當前位置:首頁 » 語數英語 » 數學中的階乘

數學中的階乘

發布時間: 2024-10-20 18:29:55

數學中"階乘"什麼意思

階乘(factorial)是基斯頓·卡曼(Christian Kramp, 1760 – 1826)於1808年發明的運算符號。

階乘,也是數學里版的一種術語。

階乘指從1乘以權2乘以3乘以4一直乘到所要求的數。

例如所要求的數是4,則階乘式是1×2×3×4,得到的積是24,24就是4的階乘。 例如所要求的數是6,則階乘式是1×2×3×……×6,得到的積是720,720就是6的階乘。例如所要求的數是n,則階乘式是1×2×3×……×n,設得到的積是x,x就是n的階乘。

在表達階乘時,就使用「!」來表示。如h階乘,就表示為h!

階乘一般很難計算,因為積都很大。

以下列出1至10的階乘。

1!=1,

2!=2,

3!=6,

4!=24,

5!=120,

6!=720,

7!=5040,

8!=40320

9!=362880

10!=3628800

另外,數學家定義,0!=1,所以0!=1!

⑵ 數學中!怎麼計算

數學中!是階乘的意思。n!=1×2×3×...×n。

階乘是基斯頓·卡曼(Christian Kramp,1760~1826)於 1808 年發明的運算符號,是數學術語。

一個正整數的階乘(factorial)是所有小於及等於該數的正整數的積,並且0的階乘為1。自然數n的階乘寫作n!。1808年,基斯頓·卡曼引進這個表示法。

亦即n!=1×2×3×...×n。階乘亦可以遞歸方式定義:0!=1,n!=(n-1)!×n。

(2)數學中的階乘擴展閱讀:

雙階乘用「m!!」表示。

當 m 是自然數時,表示不超過 m 且與 m 有相同奇偶性的所有正整數的乘積。如:

拓展階乘到純復數:

正實數階乘: n!=│n│!=n(n-1)(n-2)....(1+x).x!=(i^4m).│n│!

負實數階乘: (-n)!=cos(mπ)│n│!=(i^2m)..n(n-1)(n-2)....(1+x).x!

(ni)!=(i^m)│n│!=(i^m)..n(n-1)(n-2)....(1+x).x!

(-ni)!=(i^3m)│n│!=(i^3m)..n(n-1)(n-2)....(1+x).x!

熱點內容
末世化學家txt下載 發布:2025-10-20 05:02:05 瀏覽:397
教學常規學習心得 發布:2025-10-20 04:03:06 瀏覽:298
推拿手法教學 發布:2025-10-20 01:15:51 瀏覽:398
教師師德素養提升總結 發布:2025-10-19 23:57:12 瀏覽:68
舞獅鼓教學 發布:2025-10-19 16:17:31 瀏覽:669
杭州市教育局電話 發布:2025-10-19 09:21:50 瀏覽:285
中非歷史關系 發布:2025-10-19 06:47:41 瀏覽:5
師德雙八條 發布:2025-10-19 05:31:17 瀏覽:360
大學物理第十一章答案 發布:2025-10-19 04:36:23 瀏覽:750
如何讓網吧 發布:2025-10-19 01:49:35 瀏覽:735