数学系课程
本科生主干课程
数学与应用数学专业
数学分析、高等代数、解析几何、常微分方程、复变函数、微分几何、抽象代数、实变函数、拓扑学、普通物理、概率统计、数学建模、离散数学、C语言、运筹与网络化及软件、数据库、常用统计方法及软件、计算方法及软件、微分流形、泛函分析、代数选讲、李代数及其表示、常微续论、复变函数选论、动力系统引论、数理方程、微分几何续论、生物数学、环境数学模型、数理经济学、金融数学、数学教育概论、数学教学测量与评估、数学教育心理学、数学哲学与数学史、现代数学系列讲座。
信息与计算科学专业
数学分析、高等代数、解析几何、常微分方程、复变函数、普通物理、概率统计、离散数学、C语言、数据库、常用统计方法及软件、面向对象的程序设计、数字信号处理、信息科学概论、图论、组合数学、组合优化、网络最优化、系统工程、时间序列分析、计算机控制、系统辨识、矩阵计算、偏微分方程有限差分法、有限元素法、实用电子学基础、Pascal语言、计算机图形学、近代编码学、傅氏变换与小波、系统学。
我们学校网站上的,不同学校会有不同的课程吧,但应该大同小异:)
2. 数学专业有哪些课程
你现在是高中生吧,那么我先推荐你看两本书
1.《数学分析》
这是数学系的基础课程回答,非常重要.有的学校叫做《微积分》或《高等数学》,相对《数学分析》来说比较简单.难的一般都叫做《数学分析》.
有很多版本了,随便挑一本看看就可以了.当然如果想学好的话,还是要看名校用的教材,如
《数学分析教程》-高等教育出版社(分上下册)
2.《线形代数》
这也是数学系的基础课程,非常重要.有的学校叫做《高等代数》也是相对《线性代数》来说比较简单,一般叫《线形代数>的比较难一些.
如
《线形代数》-李尚志 编著-高等教育出版社
此外,还有一些课程,有
《初等数论>,《解析几何》(这两门课程也可以看一看)
(以下不推荐提前看)
《实变函数》(很难),《复变函数》,《近世代数》(很难),《微分几何》,《常微分方程》, 《偏微分方程》,《拓扑学》,《概率论》,《数理统计》,《运筹学》,《数值分析》,《数值代数》等等众多课程
3. 大学数学专业有哪些数学课程
1、数学分析
数学分析又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。
它也是大学数学专业的一门基础课程。数学中的分析分支是专门研究实数与复数及其函数的数学分支。
2、高等代数
初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。
沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。发展到这个阶段,就叫做高等代数。
3、解析几何
解析几何指借助笛卡尔坐标系,由笛卡尔、费马等数学家创立并发展。它是利用解析式来研究几何对象之间的关系和性质的一门几何学分支,亦叫做坐标几何。
严格地讲,解析几何利用的并不是代数方法,而是借助解析式来研究几何图形。这里面的解析式,既可以是代数的,也可以是超越的——例如三角函数、对数等。通常默认代数式只由有限步的四则运算及开方构成,超越运算一般不属于代数学的研究范畴。
4、抽象代数
抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用「群」的概念彻底解决了用根式求解代数方程的可能性问题。
他是第一个提出「群」的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。
5、复变函数论
复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。复数起源于求代数方程的根。
4. 大学数学专业基础课程有哪些
专业基础课有数学分析、高等代数、解析几何、概率论与数理统计:这三者是老三门,将来如果考研时要用到的;近代数学的新三门是:拓扑学、实变函数与泛函分析、近世代数(也叫抽象代数);另外其他的一些常见的分支包括楼上所说的复变函数、常微分、运筹、最优化,数学模型。
5. 大学数学专业都有哪些课程
按专业以后的发展方向来分:
1、纯粹的数学专业主干课程:初等数论、概率论与数理统计、数学教学论、小学数学教材教法、数学分析选讲、复变函数、近世代数、高等代数选讲、数学教育学等 、数学与应用数学。
2、应用数学主要课程:分析学、代数学、几何学、概率论、物理学、数学模型、数学实验、计算机基础、数值方法、数学史等,以及根据应用方向选择的基本课程。
3、信息与计算科学专业主要课程:数学分析、高等代数、几何、概率统计、数学模型、离散数学、模糊数学、实变函数、复变函数、微分方程、物理学、信息处理、信息编码与信息安全、现代密码学教程、计算智能、计算机科学基础、数值计算方法、数据挖掘、最优化理论、运筹学、计算机组成原理、计算机网络、计算机图形学、c/c++语言、java语言、汇编语言、算法与数据结构、数据库应用技术、软件系统、操作系统等。
6. 数学专业有哪些专业课程
数学专业的专业课程有:
一、数学分析
又称高级微积分,分析学中最古老、最基本的分支。一般指以微积分学和无穷级数一般理论为主要内容,并包括它们的理论基础(实数、函数和极限的基本理论)的一个较为完整的数学学科。它也是大学数学专业的一门基础课程。
数学中的分析分支是专门研究实数与复数及其函数的数学分支。它的发展由微积分开始,并扩展到函数的连续性、可微分及可积分等各种特性。这些特性,有助我们应用在对物理世界的研究,研究及发现自然界的规律。
二、高等代数
初等代数从最简单的一元一次方程开始,初等代数一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。
发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数、多项式代数。
三、复变函数论
复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。 复数起源于求代数方程的根。
复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。
四、抽象代数
抽象代数(Abstract algebra)又称近世代数(Modern algebra),它产生于十九世纪。伽罗瓦〔1811-1832〕在1832年运用「群」的概念彻底解决了用根式求解代数方程的可能性问题。
他是第一个提出「群」的概念的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数。
五、近世代数
近世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的代数方程理论,主要研究某一代数方程(组)是否可解,如何求出代数方程所有的根〔包括近似根〕,以及代数方程的根有何性质等问题。
法国数学家伽罗瓦在1832年运用「群」的思想彻底解决了用根式求解多项式方程的可能性问题。他是第一个提出「群」的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解代数方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。
参考资料来源:
网络—数学分析
网络—高等代数
网络—复变函数论
网络—抽象代数
网络—近世代数
7. 数学系的有哪些课程
数学系专业必修课程,主要包括:高等代数,数学分析,常微分方程,复变函数,解析几学,拓扑回学,实变函数,概率,数理统计等,这些课程主答要是大一大二修,学校不同,开设的略有不同.
师范类还设中学数学教学法,教育学、心理学;选修的有组合数学,数学软件,小波分析,微分流形,偏微分方程,数学史等
8. 本科数学系的专业课程有哪些
数学系的课程都差不多,
数学分析,高等代数,解析几何,这三个是基础。
其次有复变,专实函,泛函,常微分,偏微分(也就是数学物理方程,这个有的学校不开,科大当然会开,每年科大数分的考研试题中都会多多少少涉及一些微分方程,可以看出科大比较重视这块)。
其次有抽象代数(这是代数学的入门课程,注意高等代数并不是代数的入门课)。
还有点集拓扑,离散数学(这门课很2,说白了就是山寨版的图论以及抽象代数和数理逻辑,这个不一定会开)
还有图论以及数理逻辑,数属值分析(也叫数值计算)等等。
科大的教材都是用的自己出的,比较难,好好学。
9. 请问数学专业有哪些专业课程
数学专业一般先学习:《数学分析》《解析几何》《高等代数》,然后就是《常微分方程》《概率论与数理统计》《实变函数论》《复变函数论》《微分几何》《偏微分方程》(又叫《数学物理方程》)《计算方法》《抽象代数》《泛函分析》《拓扑学》,数学专业的学生一般还要学《普通物理》《理论力学》,各校开的课程不完全一样,但大体如上。
10. 大学数学专业都有哪些课程要详细
专业基础类课程:
解析几何
数学分析I、II、III
高等代数I、II
常微分方专程
抽象代数
概率论基础
复变函数
近世属代数
专业核心课程:
实变函数
偏微分方程
概率论
拓扑学
泛函分析
微分几何
数理方程
专业选修课:
离散数学(大二上学期)
数值计算与实验(大二下学期)
分析学(1)
代数学(1)
伽罗瓦理论
复分析
代数数论
动力系统引论
基础数论
偏微分方程(续)
一般拓扑学
理论力学
数学建模
微分拓扑
调和分析
常微分方程几何理论
分析专题选讲
组合数学与图论
范畴论
紧黎曼曲面
黎曼几何初步
偏微近代理论
交换代数
代数拓扑
同调代数
流形与几何
小波与调和分析
李群李代数
分析学Ⅱ
代数学Ⅱ
代数K理论
代数几何
多复变基础
泛函分析(续)