具体数学
Ⅰ 具体数学的内容简介
《具体数学:计算机科学基础:第2版》是一本在大学中广泛使用的经典数学教科书.书中讲解了许多计算机科学中用到的数学知识及技巧,教你如何把一个实际问题一步步演化为数学模型,然后通过计算机解决它,特别着墨于算法分析方面.其主要内容涉及和式、整值函数、数论、二项式系数、特殊的数、生成函数、离散概率、渐近式等,都是编程所必备的知识.另外,本书包括了六大类500 多道习题,并给出了所有习题的解答,有助读者加深书中内容的理解.《具体数学:计算机科学基础:第2版》面向从事计算机科学、计算数学、计算技术诸方面工作的人员,以及高等院校相关专业的师生.
原书英文简介
This book introces the mathematics that supports advanced computer Programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills--the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle Patterns in data. It is an indispensable text and reference not only for computer scientists--the authors themselves rely heavily on it! but for serious users Of mathematics in virtually every discipline. Concrete mathematics is a blending of continuous and disCRETE mathematics: More concretely, the authors explain, it is the controlled manipulation of mathematical formulas,using a collection of techniques for solving problems. The subject mater is primarily an expansion of the Mathematical Preliminaries section in Knuth's c1assic Art of Computer Programming, but the style of presentation is more leisurely, and indivial topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study.
Ⅱ 具体数学需要哪些数学基础
要学好数学,要从数的运算开始,对各种数字要有理解和认识,然后进一步到物体的距离,点线面体有认识,然后对于一些逻辑,要理解。其他还很广泛,我也说不出了
Ⅲ 学离散数学或具体数学都需要什么基础数学
离散数学是现代数学的一个重要分支,是计算机科学中基础理论的核心课程。离散数学以研究离散量的结构和相互间的关系为主要目标,其研究对象一般地是有限个或可数个元素,因此他充分描述了计算机科学离散性的特点。由于离散数学在计算机科学中的重要性,因此,许多大学都把它作为研究生入学考试的专业课程中的一门,或者是一门中的一部分。
作为计算机系的一门课程,离散数学有与其它课程相通相似的部分,当然也有它自身的特点,现在我们就它作为考试内容时具有的特点作一个简要的分析。
Ⅳ 具体数学VS离散数学VS组合数学什么关系
1、具体数学这们课程就是讲数学在计算机学中如何应用,在计算机学中如何用数学来解决问题,是数学和计算机学的结合。
2、离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。
它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,
如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。
通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和严格的逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。
3、组合数学(combinatorial mathematics),又称为离散数学。
狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面问题。组合数学主要内容有组合计数、组合设计、组合矩阵、组合优化等。有
时人们也把组合数学和图论加在一起看作离散数学。组合数学是计算机出现以后迅速发展起来的一门数学分支。
计算机科学即算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是组合数学。
组合数学的发展改变了传统数学中分析和代数占统治地位的局面。
具体数学是与离散数学正好相对应的数学学科的分支。 具体数学和离散数学一样也是计算机科学的不可分割的一部分,应用于程序设计和算法式分析。
(4)具体数学扩展阅读
《具体数学:计算机科学基础:第2版》是一本在大学中广泛使用的经典数学教科书。
书中讲解了许多计算机科学中用到的数学知识及技巧,教你如何把一个实际问题一步步演化为数学模型,然后通过计算机解决它,特别着墨于算法分析方面。
其主要内容涉及和式、整值函数、数论、二项式系数、特殊的数、生成函数、离散概率、渐近式等,都是编程所必备的知识.另外,本书包括了六大类500 多道习题,并给出了所有习题的解答,有助读者加深书中内容的理解。
《具体数学:计算机科学基础:第2版》面向从事计算机科学、计算数学、计算技术诸方面工作的人员,以及高等院校相关专业的师生。
离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。
离散数学的应用遍及现代科学技术的诸多领域。
离散数学也可以说是计算机科学的基础核心学科,在离散数学中的有一个著名的典型例子-四色定理又称四色猜想,
这是世界近代三大数学难题之一,它是在1852年,由英国的一名绘图员弗南西斯·格思里提出的,他在进行地图着色时,发现了一个现象,"每幅地图都可以仅用四种颜色着色,
并且共同边界的国家都可以被着上不同的颜色"。那么这能否从数学上进行证明呢?
100多年后的1976年,肯尼斯·阿佩尔(Kenneth Appel)和沃尔夫冈·哈肯(Wolfgang Haken)使用计算机辅助计算,用了1200个小时和100亿次的判断,终于证明了四色定理,轰动世界,这就是离散数学与计算机科学相互协作的结果。
离散数学可以看成是构筑在数学和计算机科学之间的桥梁,因为离散数学既离不开集合论、图论等数学知识,又和计算机科学中的数据库理论、数据结构等相关,它可以引导人们进入计算机科学的思维领域,促进了计算机科学的发展。
Ⅳ 具体数学的讨论为什么那么少
看你读此书的目的是什么。一般认为具体数学是学习TAOCP的前奏,Knuth自己也说具体数学里包含了TAOCP中分析算法的绝大多数数学工具。所以如果是针对算法分析学习,那么具体数学就是基础。不过如果是针对解题,比如面试或比赛里的算法设计,针对性可能就不是很强,但也不是完全用不上,比如第一章recursion就是很好的解题思路啊,当然Knuth最后还是把内容引到数学上了。
个人感觉,如果只是想要大概了解一下算法背后的数学原理的话,这本书过于复杂了。对于绝大多数实践为主的程序员来说,看了这书也未见得会在编程水平上突飞猛进。当然,如果想要在计算机科学领域从事一定水准的研究工作的话,书里的数学知识还是应该有所了解的,否则读论文都可能会有困难。
Ⅵ 如何学习具体数学
不知道你说的是不是图灵奖获得者高德纳先生的巨著呢?如果是的话,由于本人也在自学这本书,有一些感受可以分享一下,这本书的的习题建议还是做一些,但是不要想着做完,毕竟有的还不是我们可以力所能及的,另外这本书不可以跳跃着看,前面有的习题不做你会不明白后面在讲什么的,还有一点,这本书就是为了高德纳的算法设计的基础吧?所以建议一页一页看过去,做一些习题作为辅助,加油哈!!!
Ⅶ 具体数学的作者简介
ronald l. graham(葛立恒):著名数学家,美国加州大学圣迭戈分校计算机与信息科学专业教席(jacobs endowed chair),at&t实验室研究中心荣誉首席科学家,美国数学学会前任主席。donald e. knuth(高德纳):著名计算机科学家,算法与程序设计技术的先驱者、斯坦福大学计算机系荣休教授、计算机排版系统tex和metafont字体系统的发明人,因诸多成就以及大量富于创造力和具有深远影响的著作(19部书,160篇论文)而誉满全球。oren patashnik:著名计算机科学家,bibtex的创始人之一,是位于拉荷亚的通信研究中心的研究员。他1976年毕业于耶鲁大学,后来在斯坦福大学师从knuth,1980年就职于贝尔实验室。1985年与leslie lamport合作创建了bibtex(latex的一种工具,用于管理文献、产生文献目录)。
Ⅷ 《具体数学》《离散数学及其应用》应该先看哪个
具体数学了解不多。离散数学都是几十年前的版本,所以问题不大,基本没有什么更新,可以看清华大学等大学出版社的。