均年龄恰是38岁,老爷爷说,两年前的十月一日也是这些人相聚,那么两年前相聚时大家的平均年龄是( )岁。

(A)38 (B)37 (C)36 (D)35

16.若a<0,则4a+7|a|等于( )

(A) 11a (B)-11a (C) -3a (D)3a

17.若有理数x. y满足|2x-1|+(y+2)=0,则x. y的值等于( )

(A)-1 (B)1 (C)-2 (D)2

18.有理数a, b, c在数轴上对应的点如图所示:则下面式子中正确的是( )

(A)c + b > a + b. (C)ac > ab
(B)cb < ab. (D) cb > ab

19.不等式< 1的正整数解有( )个。

(A)2 (B)3 (C)4 (D)5

20.某计算机系统在同一时间只能执行一项任务,且完成该任务后才能执行下一项任务,现有U,V,W的时间分别为10秒,2分和15分,一项任务的相对等待时间为提交任务到完成该任务的时间与计算机系统执行该任务的时间之比,则下面四种执行顺序中使三项任务相对等候时间之和最小的执行是( )。

(A)U,V,W. (B)V,W,U
(C)W,U,V. (D)U,W,V

21.如图,线段AD,AB,BC和EF的长分别为1,8,3,2,5和2,记闭合折线AEBCFD的面积为S,则下面四个选择中正确的是( )

(A) S=7.5 (B) S=5.4

(C) 5.4<S<7.5 (D)4<S<5.4.

22.第一届希望杯的参赛人数是11万,第十届为148万,则第届参赛人数的平均增长率最接近的数值是( )。

(A)21.8%. (B) 33.5% (C)45% (D) 50%

23.已知 X和YI满足3X+4Y=2,X-Y<1,则( )。

(A)X= (B)Y=-
(C)X> (D) Y>-

24.下面的四句话中正确的是( )

A.正整数a和b的最大公约数大于等于a。
B.正整数a和b的最小公倍数大于等于ab。
C.正整数a和b的最大公约数小于等于a。
D.正整数a和b的公倍数大于等于ab。

25.已知a≤2,b≥-3,c≤5,且a-b+c=10,则a+b+c的值等于( )。

(A)10 (B)8 (C)6 (D)4

26.的相反数除-6的绝对值所得的结果是___。

27.用科学记数法表示:890000=____。

28.用四舍五入法,把1999.509取近似值(精确到个位),得到的近似数是__。

29.已知两个有理数-12.43和-12.45。那么,其中的大数减小数所得的差是__。

30.已知与是同类项,则=__。

31.|-|的负倒数与-|4|的倒数之和等于__。

32.近似数0,1990的有效数字是__。

33.甲、乙、丙、丁四个数之和等于-90,甲数减-4,乙数加-4,丙数乘-4,丁数除-4彼比相等,则四个数中的最大的一个数比最小的一个数大__。

34.已知式子+□=,则□中应填的数是__。

35.(÷)÷___。

36.已知角a的补角等于角a的3.5倍,则角a等于__度。

37.已知方程(1.9x-1.1)-()=0.9(3 x-1)+0.1,则解得x的值是_。

38.甲楼比丙楼高24.5米, 乙楼比丙楼高15.6米, 则乙楼比甲楼低___米.

39.如图,四个小三角形中所填四个数之和等于零,则这四个数绝对值之和等于__。

40.关于x的方程3mx+7=0和

2 x+3n=0是同解方程,那么

x-2y=1999

41.方程组 { 的解是___。

2x-y=2000

42.小明骑车自甲地经乙地,先上坡后下坡,到达乙地后立即返回甲地,共用34分钟,已知上坡速度是400米/分,下坡速度是450米/分,则甲地到乙地的路程是__米。

43.父亲比小明大24岁,并且1998年的年龄是小明2000年年龄的3倍,则小明1999年时的年龄是__岁。

44.已知和是同类项,则___。

45.,并且=。则

46.都是二位的正整楼,已知它们的最小公倍数是385,则 的最大值是__。

47.甲瓶食盐水浓度为8%,乙瓶食盐水浓度为12%,两瓶食盐水共重1000克,把甲、乙两瓶食盐后的浓度是10.08%,则甲瓶食盐水重___克。

48.如图所示的五角星形中共可数出__个三角形。

49.已知则_。

50.已知数串1,1,2,3,5,8,13,……,从第3个数起每个数都等于它前面相邻的两个数之和,那么,数串中第1999个数被3除所得的余数是_。

③ 小学数学奥数题及答案

一批商品,按期望获得50%的利润来定价,结果只销掉70%的商品,为尽早销掉剩下商品,商店决定按定价打折出售,这样所获的全部利润是原来期望利润的82%。问打了多少折扣?
1)由按期望获得50%的利润来定价,结果只销掉70%的商品可知:所获的利润是35%,30%的商品所获的利润是15%
(2)由为尽早销掉剩下商品,商店决定按定价打折出售,这样所获的全部利润是原来期望利润的82%可知:所获的利润是41%。
(3)可知剩下商品是30%所获的利润为原来期望利润的41%-35%=6%。
(4)1*(30%+6%)/1*(30%+15%)=80%
(5)打了八折
1、小力在玩游戏时 把一个底面直径为1.2分米 高15分米的铅锤放入一个装有水且底面直径为2.2分米的圆柱型的玻璃杯中 水没有溢出 当取出铅锤后 杯里的水下降了几厘米? 保留2位小数
2、在一个高3分米底面半径2分米的圆锥形容器里装满沙子,再将这些沙子全部倒入一个圆柱形容器内,刚好装了圆柱形容器的7分之2,这个容器容积是多少立方分米?
3、圆柱的底面半径6厘米,高7厘米,侧面积、表面积、体积各是多少
4、一个圆锥和一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:6,圆锥的高为4.8厘米,圆柱的高是多少cm 5、小红用5.50元钱可买2支相同的铅笔和一个笔记本。当文具价格上涨10%后,5.50元恰好能买一只同样的铅笔和一个笔记本,若价格又上涨10%后,这5.50元钱还够不够买一个笔记本? 二、按规律填数。

1)64,48,40,36,34,( )
2)8,15,10,13,12,11,( )
3)1、4、5、8、9、( )、13、( )、( )
4)2、4、5、10、11、( )、( )
5)5,9,13,17,21,( ),( )
三、等差数列
1.在等差数列3,12,21,30,39,48,…中912是第几个数?

2.求1至100内所有不能被5或9整除的整数和

3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?

4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和

5.将自然数如下排列,

1 2 6 7 15 16 …

3 5 8 14 17 …

4 9 13 18 …

10 12 …

11 …



在这样的排列下,数字排在第2行第1列,13排在第3行第3列,问:1993排在第几行第几列?
6.一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?
路分成100÷10=10段,共栽树10+1=11棵。

12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?
3×(12-1)=33棵。

一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次?
200÷10=20段,20-1=19次。

7.蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟?
从第一节到第13节需10×(13-1)=120秒,120÷60=2分。

8.在花圃的周围方式菊花,每隔1米放1盆花。花圃周围共20米长。需放多少盆菊花?
20÷1×1=20盆

9.从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。从发电厂到闹市区有多远?
30×(250-1)=7470米。

10.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。他这个月收入多少元?
[(40+50) ×2+20] ×2=400(元)答:他这个月收入400元。

11.一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米?
1×2×2=4千米

12.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。问:这批零件有多少个?
(25+10)×2=70个,(70+10)×2=160个。综合算式:【(25+10)×2+10】×2=160个

13.一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。问它几天可以长到4厘米?
16÷2÷2=4(厘米),16-1-1=14(天)

14.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。桶里原来有水多少千克?
180+80=260(千克),260×2-30=490(千克),490×2=980(千克)。

15.甲、乙两书架共有图书200本,甲书架的图书数比乙书架的3倍少16本。甲、乙两书架上各有图书多少本?
答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本)。

16.小燕买一套衣服用去185元,问上衣和裤子各多少元?
裤子:(185-5)÷(2+1)=60(元);
上衣:60×2+5=125(元)。

17甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?
如果每个人的年龄都扩大到2倍,那么三人年龄的和是94×2=188。如果甲再减少5岁,乙再减少19岁,那么三人的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的一半,即丙的年龄是甲的两倍。同样,这时丙的年龄也是乙两倍。所以这时甲、乙的年龄都是164÷(1+1+2)=41(岁),即原来丙的年龄是41岁。甲原来的年龄是(41+5)÷2=23(岁),乙原来的年龄是(41+19)÷2=30(岁)。

18.小明、小华捉完鱼。小明说:“如果你把你捉的鱼给我1条,我的鱼就是你的2倍。如果我给你1条,咱们就一样多了。“请算出两个各捉了多少条鱼。
小明比小华多1×2=2(条)。如果小华给小明1条鱼,那么小明比小华多2+1×2=4(条),这时小华有鱼4÷(2-1)=4(条)。原来小华有鱼4+1=5(条),原来小明有鱼5+2=7(条)。

19.小芳去文具店买了13本语文书,8本算术书,共用去10元。已知6本语文本的价钱与4本算术本的价钱相等。问:1本语文本、1本算术本各多少钱?
8÷4×6=12,即8本算术本与12本语文体价钱相等。所以1本语文本值10×100÷(13+12)=40(分),1本算术本值40×6÷4=60(分),即1本语文本4角,1本算术本6角。

20.找规律,在括号内填入适当的数. 75,3,74,3,73,3,(),()。
答案:72,3。

21找规律,在括号内填入适当的数. 1,4,5,4,9,4,(),()。
奇数项构成数列1,5,9……,每一项比前一项多4;偶数项都是4,所以应填13,4

22.找规律,在括号内填入适当的数. 3,2,6,2,12,2,(),()。
24,2。

23.找规律,在括号内填入适当的数. 76,2,75,3,74,4,(),()。
答案:将原数列拆分成两列,应填:73,5。

24.找规律,在括号内填入适当的数. 2,3,4,5,8,7,(),()。
答案:将原数列拆分成两列,应填:16,9。

2.5找规律,在括号内填入适当的数. 3,6,8,16,18,(),()。
答案:6=3×2,16=8×2,即偶数项是它前面的奇数项的2倍;又8=6+2,18=16+2,即从第三项起,奇数项比它前面的偶数项多2.所以应填:36,38。

26.找规律,在括号内填入适当的数. 1,6,7,12,13,18,19,(),()。
答案:将原数列拆分成两列,应填:24,25。

27.找规律,在括号内填入适当的数. 1,4,3,8,5,12,7,()。
答案:奇数项构成数列1,3,5,7,…,每一项比前一项多2;偶数项构成数列4,8,12,…,每一项比前一项多4,所以应填:16。

28找规律,在括号内填入适当的数. 0,1,3,8,21,55,(),()。
答案:144,377。

29.A、B、C、D四人在一场比赛中得了前4名。已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。问:他们各是第几名?
答案:D名次不是最高,但比B、C高,所以它是第2名,A是第1名。C的名次不比B高,所以B是第3名,C是第4名。

30.一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量。问:一头象的重量等于几头小猪的重量?
答案:4×3×3=36,所以一头象的重量等于36头小猪的重量。

31.甲、乙、丙三人,一个人喜欢看足球,一个人喜欢看拳击,一个人喜欢看篮球。已知甲不爱看篮球,丙既不喜欢看篮球又不喜欢看足球。现有足球、拳击、篮球比赛的入场券各一张。请根据他们的爱好,把票分给他们。
答案:丙不喜欢看篮球与足球,应将拳击入场券给丙。甲不喜欢看篮球,应将足球入场券给甲。最后,应将篮球入场券给乙。

32.有一堆铁块和铜块,每块铁块重量完全一样,每块铜块的重量也完全一样。3块铁快和5块铜块共重210克。4块铁块和10块铜块共重380克。问:每一块铁块、每一块铜块各重多少?
答案:4块铁块和10块铜块共重380克,所以2块铁块和5块铜块共重380÷2=190(克)。而3块铁块和5块铜块共重210克,所以1块铁块重210-190=20(克)。1铜块重(190-20×2)÷5=30(克)。

33.甲、乙、丙三人中有一人做了一件好事。他们各自都说了一句话,而其中只有一句是真的。甲说:“是乙做的。” 乙说:“不是我做的。” 丙说:“也不是我做的。” 问:到底是谁做的好事?
答案:如果是甲做的好事,那么乙、丙的话都是真的,与只有一句是真的矛盾。如果是乙做的好事,那么甲、丙的话都是真的,也产生矛盾。好事是丙做的,这时甲、丙的话都是错的,只有乙的话是真的,所以好事是丙做的。

34.一张长8分米、宽3分米的长方形纸板,在四个角落上各截去一个边长为2分米的正方形,所剩下的部分的周长是多少?
答:(8+3)×2=22(分米)

35.计算 :18+19+20+21+22+23
原式=(18+23)×6÷2=123

36.计算 :100+102+104+106+108+110+112+114
原式=(100+114) ×8÷2=856

37.995+996+997+998+999
原式=(995+999) ×5÷2=4985

38/.:(1999+1997+1995+…+13+11)-(12+14+16+…+1996+1998)
第一个括号内的项数为(1999-11)÷2+1=995,所以原式=(1999-1998)+(1997-1996)+…+(13-12)+11=1×994+11=1005 三。
1.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米。时速为72千米的列车相遇,错车而过需要几秒钟?
2.一条隧道长360米,某列火车从车头入洞到全车进洞用了8秒钟,从车头入洞到全车出洞共用了20秒钟。这列火车长多少米?

3.铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?

4.有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米。两车同向而行,从第一列车追及第二列车到两车离开需要几秒?

5.某人步行的速度为每秒2米。一列火车从后面开来,超过他用了10秒。已知火车长90米。求火车的速度。

6.现有两列火车同时同方向齐头行进,行12秒后快车超过慢车.快车每秒行18米,慢车每秒行10米。如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长。

7.一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒。这列火车的速度和车身长各是多少?

8.小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表。小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒。已知两电线杆之间的距离是100米。你能帮助小英和小敏算出火车的全长和时速吗?

9.一列火车通过530米的桥需要40秒,以同样的速度穿过380米的山洞需要30秒。求这列火车的速度与车身长各是多少米。

10.两人沿着铁路线边的小道,从两地出发,以相同的速度相对而行。一列火车开来,全列车从甲身边开过用了10秒.3分后,乙遇到火车,全列火车从乙身边开过只用了9秒。火车离开乙多少时间后两人相遇?

11.两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟?

12.某人步行的速度为每秒钟2米。一列火车从后面开来,越过他用了10秒钟。已知火车的长为90米,求列车的速度。

13.甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?

14.快车长182米,每秒行20米,慢车长1034米,每秒行18米。两车同向并行,当快车车尾接慢车车尾时,求快车穿过慢车的时间?

15.快车长182米,每秒行20米,慢车长1034米,每秒行18米。两车同向并行,当两车车头齐时,快车几秒可越过慢车?

16.一人以每分钟120米的速度沿铁路边跑步。一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度。

17.一列火车长600米,它以每秒10米的速度穿过长200米的隧道,从车头进入隧道到车尾离开隧道共需多少时间?

18.一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要_______时间。

19.某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒,客车长105米,每小时速度为28.8千米,求步行人每小时行______千米?

20.一人以每分钟60米的速度沿铁路步行,一列长144米的客车对面开来,从他身边通过用了8秒钟,列车的速度是______米/秒。

没做的自己做,不知道的问我
力顶,

④ 要30道5年级数学奥数题,带答案。

已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?
3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河 的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)
6.学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?
7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?
9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?
10.一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?
11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?
12.五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?
13.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?
14.妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?
15.学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要几辆?
16.某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?
17.某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?
18.某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?
19.学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?
20.两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?
21.一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千米?
22.一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?
23.用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。桶里原有水多少千克?
24.小红和小华共有故事书36本。如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?
25.有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。原来每桶油重多少千克?
26.把一根木料锯成3段需要9分钟,那么用同样的速度把这根木料锯成5段,需要多少分?
27.一个车间,女工比男工少35人,男、女工各调出17人后,男工人数是女工人数的2倍。原有男工多少人?女工多少人?
28.李强骑自行车从甲地到乙地,每小时行12千米,5小时到达,从乙地返回甲地时因逆风多用1小时,返回时平均每小时行多少千米?
29.甲、乙二人同时从相距18千米的两地相对而行,甲每小时行走5千米,乙每小时走4千米。如果甲带了一只狗与甲同时出发,狗以每小时8千米的速度向乙跑去,遇到乙立即回头向甲跑去,遇到甲又回头向飞跑去,这样二人相遇时,狗跑了多少千米?
30.有红、黄、白三种颜色的球,红球和黄球一共有21个,黄球和白球一共有20个,红球和白球一共有19个。三种球各有多少个?
31.在一根粗钢管上接细钢管。如果接2根细钢管共长18米,如果接5根细钢管共长33米。一根粗钢管和一根细钢管各长多少米?
32.水泥厂原计划12天完成一项任务,由于每天多生产水泥4.8吨,结果10天就完成了任务,原计划每天生产水泥多少吨?
33.学校举办歌舞晚会,共有80人参加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?
34.学校举办语文、数学双科竞赛,三年级一班有59人,参加语文竞赛的有36人,参加数学竞赛的有38人,一科也没参加的有5人。双科都参加的有多少人?
35.学校买了4张桌子和6把椅子,共用640元。2张桌子和5把椅子的价钱相等,桌子和椅子的单价各是多少元?
36.父亲今年45岁,5年前父亲的年龄是儿子的4倍,今年儿子多少岁?
37.有两桶油,甲桶油重是乙桶油重的4倍,如果从甲桶倒入乙桶18千克,两桶油就一样重,原来每桶各有多少千克油?
38.光明小学举办数学知识竞赛,一共20题。答对一题得5分,答错一题扣3分,不答得0分。小丽得了79分,她答对几道,答错几道,有几题没答?
39.甲列火车长240米,每秒行20米;乙列火车长264米,每秒行16米,两车相向而行,从两车头相遇到两车尾相离需要几秒?
40.一列火车长600米,通过一条长1150米的隧道,已知火车的速度是每分700米,问火车通过隧道需要几分?
41.小明从家里到学校,如果每分走50米,则正好到上课时间;如果每分走60米,则离上课时间还有2分。问小明从家里到学校有多远?
42.有一周长600米的环形跑道,甲、乙二人同时、同地、同向而行,甲每分钟跑300米,乙每分钟跑400米,经过几分钟二人第一次相遇?
43.有一个长方形纸板,如果只把长增加2厘米,面积就增加8平方米;如果只把宽增加2厘米,面积就增加12平方厘米。这个长方形纸板原来的面积是多少?
44.妈妈买苹果和梨各3千克,付出20元找回7.4元。每千克苹果2.4元,每千克梨多少元?
45.甲乙两人同时从相距135千米的两地相对而行,经过3小时相遇。甲的速度是乙的2倍,甲乙两人每小时各行多少千米?
46.盒子里有同样数目的黑球和白球。每次取出8个黑球和5个白球,取出几次以后,黑球没有了,白球还剩12个。一共取了几次?盒子里共有多少个球?
47.上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。
48.父亲今年45岁,儿子今年15岁,多少年前父亲的年龄是儿子年龄的11倍?
49.王老师有一盒铅笔,如平均分给2名同学余1支,平均分给3名同学余2支,平均分给4名同学余3支,平均分给5名同学余4支。问这盒铅笔最少有多少支?
50.一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。求这块平行四边形地原来的面积?

50道奥数题解答参考
1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:
288÷(10-1)=32(元)
一张桌子的价钱:
32×10=320(元)
答:一张桌子320元,一把椅子32元。
2、想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
解:45+5×3
=45+15
=60(千克)
答:3箱梨重60千克。
3、想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。
解:4×2÷4
=8÷4
=2(千米)
答:甲每小时比乙快2千米。
4、想:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
解:0.6÷[13-(13+7)÷2]
=0.6÷[13-20÷2]
=0.6÷3
=0.2(元)
答:每支铅笔0.2元。
5、想:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。
解:下午2点是14时。
往返用的时间:14-8=6(时)
两地间路程:(40+45)×6÷2
=85×6÷2
=255(千米)
答:两地相距255千米。
6、想:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)] 千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快( 4.5-3.5)千米,由此便可求出追赶的时间。
解:第一组追赶第二组的路程:
3.5-(4.5- 3.5)=3.5-1=2.5(千米)
第一组追赶第二组所用时间:
2.5÷(4.5-3.5)=2.5÷1=2.5(小时)
答:第一组2.5小时能追上第二小组。
7、想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。
解:乙仓存粮:
(32.5×2+5)÷(4+1)
=(65+5)÷5
=70÷5
=14(吨)
甲仓存粮:
14×4-5
=56-5
=51(吨)
答:甲仓存粮51吨,乙仓存粮14吨。
8、想:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。
解:乙每天修的米数:
(400-10×4)÷(4+5)
=(400-40)÷9
=360÷9
=40(米)
甲乙两队每天共修的米数:
40×2+10=80+10=90(米)
答:两队每天修90米。
9、想:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。
解:每把椅子的价钱:
(455-30×6)÷(6+5)
=(455- 180)÷11
=275÷11
=25(元)
每张桌子的价钱:
25+30=55(元)
答:每张桌子55元,每把椅子25元。
10、想:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。
解:(7+65)×[40÷(75- 65)]
=140×[40÷10]
=140×4
=560(千米)
答:甲乙两地相距 560千米。
11、想:根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。
解:(20×250-4400)÷(10+20)
=600÷120
=5(箱)
答:损坏了5箱。
12、想:因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。
解:4×2÷(12-4)
=4×2÷8
=1(时)
答:第二中队1小时能追上第一中队。
13、想:由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。
解:原计划烧煤天数:
(1500+1000)÷(1500-1000)
=2500÷500
=5(天)
这堆煤的重量:
1500×(5-1)
=1500×4
=6000(千克)
答:这堆煤有6000千克。
14、想:小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45 元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。由此可求练习本的单价比铅笔贵的钱数。从总钱数里去掉8个练习本比8支铅笔贵的钱 数,剩余的则是(5+8)支铅笔的钱数。进而可求出每支铅笔的价钱。
解:每本练习本比每支铅笔贵的钱数:
0.45÷(8-5)=0.45÷3=0.15(元)
8个练习本比8支铅笔贵的钱数:
0.15×8=1.2(元)
每支铅笔的价钱:
(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)
也可以用方程解:
设一枝铅笔X元,则一本练习本为 元。
8X+5× =3.8-0.45
64X+19-25X=30.4-3.6
39X=7.8
X=0.2
答:每支铅笔0.2元。
15、想:根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。
解:卡车的数量:
360÷[10×6÷(8-6)]
=360÷[10×6÷2]
=360÷30
=12(辆)
客车的数量:
360÷[10×6÷(8-6)+10]
=360÷[30+10]
=360÷40
=9(辆)
答:可用卡车12辆,客车9辆。
16、想:根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。
解:已修的天数:
(720×3-1200)÷80
=960÷80
=12(天)
公路全长:
(720+80)×12+1200
=800×12+1200
=9600+1200
=10800(米)
答:这条公路全长10800米。
17、想:根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。
解:12个纸箱相当木箱的个数:
2×(12÷3)=2×4=8(个)
一个木箱装鞋的双数:
1800÷(8+4)=18000÷12=150(双)
一个纸箱装鞋的双数:
150×2÷3=100(双)
答:每个纸箱可装鞋100双,每个木箱可装鞋
150双
18、想:由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。
解:水泥用完的天数:
120÷(30×2-40)=120÷20=6(天)
水泥的总袋数:
30×6=180(袋)
沙子的总袋数:
180×2=360(袋)
答:运进水泥180袋,沙子360袋。
19、想:根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。
解:每个茶杯的价钱:
90÷(4×5+10)=3(元)
每个保温瓶的价钱:
3×4=12(元)
答:每个保温瓶12元,每个茶杯3元。
20、想:已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍。
解:第一个加数:
572÷(10+1)=52
第二个加数:
52×10=520
答:这两个加数分别是52和520。
21、想:由已知条件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。
解:9-(16-9)
=9-7
=2(千克)
答:桶重2千克。
22、想:由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量。
解:(10-5.5)×2=9(千克)
答:原来有油9千克。
23、想:由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。
解:(22-10)÷(5-2)
=12÷3
=4(千克)
答:桶里原有水4千克。
24、想:从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍。
解:小华有书的本数:
(36-5×2)÷2=13(本)
小红有书的本数:
13+5×2=23(本)
答:原来小红有23本,小华有13本。
25、想:由已知条件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。
解:15×5÷(5-2)=25(千克)
答:原来每桶油重25千克。
26、想:把一根木料锯成3段,只锯出了(3-1)个锯口,这样就可以求出锯出每个锯口所需要的时间,进一步即可以求出锯成5段所需的时间。
解:9÷(3-1)×(5-1)=18(分)
答:锯成5段需要18分钟。
27、想:女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。
解:35÷(2-1)=35(人)
女工原有:
35+17=52(人)
男工原有:
52+35=87(人)
答:原有男工87人,女工52人。
28、想:由每小时行12千米,5小时到达可求出两地的路程,即返回时所行的路程。由去时5小时到达和返回时多用1小时,可求出返回时所用时间。
解:12×5÷(5+1)=10(千米)
答:返回时平均每小时行10千米。
29、想:由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米。
解:18÷(5+4)=2(小时)
8×2=16(千米)
答:狗跑了16千米。
30、想:由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。
解:总个数:
(21+20+19)÷2=30(个)
白球:30-21=9(个)
红球:30-20=10(个)
黄球:30-19=11(个)
答:白球有9个,红球有10个,黄球有11个。
31、想:根据题意,33米比18米长的米数正好是3根细钢管的长度,由此可求出一根细钢管的长度,然后求一根粗钢管的长度。
解:(33-18)÷(5-2)=5(米)
18-5×2=8(米)
答:一根粗钢管长8米,一根细钢管长5米。
32、想:由题意知,实际10天比原计划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原计划还需用(12-10)天才能完成,也就是说原计划(12-10)天能生产水泥(4.8×10)吨。
解:4.8×10÷(12-10)=24(吨)
答:原计划每天生产水泥24吨。
33、想:由题意知唱歌的70人中也有跳舞的,同样跳舞的30人中也有唱歌的,把两者相加,这样既唱歌又跑舞的就统计了两次,再减去参加表演的80人,就是既唱歌又跳舞的人数。
解:70+30-80
=100-80
=20(人)
答:既唱歌又跳舞的有20人。
34、想:参加语文竞赛的36人中有参加数学竞赛的,同样参加数学竞赛的38人中也有参加语 文竞赛的,如果把两者加起来,那么既参加语文竞赛又参加数学竞赛的人数就统计了两次,所以将参加语文竞赛的人数加上参加数学竞赛的人数再加上一科也没参加 的人数减去全班人数就是双科都参加的人数。
解:36+38+5-59=20(人)
答:双科都参加的有20人。
35、想:由“2张桌子和5把椅子的价钱相等”这一条件,可以推出4张桌子就相当于10把椅子的价钱,买4张桌子和6把椅子共用640元,也就相当于买16把椅子共用640元。
解:5×(4÷2)+6=16(把)
640÷16=40(元)
40×5÷2=10O(元)
答:桌子和椅子的单价分别是100元、40元。
36、想:5年前父亲的年龄是(45-5)岁,儿子的年龄是(45-5)÷4岁,再加上5就是今年儿子的年龄。
解:(45-5)÷4+5
=10+5
=15(岁)
答:今年儿子15岁。
37、想:“如果从甲桶倒入乙桶18千克,两桶油就一样重”可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍。
解:18×2÷(4-1)=12(千克)
12×4=48(千克)
答:原来甲桶有油48千克,乙桶有油12千克。
38、想:根据题意,20题全部答对得100分,答错一题将失去(5+3)分,而不答仅失去5分。小丽共失去(100-79)分。再根据(100-79)÷8=2(题)……5(分),分析答对、答错和没答的题数。
解:(5×20-75)÷8=2(题)……5(分)
20-2-1=17(题)
答:答对17题,答错2题,有1题没答。
39、想:“从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米。根据路程、速度和时间的关系,就可求得所需时间。
解:(240+264)÷(20+16)
=504÷30
=14(秒)
答:从两车头相遇到两车尾相离,需要14秒。
40、想:火车通过隧道是指从车头进入隧道到车尾离开隧道,所行的路程正好是车身与隧道长度之和。
解:(600+1150)÷700
=1750÷700
=2.5(分)
答:火车通过隧道需2.5分。
41、想:在每分走50米的到校时间内按两种速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,这就可求出小明按每分50米的到校时间。
解:60×2÷(60-50)=12(分)
50×12=600(米)
答:小明从家里到学校是600米。
42、想:由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即600米,又知乙每分钟比甲多跑(400-300)米,即可求第一次相遇时经过的时间。
解:600÷(400-300)
=600÷100
=6(分)
答:经过6分钟两人第一次相遇
43、想:由“只把宽增加2厘米,面积就增加12平方厘米”,可求出原来的长是:(12÷2)厘米,同理原来的宽就是(8÷2)厘米,求出长和宽,就能求出原来的面积。
解:(12÷2)×(8÷2)=24(平方厘米)
答:这个长方形纸板原来的面积是24平方厘米。
44、想:用去的钱数除以3就是1千克苹果和1千克梨的总钱数。从这个总钱数里去掉1千克苹果的钱数,就是每千克梨的钱数。
解:(20-7.4)÷3-2.4
=12.6÷3-2.4
=4.2-2.4
=1.8(元)
答:每千克梨1.8元。
45、想:由题意知,甲乙速度和是(135÷3)千米,这个速度和是乙的速度的(2+1)倍。
解:135÷3÷(2+1)=15(千米)
15×2=30(千米)
答:甲乙每小时分别行30千米、15千米。
46、想:两种球的数目相等,黑球取完时,白球还剩12个,说明黑球多取了12个,而每次多取(8-5)个,可求出一共取了几次。
解:12÷(8-5)=4(次)
8×4+5×4+12=64(个)
或8×4×2=64(个)
答:一共取了4次,盒子里共有64个球。
47、想:1路和2路下次同时发车时,所经过的时间必须既是12分的倍数,又是18分的倍数。也就是它们的最小公倍数。
解:12和18的最小公倍数是36
6时+36分=6时36分
答:下次同时发车时间是上午6时36分。
48、想:父、子年龄的差是(45-15)岁,当父亲的年龄是儿子年龄的11倍时,这个差正好是儿子年龄的(11-1)倍,由此可求出儿子多少岁时,父亲是儿子年龄的11倍。又知今年儿子15岁,两个岁数的差就是所求的问题。
解:(45-15)÷(11-1)=3(岁)
15-3=12(年)
答:12年前父亲的年龄是儿子年龄的11倍。
49、想:根据题意,可以将题中的条件转化为:平均分给2名同学、3名同学、4名同学、5名同学都少一支,因此,求出2、3、4、5的最小公倍数再减去1就是要求的问题。
解:2、3、4、5的最小公倍数是60
60-1=59(支)
答:这盒铅笔最少有59支。
50、想:根据只把底增加8米,面积就增加40平方米, 可求出原来平行四边形的高。根据只把高增加5米,面积就增加40平方米,可求出原来平行四边形的底。再用原来的底乘以原来的高就是要求的面积。
解:(40÷5)×(40÷8)=40(平方米)
答:平行四边形地原来的面积是40平方米。

⑤ 初一数学上册奥数题及答案(50道以上)

我能帮你,抖抖抖体
啊·

⑥ 数学奥数题

3、0

⑦ 数学奥数题5道(带答案)

. 有 28位小朋友排成一行 .从左边开始数第 10位是爱华,从右边开始数他是第几位? 2. 纽约时间是香港时间减 13小时 .你与一位在纽约的朋友约定,纽约时间 4月 1日晚上 8时与他通电话,那么在香港你应几月几日几时给他打电话? 3. 名工人 5小时加工零件 90件,要在 10小时完成 540个零件的加工,需要工人多少人? 4. 大于 100的整数中,被 13除后商与余数相同的数有多少个? 5. 四个房间,每个房间里不少于 2人,任何三个房间里的人数不少 8人,这四个房间至少有多少人? 6. 在 1998的约数(或因数)中有两位数,其中最大的是哪个数? 7. 英文测验,小明前三次平均分是 88分,要想平均分达到 90分,他第四次最少要得几分? 8. 一个月最多有 5个星期日,在一年的 12个月中,有 5个星期日的月份最多有几个月? 9. 将 0, 1, 2, 3, 4, 5, 6, 7, 8, 9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同 . □ +□□ =□□□ 问算式中的三位数最大是什么数? 10. 有一个号码是六位数,前四位是 2857,后两位记不清,即 2857□□ 但是我记得,它能被 11和 13整除,请你算出后两位数 . 11. 某学校有学生 518人,如果男生增加 4%,女生减少 3人,总人数就增加 8人,那么原来男生比女生多几人? 12. 陈敏要购物三次,为了使每次都不产生 10元以下的找赎, 5元、 2元、 1元的硬币最少总共要带几个? (硬币只有 5元、 2元、 1元三种 .) 13. 右图是三个半圆构成的图形,其中小圆直径为 8,中圆直径为 12, 14.幼儿园的老师把一些画片分给 A, B, C三个班,每人都能分到 6张 .如果只分给 B班,每人能得 15张,如果只分给 C班,每人能得 14张,问只分给 A班,每人能得几张? 15. 两人做一种游戏:轮流报数,报出的数只能是 1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是 123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几? 16.一本小说的页码,在印刷时必须用1989个铅字,在这一本书的页码中数字1出现多少次? 17.把23个数:3,33,333,…,33…3(23个3)相加,则所得的和的末四位数是多少? 18.将1、1、2、2、3、3、4、4这八个数字排成一个八位数,使得两个1之间有一个数字,两个2之间有二个数字,两个3之间有三个数字,两个4之间有四个数字,那么这样的八位数中最小的是? 19.从 1, 2, 3,…,2004, 2005这些自然数中,最多可以取几个数,才能使其中每两个数的差不等于4? 20.有一个电话号码是六位数,其中左边三个数字相同,右边三个数字是三个连续的自然数,六个数字之和恰好等于末尾的两位数,这个电话号码是多少? 21.若a为自然数,证明10│(a2005-a1949). 22.给出12个彼此不同的两位数,证明:由它们中一定可以选出两个数,它们的差是两个相同数字组成的两位数. 23.求被3除余2,被5除余3,被7除余5的最小三位数. 24.设2n+1是质数,证明:12,22,…,n2被2n+1除所得的余数各不相同. 25.试证不小于5的质数的平方与1的差必能被24整除. 26. 有甲乙两种糖水,甲含糖270克,含水30克,乙含糖400克,含水100克,现要得到浓度是82.5%的糖水100克,问每种应取多少克? 27. 一个容器里装有10升纯酒精,倒出1升后,用水加满,再倒出1升,用水加满,再倒出1升,用水加满,这时容器内的酒精溶液的浓度是? 28. 有若干千克4%的盐水,蒸发了一些水分后变成了10%的盐水,在加300克4%的盐水,混合后变成6.4%的盐水,问最初的盐水是多少千克? 29.已知盐水若干克,第一次加入一定量的水后,盐水浓度变为3%,第二次加入同样多的水后,盐水浓度变为2%。求第三次加入同样多的水后盐水的浓度。 30.有A、B、C三种盐水,按A与B的数量之比为2:1混合,得到浓度为13%的盐水;按A与B的数量之比为1:2混合,得到浓度为14%的盐水;按A、B、C的数量之比为1:1:3混合,得到浓度为10.2%的盐水,问盐水C的浓度是多少? [ 答案 ] 1. 从右边开始数,他是第 19位 . 2. 4 月2 日上午9 时. 3.9名工人 . 4.有 5个 . 13× 7+7=98< 100,商数从 8开始 .但余数小于 13,最大是 12,有 13× 8+ 8= 112, 13× 9+ 9= 126, 13× 10+ 10=140, 13× 11+ 11=154, 13× 12+ 12= 168,共 5个数 . 5.至少有 11人 . 人数最多的房间至少有 3人,其余三个房间至少有 8人,总共至少有 11人 . 6.最大的两位约数是 74. 1998= 2× 3× 3× 3× 37 7.第四次最少要得 96分 . 88+( 90- 88)× 4=96(分) 8.最多有 5个月有 5个星期日 . 1月 1日是星期日,全年就有 53个星期日 .每月至少有 4个星期日, 53-4× 12=5,多出 5个星期日,在 5个月中 . 9.105. 和的前两位是 1和 0,两位数的十位是 9.因此加数的个位最大是 7和 8. 10.后两位数是 14. 285700÷( 11× 13) =1997余 129 余数 129再加 14就能被 143整除 . 11.男生比女生多 32人 . 男生 4%是 3+ 8=11(人),男生有 11÷ 4% =275(人),女生有 518-275=243(人), 275-243=32(人) . 12.最少 5元、 2元、 1元的硬币共 11个 . 购物 3次,必须备有 3个 5元、 3个 2元、 3个 1元 .为了应付 3次都是 4元,至少还要 2个硬币,例如 2元和 1元各一个,因此,总数 11个是不能少的 .准备 5元 3个, 2元 5个, 1元 3个,或者 5元 3个, 2元 4个, 1元 4个就能三次支付 1元至 9元任何钱数 . 14.A班每人能得 35张 . 设三班总人数是 1,则 B班人数是 6/15, C班人数是 6/14,因此 A班人数是: 15.第一个数报 6. 对方至少要报数 1,至多报数 8,不论对方报什么数,你总是可以做到两人所报数之和为 9. 123÷ 9= 13…… 6. 你第一次报数 6.以后,对方报数后,你再报数,使一轮中两人报的数和为 9,你就能在 13轮后达到 123. 16.4 17.甲26又2/3天,乙40天 18.21 19.14又1/3 20.10 21.甲、乙两地相距540千米,原来火车的速度为每小时90千米。 22.750 23.384 24.600 25.一班48人,二班42人 26.15 27.82 28.312 29.最少5个,最多7个 30.784 希望对你有帮助

⑧ 几道简单的数学奥数题

1、4+6+4+1=15
2、6+5+4+3+2+1=21
3、3+3+1=7
4、9+6+8+12=35
5、3*2*1=6
6、8*8=64
7、6*2=12
8、6+4+4+4=18
9、10+9+8+7+6+5+4+3+2+1=45
10、5*2*3=30
11、4*2*3=24
12、3*2=6
13、5*4*3=60, 5+4+3=12

⑨ 有哪些数学奥数题

奥数题一查就会,赶快上名师辅导。猿辅导吧!

⑩ 小学数学奥数题

解:设一元的人民币有X张,则一角的人民币有(28-X)张,依题意得
x+(28-x)×.1=5.5
x+2.8-0.1x=5.5
x-0.1x=5.5-2.8
0.9x=2.7
x=3
28-x=25
答:换来的一元人民币有3张,一角的人民币有25张。
如果增加2张2元的,则有人民币(50+2)张,共计(116+2×2)元,这时候1元与2元的张数相同,假设这52张人民币全是5元的,则应有260元,比实际的120元多140元,这140元的差额可用2张5元换1张1元与1张2元,每换1次可以补差7元,由于140元里包含有20个7元,所以有20张1元,20张2元(实际只有18张2元的),剩下的12张当然是5元的了。

解:
[5×(50+2)-(116+2×2)]÷(5×2―1―2)
=140÷7
=20(张)……1元的张数
20-2=18(张)……2元的张数
50-20-18=12(张)……5元的张数
答:有20张1元的,18张2元的,12张5元的。
解:设5元的和7元的各有x张,则3元的有(400-2x)张
5x+7x+3(400-2x)=1920
12x+1200-6x=1920
12x-6x=1920-1200
6x=720
x=120
400-2x=400-2*120=160(张)
答:3元的有160张,5元的和7元的各有120张。

每箱便宜2元才对
相差:3024-2520=504元 有货: 504÷2=252箱
假设18车全是大汽车 应装 18×18=324箱 比实际多了324-252=72箱
是由于把小汽车看成了大汽车 每车相差 18-12=6箱
小汽车有:72÷6=12辆 大汽车有:18-12=6辆
112÷14=8
这几天中有x天是雨天
12x+20﹙8-x﹚=112
x=6
这几天中有6天是雨天

大西瓜500千克
一共降价 290-250=40元
每千克降价 0.05元
一共有西瓜 40元/0.05元=800千克
设有x千克大西瓜
0.4*x+0.3*(800-x)=290
x=500千克

设甲中x次,乙中y次
由题10x+10y-6(10-x)-6(10-y)=152
16x+16y=272
且10x-6(10-x)-16=10y-6(10-y)
16x-16y=16
解得x=9,y=8
即甲中9次,乙中8次

假设全部答对,可得:
20×5=100(分)
比实际多了:
100-86=14(分)
错了:
14÷(5+2)=2(题)
对了:
20-2=18(题)

热点内容
人教版五年级语文上册知识点总结 发布:2025-07-22 14:56:48 浏览:836
师德师风建设自查总结 发布:2025-07-22 14:49:44 浏览:427
高校师德建设工作总结 发布:2025-07-22 14:04:49 浏览:565
五好教师下载 发布:2025-07-22 12:37:05 浏览:729
师德考细则 发布:2025-07-22 11:58:05 浏览:453
热键冲突怎么办 发布:2025-07-22 11:43:10 浏览:557
猥褒怎么念 发布:2025-07-22 10:21:39 浏览:456
教师技能大赛方案 发布:2025-07-22 09:15:41 浏览:92
师德模范事迹简介 发布:2025-07-22 07:53:42 浏览:25
考个教师 发布:2025-07-22 06:50:45 浏览:523