当前位置:首页 » 语数英语 » 必修5数学

必修5数学

发布时间: 2021-08-16 03:17:37

『壹』 高中数学有几本是不是从必修一到必修五

高中数学课程分必修和选修。必修课程由5个模块组成;选修课程有4个系列,其中系列1、系列2由若干个模块组成,系列3、系列4由若干专题组成;每个模块2学分(36学时),每个专题1学分(18学时),每2个专题可组成1个模块。
1.必修课程(共5本)
必修课程是每个学生都必须学习的数学内容,包括5个模块。
数学1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。
数学2:立体几何初步、平面解析几何初步。
数学3:算法初步、统计、概率。
数学4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换。
数学5:解三角形、数列、不等式。
2. 选修课程(共21本)
选修课程由系列1,系列2,系列3,系列4等组成。
◆系列1:由2个模块组成。
选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1-2:统计案例、推理与证明、数系的扩充与复数的引入、框图。
◆系列2:由3个模块组成。
选修2-1:常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何。
选修2-2:导数及其应用、推理与证明、数系的扩充与复数的引入。
选修2-3:计数原理、统计案例、概率。
◆系列3:由6个专题组成。
选修3-1:数学史选讲。
选修3-2:信息安全与密码。
选修3-3:球面上的几何。
选修3-4:对称与群。
选修3-5:欧拉公式与闭曲面分类。
选修3-6:三等分角与数域扩充。
◆系列4:由10个专题组成。
选修4-1:几何证明选讲。
选修4-2:矩阵与变换。
选修4-3:数列与差分。
选修4-4:坐标系与参数方程。
选修4-5:不等式选讲。
选修4-6:初等数论初步。
选修4-7:优选法与试验设计初步。
选修4-8:统筹法与图论初步。
选修4-9:风险与决策。
选修4-10:开关电路与布尔代数。
3. 关于课程设置的说明
◆课程设置的原则与意图
必修课程内容确定的原则是:满足未来公民的基本数学需求,为学生进一步的学习提供必要的数学准备。
选修课程内容确定的原则是:满足学生的兴趣和对未来发展的需求,为学生进一步学习、获得较高数学素养奠定基础。其中,
系列1是为那些希望在人文、社会科学等方面发展的学生而设置的,系列2则是为那些希望在理工、经济等方面发展的学生而设置的。系列1,系列2内容是选修系列课程中的基础性内容。
系列3和系列4是为对数学有兴趣和希望进一步提高数学素养的学生而设置的,所涉及的内容反映了某些重要的数学思想,有助于学生进一步打好数学基础,提高应用意识,有利于学生终身的发展,有利于扩展学生的数学视野,有利于提高学生对数学的科学价值、应用价值、文化价值的认识。其中的专题将随着课程的发展逐步予以扩充,学生可根据自己的兴趣、志向进行选择。根据系列3内容的特点,系列3不作为高校选拔考试的内容,对这部分内容学习的评价适宜采用定量与定性相结合的方式,由学校进行评价,评价结果可作为高校录取的参考。
4.对学生选课的建议
1). 学生完成10个学分的必修课程,在数学上达到高中毕业要求。
2). 在完成10个必修学分的基础上,希望在人文、社会科学等方面发展的学生,可以有两种选择。一种是,在系列1中学习选修1-1和选修1-2,获得4学分;在系列3中任选2个专题,获得2学分,共获得16学分。另一种是,如果学生对数学有兴趣,并且希望获得较高数学素养,除了按上面的要求获得16学分,同时在系列4中获得4学分,总共获得20学分。
3). 希望在理工(包括部分经济类)等方面发展的学生,在完成10个必修学分的基础上,可以有两种选择。一种是,在系列2中学习选修2-1,选修2-2和选修2-3,获得6学分;在系列3中任选2个专题,获得2学分;在系列4中任选2个专题,获得2学分,共获得20学分。另一种是,如果学生对数学有兴趣,希望获得较高数学素养,除了按上面的要求获得20学分,同时在系列4中选修4个专题,获得4学分,总共获得24学分。
课程的组合具有一定的灵活性,不同的组合可以相互转换。学生作出选择之后,可以根据自己的意愿和条件向学校申请调整,经过测试获得相应的学分即可转换。

『贰』 高中数学必修5怎么

多做一些题找找感觉 ,再有就是学会类比 ,会了一道题以后再见到这种类型题也要会写,这就要看你的掌握程度了

『叁』 高中数学必修五

已经等差数列的 an 的公差为2 ,若 a₁a₃ a₄成等比数列,则a₂ 等于??
解:公差d=2;
则a₃=a₁+2d=a₁+4; a₄=a₁+3d=a₁+6.
a₁,a₃,a₄成等比数列,故有a₃²=a₁a₄,即有:
(a₁+4)²=a₁(a₁+6)
a₁²+8a₁+16=a₁²+6a₁
即有2a₁+16=0, 故a₁=-8, a₂=-6 a₃=-4, a₄=-2

『肆』 数学,必修五


『伍』 数学必修五重点内容

《必修》:《解三角形》、《数列》、《不等式》,都属于比较重点的内容。《解三角形》是解答第一个(会结合向量等知识),《数列》则是解答中的必考题,且有难度,《不等式》主要在如何充当工具解决具体问题的使用上。

『陆』 数学必修5必备公式

三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
降幂公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
万能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2

『柒』 高中数学必修5

说实话线性规划没有什么公式
只是一些不等式的连列
而数列的公式
就是 等差:an=a1+(n-1)d
Sn=[(a1+an)*n]/2
=a1*n+n*(n-1)d/2
等比:an=a1*q^(n-1)
Sn=[a1(1-q^n)]/(1-q)
=(a1-an*q)/(1-q)
通项(求任意项):an=(a1+an)÷d(公差)-1
n(项数)
求项数公式n=(an-a1)÷d+1
这是一些应用`````
1+2+3+......+n=n(n+1)/2
2。 1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6
3。 1^3+2^3+3^3+......+n^3=( 1+2+3+......+n)^2=n^2*(n+1)^2/4
4。 1*2+2*3+3*4+......+n(n+1)=n(n+1)(n+2)/3
5。 1*2*3+2*3*4+3*4*5+......+n(n+1)(n+2)=n(n+1)(n+2)(n+3)/4
6。 1+3+6+10+15+......
=1+(1+2)+(1+2+3)+(1+2+3+4)+......+(1+2+3+...+n)
=[1*2+2*3+3*4+......+n(n+1)]/2
=n(n+1)(n+2)/6
7。1+2+4+7+11+......+ n
=1+(1+1)+(1+1+2)+(1+1+2+3)+......+(1+1+2+3+...+n)
=(n+1)*1+[1*2+2*3+3*4+......+n(n+1)]/2
=(n+1)+n(n+1)(n+2)/6
8。1/2+1/2*3+1/3*4+......+1/n(n+1)
=1-1/(n+1)=n/(n+1)
9。1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+......+1/(1+2+3+...+n)
= 2/2*3+2/3*4+2/4*5+......+2/n(n+1)=(n-1)/(n+1)
10。1/1*2+2/2*3+3/2*3*4+......+(n-1)/2*3*4*...*n
=(2*3*4*...*n-1)/2*3*4*...*n

11。1^2+3^2+5^2+..........(2n-1)^2=n(4n^2-1)/3
12。1^3+3^3+5^3+..........(2n-1)^3=n^2(2n^2-1)
13。1^4+2^4+3^4+..........+n^4=n(n+1)(2n+1)(3n^2+3n-1)/30
14。1^5+2^5+3^5+..........+n^5=n^2 (n+1)^2 (2n^2+2n-1) /12

15。1+2+2^2+2^3+......+2^n=2^(n+1) – 1

还有什么柯西不等式就算了```````
我说不等式赶嘛??????????????
于是我疯了````````

『捌』 高中数学必修5重要公式

高中数学必修5主要是数列 ,一般是高考17题,【三角函数和数列2选1】
数列基本公式:
9、一般数列的通项an与前n项和Sn的关系:an=
10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:Sn= Sn= Sn=
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k
(其中a1为首项、ak为已知的第k项,an≠0)
13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q≠1时,Sn= Sn=
三、有关等差、等比数列的结论
14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。
15、等差数列{an}中,若m+n=p+q,则
16、等比数列{an}中,若m+n=p+q,则
17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
19、两个等比数列{an}与{bn}的积、商、倒数组成的数列
{an bn}、 、 仍为等比数列。
20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)
24、{an}为等差数列,则 (c>0)是等比数列。
25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列。
26. 在等差数列 中:
(1)若项数为 ,则
(2)若数为 则, ,
27. 在等比数列 中:
(1) 若项数为 ,则
(2)若数为 则,
四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。
28、分组法求数列的和:如an=2n+3n
29、错位相减法求和:如an=(2n-1)2n
30、裂项法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、求数列{an}的最大、最小项的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函数f(n)的增减性 如an=
33、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得 取最大值.
(2)当 <0,d>0时,满足 的项数m使得 取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。

『玖』 高中必修五数学

解:在三角形ABC中,∠A+∠B+∠C=180°,
∠A+∠B=180°-∠C.
tan(A+B)=-tanC=-1,
tan(A+B)=tanA+tanB/1-tanAtanB,tanA+tanB=5.
a>b,且有tanAtanB=6,
tanA=3,tanB=2,
sinA=3/√10,sinB=2/√5,
sinC=√2/2,c=2√2.
根据余弦定理易得,a=6√10/5,b=8√5/5,
S=1/2 absinc=1/2×6√10/5×8√5/5×√2/2=24/5

热点内容
兵团教师资格证书领取 发布:2025-06-16 11:14:58 浏览:501
师德师风演讲评分表 发布:2025-06-16 11:14:13 浏览:628
植物园的历史 发布:2025-06-16 11:11:22 浏览:979
廉政警示教育片 发布:2025-06-16 08:50:03 浏览:924
数学考试试题 发布:2025-06-16 08:16:43 浏览:517
常见浮游生物 发布:2025-06-16 07:28:27 浏览:89
尧庙历史 发布:2025-06-16 07:00:45 浏览:933
纤维的历史 发布:2025-06-16 06:28:12 浏览:83
外研社三年级英语上册 发布:2025-06-16 04:36:39 浏览:492
一年级语文上册期中考试试卷 发布:2025-06-16 04:15:42 浏览:253