当前位置:首页 » 语数英语 » 八年级下册数学教材

八年级下册数学教材

发布时间: 2021-08-16 16:26:16

1. 八年级下册数学课本电子书

http://www.pep.com.cn/czsx/

2. 八年级下册数学课本每一节的整理

湘教版八年级下册数学知识归纳
第一章节 直角三角形 第二章节 四边形 第三章节图形与坐标 第四章节一次函数 第五章节数据的频数分布
第一章节 直角三角形
归纳作者 唐 瑶
第一章 直角三角形的两个锐角互余。 直角三角形的两个锐角相加和为90 ° 有两个角互余的三角形是直角三角形。 两个锐角相加和为90 ° ,那么这个三角形是直角三角形。
直角三角形斜边上的中线等于斜边的一半。标注时一般要标三条线段。
在直角三角形中,如果一个锐角等于30 °,那么它所对的直角边等于斜边的一半。一股都是用来计算或填空。
在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30 °
直角三角形两直角边a,b的平方和,等于斜边c的平方。 即:a²+b²=c²
通常我们称较短的一边为勾,较长的一边为股,斜边为弦,因此这一性质被称为勾股定理。
如果三角形的三条边长a,b,c满足关系;a²+b²=c²,那么这个三角形是直角三角形。
斜边直角边定理斜边和一条直角边对应相等的两个直角三角形全等〔可以间接写成“斜边 、直角边”定理 或 HL 定理 〕.
角的平分线上的点到角的两边的距离相等。通常是用来计算,填空,证明等等。
角的内部到角的两边距离相等的点在角的平方线上。 用来判断角平分线或者证明。

注意:
1“斜边 、直角边定理”是判断两个直角三角形全等所独有的,在运用该判定定理时,要注意全等的前提条件是两个直角三角形。
2要注意文章中的互逆命题,如直角三角形的性质和判定定理,勾股定理及其逆定理,角平分线的性质定理及其逆定理等,它们都互为逆命题。
3勾股定理及其逆定理都体现了数形结合的思想,勾股定理体现了由形到数,而勾股定理的逆定理是用代数方法来研究几何问题,提现了由数到形。
第二章 四边形
廖燕怡供稿

多边形: 在平面内,由一些线段首尾顺次相接组成的封闭图形叫作多边形。
组成多边形的各条线段叫作多边形的边。 相邻两条边的公共端点叫做多边形的顶点。
连接不相邻的两个顶点的线段叫作多边形的对角线。 相邻两边组合的角叫作多边形的内角,简称多边形的角。 在平面内,边相等、角也相等的多边形叫作正多边形。
多边形内角和公式:n边形的内角和等于(n-2)·180° 多边形的内角的一边与另一边的反向延长所组成的角叫作这个多边形的一个外角。 在多边形的每个顶点处去一个外角,他们的和叫做这个多边形的外角和。 n边形的外角和与边数没有关系。任意多边形的外角和等于360°,这与边数多少无关,只要是多边形。
平行四边形:
平行四边形的性质:两组对边分别平行的四边形叫作平行四边形。 这是定理概念。
平行四边形性质定理一:平行四边形的对边相等,平行四边形的对角相等。夹在两条平行线间的平行线段相等。
平行四边形性质定理二:平行四边形的对角线互相平分。
平行四边形的判定:判定定理一:一组对边平行且相等的四边形是平行四边形 。
判定定理二:两组对边分别相等的四边形是平行四边形。
形判定定理三:对角线互相平分的四边形是平行四边形。两组对角分别相等的四边形是平行四边形。
中心对称和中心对称图形 在平面内,一个图形上的每一个点对应到它在绕点O旋转180°的相,这个变换称为关于点O的中心对称。 在平面内,如果一个图形绕点旋转180°,得到的像与另一个图形重合,那么称这两个图形关于点O成中心对称,点O叫作对称中心。
性质:成中心对称的两个图形中提供,对应点的连线经过对称中心,且被对称中心平分。
如果一个图形绕点旋转180°,所得到的像与原来的图形互相重合,那么这个图形叫作中心对称图形,这个点叫作它的对称中心。由上可得:线段是中心对称图形,线段的中心是它的对称中心。平行四边形是中心对称图形,对角线的交点是它的对称中心。 线段也是中心对称图形。
三角形的中位线:连接三角形两边中点的线段叫作三角形的中位线。一个三角形有三条中位线。 中位线定理:三角形的每一条中位线都平行于第三边,并且等于第三边的一半。这个定理通常是用来计算或者填空和证明用。
矩形: 有一个角是直角的平行四边形叫作矩形,也称长方形。矩形的四个角都是直角,对边相等,对角线互相平分。矩形是中心对称图形,对角线的交点是它的对称中心。矩形的对角线相等。矩形还是轴对称图像,过每一组对边中点的直线都是矩形的对称轴(共有两条对称轴)。
矩形的判定:三个角是直角的四边形是矩形。 对角线相等的平行四边形是矩形。
菱形:定义:一组邻边相等的平行四边形叫作菱形。
性质:菱形的四条边都相等,对角相等,对角线互相平分。菱形是中心对称图形,对角线的交点是它的对称中心。菱形的对角线互相垂直。菱形是轴对称图形,两条对角线所在直线都是它的对称轴。知道菱形的边长,一般要标明四个边的长,知道对角线长时,一般是只标它的一半长度。 菱形的面积是两对角线长度乘积的一半。
判定:四条边都相等的四边形是菱形。 对角线互相垂直的平行四边形是菱形。
正方形:我们把有一组邻边相等且有一个角是直角的平行四边形叫作正方形。
性质:正方形的四条边都相等,四个角都是直角。正方行的对角线相等,且互相垂直平分。
正方形是中心对称图形,对角线的交点是它的对称中心。正方形也是轴对称图形(要注意它有4条对称轴)。正方形是轴对称图形,两条对角线所在直线,以及过每一组对边中点的直线都是它的对称轴。

第三章:平面直角坐标系
蔡博文供稿

为了用有序实数对表示平面内的一个点,可以在平面内画两条互相垂直的数轴,其中一条叫横轴〔abscissa axis,通常称为x轴〕,另一条叫纵轴〔ordinate axis,通常称为y轴〕,它们的交点O是这两条数轴的原点.通常,我们取横轴向右为正方向,纵轴向上为正方向,横轴与纵轴的单位长度通常取成一致〔有时也可以不一致〕,这样建立的两条数轴构成平面直角坐标系〔orthogonal coordinate system〕,记作Oxy,
在建立了平面直角坐标系后,平面上的点与有序实数对一一对应,
① 平面坐标轴分为四个象限,分别用I,II,III,IV表示或者一,二,三,四表示(通常还是用后面的这种方法来表示)。
② 并一,二,三,四象限的符号分别为(+. + ) ( -. + ) ( -. - ) ( +. - )
③ 平面直角坐标轴有横轴纵轴分别用X .Y表示。如点A(4,-3)表示到Y轴有4个单位长度,到X轴有3单位长度,且在第四象限的这么一个点。而点B(- 3 , 4 )表示到Y轴有3个单位长度,到X轴有4单位长度,且在第二象限的这么一个点。
④ 到X轴的距离是Y轴的绝对值 点A(4 ,- 3 )到Y轴有4个单位。
到Y轴的距离是X轴的绝对值 点B(- 3 ,4 )到X轴有4个单位。
⑤ 轴对称坐标表示,关于哪个轴对称哪个轴的符号不变。
⑥ 平移的坐标表示上下移加Y或减Y 左右移减-X或加X
本章知识结构:

平面上物体位置的确定

↓ ← ← ← ← ↓ → → → → ↓
↓ ↓ ↓
方位角与距离 平面直角坐标系 其他方法
点的坐标
↓ ↓ ↓
← ← ← ← ↓ → → → →
↓ ↓
简单图形的坐标表示 轴对称和平移的坐标表示

第四章 一次函数
谢 倩 供稿
【函数和它的表示法】 ﹛变量与函数﹜ 在讨论的问题中,取值会发生变化的量称为变量,取值固定不变的量称为常量(或常数)。
一般的,如果变量y随着变量x而变化,并且对于x取得每一个值,y都有唯一的一个值与它对应,那么称y是x的函数,记作y=f(x)。这时把x叫做自变量,把y叫做因变量。对于自变量x取得每一个值a,因变量y的对应值称为函数值,记作f(a)。
函数的传统定义:设有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,y=f(x),那么就称y是x的函数,x叫做自变量。注间,我们通常说 “纵坐标是横坐标的函数”。
﹛函数的表示法﹜ 建立平面直角坐标系,以自变量取得每一个值为横坐标,以相应的函数值(即因变量的对应值)为纵坐标,描出每一个点,由所有这些点组成的图形称为这个函数的图象。这种表示函数关系的方法称为图象法。
列一张表第一行表示自变量取的第一个值,第二行表示相应的函数值(即因变量Y的对应值),这种表示函数关系的方法称为列表法。
用式子表示函数关系的方法称为公式法,这样的式子称为函数的表达式。y=f(x)
如 : Y=8X Y=- 5X Y=3X+6 Y=7-2X
【一次函数】 关于自变量的一次式,像这样的函数称为一次函数,它的一般形式是: y=kx+b ( k, b为常数,k≠0). K值的正号决定了函数是上升——斜上 K值的负号决定了函数是下降——斜下
特别地,当b=0时,一次函数 y=kx ( k为常数且k≠0)也叫作正比例函数,其中k叫作比例系数。 正比例函数是经过原点且最简单的函数。
一次函数的特征是:因变量随自变量的变化是均匀的(即自变量每增加1个最小单位,因变量都增加(或都减少)相同的数量 。
【一次函数的图象】 类似的,数学上已经证明 :正比例函数y=kx ( k为常数,k≠0)的图象是一条直线,由于两点确定一条直线,因此画正比例函数的图象,只要描出图象上的两个点就行了,然后过这两点作一条直线即可,我们常常把这条直线叫作“直线y=kx”.
一般的,直线y=kx ( k为常数,k≠0) 是一条经过原点的直线,当k>0时,直线y=kx经过第三、一象限从左向右上升,y随x的增大而增大;当k<0时,直线y=kx经过第二、四象限从左向右下降,y随x的增大而减小。 多是填空题目和判断题。
类似的,可以证明,一次函数y=kx+b的图象是一条直线,它与正比例函数y=kx的图象平行,一次函数y=kx+b ( k, b为常数,k≠0)的图象可以看作由直线y=kx平移|b|个单位长度而得到( 当b>0时,向上平移;当b<0时,向下平移)。
【用待定系数法确定一次函数表达式】 像这样,通过先设定函数表达式(确定函数模型),再根据条件确定表达式中的未知系数,从而求出函数的表达式的方法称为待定系数法。
先设这个函数为 y=kx+b 然后代入二个点的坐标值,得两个方程,求出K与b,这时这个函数也就得出来了。

第五章 数据的频数分布
黄腾逸供稿
1 不同小组中的数据个数称频数
2 当组距和组数无法确定无固定标准,可依数据个数多少分成5~12组(当数据在100个以内时)
3 绘制频数直方图时应注意:横纵轴加上刻度,表明代表名称和单位;小矩形边界对应于各组的组界;
小长方形的面积: 组距*(频数/组距)=频数 请看 P157
4 绘制直方图时注意组距选取不能过宽或者过窄。
5 频数直方图本质上是一种条形统计图,注意体会它们的区别和联系

3. 新人教版八年级下册数学电子课本下载

我也找了好久才找到,不要忘记采纳奥!

4. 八年级下册数学课本答案(人教版)

思考练习??请问是不是综合运用那部分的习题?四边形那一章的吧?如果是请说明是第几题,我好帮你。

5. 北师大版八年级下册数学书的概念

如果我没记错的话 应该是

第16章 分式 (约13课时)

第17章 反比例函数 (约8课时 )

第18章 勾股定理 (约8课时 )

第19章 四边形 (约17课时)

第20章 数据的分析 (约15课时)

本册书的5章内容涉及《数学课程标准》中“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域的内容。其中对于“实践与综合应用”领域的内容,本册书在第19章和第20章分别安排了一个课题学习,并在每一章的最后安排了2~3个数学活动,通过这些课题学习和数学活动落实“实践与综合应用”的要求。这5章大体上采用相近内容相对集中的方式安排,前两章基本属于“数与代数”领域,随后的两章基本属于“空间与图形”领域,最后一章是“统计与概率”领域,这样安排有助于加强知识间的纵向联系。在各章具体内容的编写中,又特别注意加强各领域之间的横向联系。

一、内容分析

“第16章 分式”

本章主要研究分式及其基本性质,分式的加、减、乘、除运算,分式方程等内容。这些内容分为三节安排。

第16.1节类比着分数的概念给出了分式的概念,类比着分数的基本性质探讨了分式的基本性质,类比着分数的约分、通分介绍了分式的通分、约分等,这些内容为后面两节的学习打下理论基础。第16.2节讨论分式的四则运算法则,教科书从实际问题出发,首先研究了分式的乘除运算,类比着分数的乘除,探讨了分式的乘除运算法则;接下去,教科书也是从实际问题出发,采用与分数加减相类比的方法,研究了分式的加减运算,得出了运算法则,并学习分式的四则混合运算;最后,教科书结合分式的运算,研究了整数指数幂的问题,将正整数指数幂的运算性质推广到整数范围,并完善了科学记数法。本节内容是全章的重点,其中分式的混合运算也是全章的一个难点。第16.3节讨论分式方程的概念和解法,主要涉及可以化为一元一次方程的分式方程。教科书从实际问题出发,分析问题中的数量关系,列出分式方程,由此引出分式方程的概念,接下去研究分式方程的解法,教科书采用与学生已有经验相联系的方式,探讨了如何将分式方程转化为整式方程,从而得到分式方程的解的问题。解分式方程中要应用分式的基本性质,并且出现了必须验根的情况,这是以前学习的方程中没有遇到的问题,教科书结合具体例子,对分式方程为什么需要验根进行了解释。分式方程提供了一种解决实际问题的数学模型,它具有整式方程不可替代的特殊作用,根据实际问题列出分式方程,是本章教学中的另一个难点。

“第17章 反比例函数”

本章的主要内容包括反比例函数的概念、图象和性质,以及用反比例函数分析和解决实际问题等。本章是继八(上)“第11章 一次函数”后的又一章函数的内容。全章分为两节:第17.1节反比例函数,第17.2节实际问题与反比例函数,全章内容紧紧围绕着实际问题展开,实际问题是贯穿全章的一条主线。

第17.1节主要研究反比例函数的概念、图象和性质。本节中,教科书首先从几个学生熟悉的实际问题出发,分析实际问题中变量间的对应关系,列出反比例函数的解析式,从而引进反比例函数的概念,使学生对反比例函数的认识经历一个由感性到理性的过程;接下去,教科书利用描点法画出了函数和的图象,通过探究两个函数图象共同特征,给出了反比例函数的图象属于双曲线的事实,并进一步得到函数和的图象关于x轴和y轴对称的结论,接下去,教科书又让学生利用这个结论画出函数和的图象,并进一步通过分析画出的这四个函数的图象,得到反比例函数的性质。第17.2节的内容是利用反比例函数分析、解决实际问题。本节中,教科书以例题的方式,给出了四个实际问题,这四个问题基本上是按照数量关系由简单到复杂的顺序安排的(依次是圆柱的底面积与高,做工时间与做工速度,动力是动力臂,输出功率与电阻),它们从不同的方面体现了反比例函数是解决实际问题有效的数学模型。

“第18章 勾股定理”

本章主要研究勾股定理和勾股定理的逆定理,包括它们的发现、证明和应用。全章分为两节,第18.1节是勾股定理,第18.2节是勾股定理的逆定理。

在18.1节中,教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题1的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。通过推理证实命题1的正确性后,教科书顺势指出什么是定理,并明确命题1就是勾股定理。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题(画出长度是无理数的线段等)中的应用,使学生对勾股定理的作用有一定的认识。第18.2节是研究勾股定理的逆定理,教科书从古埃及人画直角的方法说起,给出如果一个三角形的三边满足,那么这个三角形是直角三角形的结论,然后让学生画出一些两边的平方和等于第三边的平方的三角形,探索这些三角形的形状,可以发现画出的三角形都是直角三角形,从而猜想如果三角形的三边满足这种关系,那么这个三角形是直角三角形,这样就探索得出了勾股定理的逆定理。此时这个逆定理是以命题2的方式给出的,教科书通过对照命题1和命题2的题设、结论,给出了原命题和逆命题的概念。命题2是否正确,需要证明,教科书利用全等三角形证明了命题2,得到勾股定理的逆定理。勾股定理的逆定理给出了判定一个三角形是直角三角形的方法,这在数学和实际中有广泛应用,教科书通过两个例题,让学生学会运用这种方法解决问题。

“第19章 四边形”

本章主要研究一些特殊四边形的概念、性质和判定方法。对于特殊的四边形,教科书按照对边之间的平行关系把它们分成两类:两组对边分别平行的四边形——平行四边形,一组对边平行、另一组对边不平行的四边形——梯形。对于平行四边形,除了研究一般的平行四边形外,还研究了矩形、菱形和正方形等几种特殊的平行四边形。

第19.1节主要研究一般平行四边形的概念、性质和判定。教科书从实际生活中的图形出发,抽象概括出平行四边形的概念,通过一系列的探究活动,得出平行四边形的性质和判定方法,并对所得结论进行适当的推理证明;作为判定方法的一个应用,教科书通过一个例题得出了三角形中位线定理。第19.2节主要研究矩形、菱形、正方形的概念、性质和判定,本节是在前一节的基础上,进一步研究这几种特殊的平行四边形。教科书首先研究了矩形和菱形,它们都是有一个特殊条件的平行四边形,矩形是有一个角是直角的平行四边形,菱形是有一组邻边相等的特殊的平行四边形。在此基础上,教科书研究了同时具有两个特殊条件的平行四边形,即正方形,它是有一个角是直角的特殊菱形,又是有一组邻边相等的特殊矩形。第19.3节研究梯形,梯形是与平行四边形并列的另一种特殊四边形,它有一组对边平行,另一组对边不平行,本节重点研究了一种特殊的梯形——等腰梯形,探究得出等腰梯形的性质和判定方法。教科书在最后一节,即第19.4节安排了一个课题学习:重心。通过寻找几何图形的重心的活动,了解规则的几何图形的重心就是它的几何中心,体会数学与物理学科之间的联系。

“第20章 数据的分析”

本章主要研究平均数(主要是加权平均数)、中位数、众数以及极差、方差等统计量的统计意义。全章分为三节。

第20.1节是研究代表数据集中趋势的统计量:平均数、中位数和众数。本节中,教科书首先给出一个实际问题,通过分析解决这个实际问题,引进加权平均数的概念。为了突出“权”的作用和意义,教科书通过两个例题,从不同方面体现“权”的作用。接下去,教科书对加权平均数进行扩展,包括如何将算数平均数与加权平均数统一起来,如何求区间分组的数据的加权平均数,如何利用计算器的统计功能求平均数,如何利用样本平均数估计总体平均数的问题等。对于中位数和众数,教科书通过几个具体实例,研究了它们的统计意义。在本节最后,教科书通过一个具体实例,研究了综合利用平均数、中位数和众数解决问题的例子,并对这三种统计量进行了概括总结,突出了它们各自的统计意义和各自的特征。第20.2节是研究刻画数据波动程度的统计量:极差和方差。教科书首先利用温差的例子研究了极差的统计意义。方差是统计中常用的一种刻画数据离散程度的统计量,教科书对方差进行了比较详细的研究。首先通过一个实际问题提出对两组数据的波动情况的研究,并画出散点图直观地反映数据的波动情况,在此基础上,教科书引进了利用方差刻画数据离散程度的方法,介绍了方差的公式,并从方差公式的结构上分析了方差是如何刻画数据的波动的。随后,又介绍了利用计算器的统计功能求方差的方法。本节最后,教科书利用所学知识解决本章前言中提出的问题,并研究了用样本方差估计总体方差的问题。教科书在最后一节安排了一个具有一定综合性和实践性的“课题学习”。这个“课题学习”选用了与学生生活联系密切的体质健康问题。由于本章是统计部分的最后一章,因此这个课题学习的综合性比前面两章统计中的课题学习更强。为了便于教学操作,教科书根据《中学生体质健康登记表》提供了一个样例。

6. 初二下学期数学课本人教版

初二下学期数学电子课本
http://www.pep.com.cn/czxjcjf/index.htm

义务教育课程标准实验教科书·数学八年级下册

扉 页 本册导引

目 录

第十六章 分式

16.1 分式…………………………………………………………………………………4
16.2 分式的运算…………………………………………………………………………13
阅读与思考 容器中的水能倒完吗……………………………………………………29
16.3 分式方程……………………………………………………………………………31
数学活动
小结
复习题16

第十七章 反比例函数
17.1 反比例函数…………………………………………………………………………46
信息技术应用 探索反比例函数的性质………………………………………………55
17.2 实际问题与反比例函数……………………………………………………………57
阅读与思考 生活中的反比例关系……………………………………………………63
数学活动
小结
复习题17

第十八章 勾股定理
18.1 勾股定理……………………………………………………………………………72

阅读与思考 勾股定理的证明…………………………………………………………80
18.2 勾股定理的逆定理…………………………………………………………………81
数学活动
小结
复习题18

第十九章 四边形
19.1 平行四边形…………………………………………………………………………92
阅读与思考 平行四边形法则…………………………………………………………102
19.2 特殊的平行四边形…………………………………………………………………103
实验与探索 巧拼正方形………………………………………………………………116
19.3 梯形…………………………………………………………………………………117
观察与猜想 平面直角坐标系中的特殊四边形………………………………………122
19.4 课题学习 重心……………………………………………………………………123
数学活动
小结
复习题19

第二十章 数据的分析
20.1 数据的代表…………………………………………………………………………136
20.2 数据的活动…………………………………………………………………………151

信息技术应用 用计算机求几种统计量………………………………………………157
阅读与思考 数据波动的几种度量……………………………………………………160
20.3 课题学习 体质健康测试中的数据分析…………………………………………162
数学活动
小结
复习题20

热点内容
二时限目数学科 发布:2025-06-10 09:27:21 浏览:265
老师离别诗 发布:2025-06-10 07:34:51 浏览:527
联合英语 发布:2025-06-10 07:20:10 浏览:991
英语联想记忆 发布:2025-06-10 07:05:54 浏览:987
人教版初中英语单词表 发布:2025-06-10 06:20:31 浏览:118
数学分析ppt 发布:2025-06-10 03:34:54 浏览:310
桌面图标箭头怎么去掉 发布:2025-06-10 00:00:29 浏览:717
音标怎么读 发布:2025-06-09 23:44:49 浏览:274
瓷儿木老师 发布:2025-06-09 22:27:45 浏览:728
网球教育 发布:2025-06-09 22:01:28 浏览:240