數學及其歷史
如圖所示:
數學的發展史大致可以分為四個時期。第一時期是數學形成時期,第二時期是常量數學時期等。其研究成果有李氏恆定式、華氏定理、蘇氏錐面。
第一時期,數學形成時期,這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
第二時期,初等數學,即常量數學時期。這個時期最基本,最簡單的成果構成中學數學主要內容,這個時期從公元前5世紀開始,也許更早一些,直到17世紀,大約持續了兩千年。逐漸形成了初等數學的主要分支:算數,幾何,代數。
第三時期,變數數學時期。變數數學產生於17世紀,大體經歷了兩個決定性的重大步驟;第一步是解析幾何的產生;第二步是微積分,即高等數學中研究函數的微分,積分以及有關概念和應用的數學分支。它是數學的一個基礎學科。內容主要包括極限,微分學,積分學及其應用。
第四時期,現代數學。現代數學時期,大致從19世紀開始。數學發展的現代階段的開端,以其所有的基礎——代數,幾何,分析中的深刻變化為特徵。
(1)數學及其歷史擴展閱讀
推動數學發展的主要原因,是各種技術的實際需求以及人類對未知技術和學術方面的猜想來推動的。
在當時物質世界還沒現在這么豐富的時期,人們只知道計算自己得到的食物的數量,在往後,人們有了工廠,也許可以用函數來算其盈利的多少;或許人們有了領土意識,知道了要保衛或者侵略,變研究了武器,衍生出了更加高深的數學。
由此,我們可以知道。其實數學的發展是離不開生活的,是人們的思想進一步推進帶動了數學的進一步推進。
2. 中國古代數學的歷史
春秋前中國數學的萌芽
我們的先民在從野蠻走向文明的漫長歷程中,逐漸認識了數與形的概念。出土的新石器時期的陶器大多為圓形或其他規則形狀,陶器上有各種幾何圖案,通常還有三個著地點,都是幾何知識的萌芽。先秦典籍中有「隸首作數」、「結繩記事」、「刻木記事」的記載,說明人們從辨別事物的多寡中逐漸認識了數,並創造了記數的符號。殷商甲骨文(公元前14—前11世紀)中已有13個記數單字,最大的數是「三萬」,最小的是「一」。一、十、百、千、萬,各有專名。其中已經蘊含有十進位置值制萌芽。傳說伏羲創造了畫圓的「規」、畫方的「矩」,也傳說黃帝臣子倕[chui垂]是「規矩」和「准繩」的創始人。早在大禹治水時,禹便「左准繩」(左手拿著准繩),「右規矩」(右手拿著規矩)(《史記·禹本紀》)。因此,我們可以說,「規」、「矩」、「准」、「繩」是我們祖先最早使用的數學工具。人們丈量土地面積,測算山高谷深,計算產量多少,粟米交換,制定歷法,都需要數學知識。《周髀〔bi婢〕算經》載商高答周公問,提到用矩測望高深廣遠。相傳西周初年周公(公元前11世紀)制禮,數學成為貴族子弟教育中六門必修課程——六藝之一。不過當時學在官府,數學的發展是相當緩慢的。
春秋時期,隨著鐵器的出現,生產力的提高,中國開始了由奴隸制向封建制的過渡。新的生產關系促進了科學技術的發展與進步。此時王權衰微,疇人四散,私學開始出現。最晚在春秋末年人們已經掌握了完備的十進位置值制記數法,普遍使用了算籌這種先進的計算工具。人們已諳熟九九乘法表、整數四則運算,並使用了分數。
戰國至兩漢中國數學框架的確立
戰國時期,各諸侯國相繼完成了向封建制度的過渡。思想界、學術界諸子林立,百家爭鳴,異常活躍,為數學和科學技術的發展創造了良好的條件。盡管沒有一部先秦的數學著作留傳到後世,但是,人們通過田地及國土面積的測量,粟米的交換,收獲及戰利品的分配,城池的修建,水利工程的設計,賦稅的合理負擔,產量的計算,以及測高望遠等生產生活實踐,積累了大量的數學知識。據東漢初鄭眾記載,當時的數學知識分成了方田、粟米、差分、少廣、商功、均輸、方程、贏不足、旁要九個部分,稱為「九數」。九數確立了《九章算術》的基本框架。
秦始皇結束了列國紛爭,首次建立了中央集權的封建帝國,本應有利於數學的發展。但他的專制政策窒息了百家爭鳴的學術空氣。秦朝的殘暴統治,尤其是焚書坑儒,給中國文化事業造成空前的浩劫。不久,劉邦利用推翻暴秦的農民起義,統一了中國,建立了漢朝,史稱西漢。西漢政府與民生息,社會生產力得到恢復、發展,給數學和科學技術的發展帶來新的活力,人們提出了若干算術難題,並創造了解勾股形、重差等新的數學方法。同時,人們注重先秦文化典籍的收集、整理。作為數學新發展及先秦典籍的搶救工作的結晶,便是《九章算術》的成書。《九章算術》(省稱《九章》)是中國最重要的數學經典,它之於中國和東方數學,大體相當於《幾何原本》之於希臘和歐洲數學。在世界古代數學史上,《九章》與《原本》像兩顆璀燦的明珠,東西輝映。
《九章》之前還有一部《周髀算經》,它本是一部以數學方法闡述蓋天說的天文著作,一般認為於公元前1世紀成書。卷上記載了商高答周公問,陳子答榮方問。前者有勾股定理的特例32+42=52,後者有用勾股定理及比例演算法測太陽高遠及直徑的內容。近年湖北省張家山出土的竹簡《算數書》正在整理,其少廣一問與《九章》少廣章第1問基本相同,兩者的關系有待於研究。
《九章》集先秦到西漢數學知識之大成。據東漢末大學者鄭玄(公元127—200年)引東漢初鄭眾(?—公元83年)說,西漢在先秦九數基礎上又發展出勾股、重差兩類數學方法。魏劉徽說:《九章》是由九數發展而來的,由於秦朝焚書而散壞。西漢張蒼(?—公元前152年)、耿壽昌(公元前1世紀)收集秦火遺殘,加以整理刪補,便成為《九章算術》。方田章提出了完整的分數運演算法則,各種多邊形、圓、弓形等的面積公式;粟米章提出了比例演算法;衰[cui崔]分①章提出了比例分配法則;少廣章給出了完整的開平方、開立方程序;商功章討論各種立體體積公式及工程分配方法;均輸章解決賦役中的合理負擔,也是比例分配問題,還有若干結合西漢社會實際的算術雜題;盈不足章解決盈虧問題及可以用盈不足術解決的一般算術問題;方程章是線性方程組解法,並給出了正負數加減法則;勾股章由旁要發展而成,提出了勾股定理、解勾股形及若干測望問題的方法。全書以計算為中心,有90餘條抽象性演算法、公式,246道例題及其解法,基本上採取演算法統率應用問題的形式。它的許多成就居世界領先地位,奠定了此後中國數學居世界前列千餘年的基礎。《九章》分類不甚合理,沒有任何定義和推導,少數公式不準確,個別公式有錯誤,則是不容諱言的缺點。《九章》的框架、形式、風格和特點深刻影響了中國和東方的數學。
《九章算術》成書後,注家蜂起。《漢書·藝文志》所載《許商算術》、《杜忠算術》(公元前1世紀)估計為研究《九章》的作品。東漢馬續、張衡、劉洪、鄭玄、徐岳、王粲等通曉《九章算術》,或為之作注。這些著作都未傳世,從後來劉徽(今山東鄒平人,生卒不詳)《九章算術注》所反映的信息看,這些研究基本上停留在歸納驗證《九章算術》的正確性方面,理論上未能在《九章》基礎上作出長足進步。
魏晉至唐初中國數學理論體系的建立
《九章算術》之後,中國的數學著述基本上採取兩種方式:一是為《九章算術》作注;二是以《九章算術》為楷模編纂新的著作。經過兩漢社會經濟和科學技術的大發展,到魏晉,中國封建社會進入一個新的階段,庄園農奴制和門閥士族占據了經濟政治舞台的中心。思想文化領域中,儒家的統治地位被削弱,讖緯迷信和繁瑣的經學退出歷史舞台,代之以談三玄——《周易》、《老子》、《莊子》為主的辯難之風。學者們通過析理,探討思維規律,思想界出現了戰國的百家爭鳴以來所未有過的生動局面。與此相適應,數學家重視理論研究,力圖把自先秦到兩漢積累起來的數學知識建立在必然的可靠的基礎之上。劉徽和他的《九章算術注》便是這個時代造就的最偉大的數學家和最傑出的數學著作。
大約與劉徽同時或稍前,有趙爽(又名嬰,字君卿,生卒不詳,估計是三國吳人)的《周髀算經注》,其可觀者為「勾股圓方圖」,用600餘字概括了兩漢以來勾股算術的成果。
劉徽《九章算術注》作於魏景元四年(公元263年),原十卷。前九卷全面論證了《九章》的公式、解法,發展了出入相補原理、截面積原理、齊同原理和率的概念,在圓面積公式和錐體體積公式的證明中引入了無窮小分割和極限思想,首創了求圓周率的正確方法,指出並糾正了《九章》的某些不精確的或錯誤的公式,探索出解決球體積的正確途徑,創造了解線性方程組的互乘相消法與方程新術,用十進分數逼近無理根的近似值等,使用了大量類比、歸納推理及演繹推理,並且以後者為主。第十卷原名重差,為劉徽自撰自注,發展完善了重差理論,此卷後來單行,因第一問為測望一海島的高遠,名之曰《海島算經》。他還著有《九章重差圖》一卷,已佚。劉徽生活在辯難之風興起而尚未流入清談的魏晉之交,受思想界「析理」的影響,對《九章算術》「析理以辭,解體用圖」(《九章算術注·序》),並對各種演算法進行總結分析,認為數學像一株枝條雖分而同本乾的大樹,發自一端,形成了一個完整的理論體系。劉徽博覽群書,諳熟諸子百家,他不迷信古人,敢於創新,實事求是。對他未能解決的牟合方蓋,坦誠直書,表示「以俟能言者」(《九章算術·少廣章注》),表現了一位偉大學者寄希望於後學的坦盪胸懷。
《孫子算經》三卷,常被誤認為春秋軍事家孫武所著,實際上是公元400年前後的作品,作者不詳。這是一部數學入門讀物,給出了籌算記數制度及乘除法則等預備知識,其河上盪杯、雞兔同籠等問題後來在民間廣泛流傳,「物不知數」題則開一次同餘式解法之先河。張丘建(今山東人,生平不詳)著的《張丘建算經》三卷,成書於北魏(5世紀下半葉)。此書補充了等差級數的若干公式,其百雞問題是著名的不定方程問題,後世十分重視。
《綴術》包含了祖沖之(公元429—500年)和兒子祖暅〔geng 更〕之(一作祖暅,生平不詳)的數學貢獻。由於其內容深奧,隋唐算學館學官(相當於今天大學數學系教授)讀不懂,遂失傳。據認為,將圓周率精確到八位有效數字、球體積的解決及含有負系數的二次、三次方程皆是其中的內容。祖沖之,字文遠,祖籍范陽逎(今河北省淶源縣)人。劉宋大明六年(公元462年)造大明歷,使用歲差,改革閏制。他的改革遭到守舊派官僚戴法興的反對,祖沖之不畏權勢,據理駁斥,堅持了反對讖緯迷信,不虛推古人,實事求是的科學精神。他對機械深有研究,製造過水碓、水磨、指南車、千里船、漏壺等,並著《安邊論》、《述異記》等。祖暅之,字景爍。從小愛好數學,巧思入神,極其精微。專心致志之時,雷霆不能入。有一次走路時思考問題,僕射徐勉迎面而來竟然沒有發現,頭撞到徐勉身上,徐勉喚他,他才知道撞了人。其父的《大明歷》經他的努力在梁朝頒行。
北周甄鸞(今河北無極人,生卒不詳)有三部數學著作傳世,即《五曹算經》、《五經算術》、《數術記遺》。前二部內容淺近,無足道者。《數術記遺》一卷,傳本題(東)漢徐岳撰、北周甄鸞注,近人多以為系甄鸞自撰自注,假託徐岳。書中記載了三種大數進位制及14種演算法,其中珠算雖不同於元明的珠算盤,然開後者之先河,似無可疑。
隋唐是中國封建社會經濟政治文化的鼎盛時期,然而數學上除天文歷法研究中劉焯(公元544—610年)創造等間距內插公式(7世紀初)和僧一行(公元683—727年)創造不等間距內插公式(8世紀)外,幾無創造,數學成就及理論水平遠遠低於魏晉南北朝。唐初王孝通(生卒不詳)撰《緝古算經》一卷,解決了若干復雜的土方工程及勾股問題,且都用三次或四次方程解決,是為現存記載三次、四次方程的最早著作。然而,《緝古算經》未必是高於《綴術》的著作。王孝通是歷算博士,曾任太史丞,在天文歷法方面是保守的。他在《上〈緝古算經〉表》中指責《綴術》全錯不通,於理未盡,大約他與當時別的數學家一樣讀不懂《綴術》。他自詡他的《緝古算經》千金不能排其一字,他一旦瞑目,其方法後人莫曉。科學家不必作謙謙君子,但如此狂妄,也是不足取的。
隋唐統治者在國子監設算學館,置算學博士、助教指導學生學習。唐李淳風等奉敕於顯慶元年(公元656年)為《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《夏侯陽算經》、《綴術》、《張丘建算經》、《五曹算經》、《五經算術》、《緝古算經》等十部算經作注,作為算學館教材,這就是著名的《算經十書》,該書是中國古代數學奠基時期的總結。李淳風等注釋保存了許多寶貴資料,但注釋水平並不高。由於種種原因,算學館實際未培養出像樣的數學家。
唐中葉至宋元中國數學的高潮
經過盛唐的大發展,唐中葉之後,生產關系和社會各方面逐漸產生新的實質性變革,到10世紀下半葉,趙匡胤建立宋朝,統一中國,中國封建社會進入了另一個新的階段,土地所有制以國有為主變為私有為主,租佃農民取代了魏唐的具有農奴身份的部曲、徒附。農業、手工業、商業和科學技術得到更大發展。中國古代四大發明,有三項——印刷術之廣泛應用及活字印刷,火葯用於戰爭,指南針用於航海——完成於唐中葉至北宋。宋秘書省於元豐七年(公元1084年)首次刊刻了《九章算術》等十部算經(時《夏侯陽算經》、《綴術》已失傳,因8世紀下半葉一部韓延《算術》開頭有「夏侯陽曰」雲雲而誤認為是前者而刻入,後者只好付之闕如),是世界上首次出現的印刷本數學著作。後來南宋數學家鮑澣之翻刻了這些刻本,有《九章算術》(半部)、《周髀算經》、《孫子算經》、《五曹算經》、《張丘建算經》五種及《數術記遺》等孤本流傳到現在,是目前世界上傳世最早的印刷本數學著作。宋元數學家賈憲、李冶、楊輝、朱世傑的著作,大都在成書後不久即刊刻。數學著作藉助印刷術得以空前廣泛的流傳,對傳播普及數學知識,其意義尤為深遠。
宋元數學高潮早在唐中葉已見端倪。隨著商業貿易的蓬勃發展,人們改進籌算乘除法,新、舊《唐書》記載了大量這類書籍,可惜絕大多數失傳,只有韓延(生平不詳)《算術》(8世紀)以《夏侯陽算經》的名義流傳下來,該書提出了若干化乘除為加減的捷演算法,並在運算中使用了十進小數,極可寶貴。
11世紀上半葉賈憲(生平不詳)撰《黃帝九章算經細草》,是為北宋最重要的數學著作。賈憲曾任左班殿直(低級武官),是當時著名天文學家、數學家楚衍的學生。還著有《演算法𢽾古集》二卷,已佚。他將《九章算術》未離開題設具體對象甚至數值的術文大都抽象成一般性術文,提高了《九章算術》的理論水平;他對某些類型的數學問題進行概括,比如提出開方作法本源即賈憲三角,作為他提出的立成釋鎖(即開方)法的算表,這是開方問題的綱;他提出了若干新的重要方法,其中最突出的是創造增乘開方法,並提出了開四次方的程序。賈憲的思想與方法對宋元數學影響極大,是宋元數學的主要推動者之一。《黃帝九章算經細草》因被楊輝《詳解九章演算法》抄錄而大部分保存了下來(闕卷一、二及卷三上半部,卷五的一部分)。
大科學家沈括(公元1031—1095年)對數學有獨到的貢獻。在《夢溪筆談》中首創隙積術,開高階等差級數求和問題之先河,又提出會圓術,首次提出求弓形弧長的近似公式。
12世紀北宋劉益(生平不詳)撰《議古根源》,亦失傳。楊輝《田畝比類乘除捷法》引用了它的若干題目與方法。《綴術》失傳之後,開方式的系數仍皆為正數,劉益突破了這個限制,首先引入負系數方程,並創造了益積開方術與減從開方術求其正根,楊輝譽之為「實冠前古」。
1127年金朝入主中原,趙宋南遷,史稱南宋。1234年,蒙古貴族滅金,後來建立元朝。1279年元滅南宋,佔領中國。13世紀中葉至14世紀初,是宋元數學高潮的集中體現,也是中國歷史上留下重要數學著作最多的半個世紀,並形成了南宋統治下的長江中下游與金元統治下的太行山兩側兩個數學中心。
南方中心以秦九韶、楊輝為代表,以高次方程數值解法、同餘式解法及改進乘除捷演算法的研究為主。北方中心則以李冶為代表,以列高次方程的天元術及其解法為主。元統一中國後的朱世傑,則集南北兩個數學中心之大成,達到了中國籌算的最高水平。
1247年秦九韶撰成《數書九章》18卷。秦九韶,字道古,自稱魯郡(今山東省)人,約1202年生於普州安岳縣(今四川省)。他生活在宋元激烈斗爭的南宋末年,並捲入了南宋統治集團戰和兩派的斗爭,支持抗戰派吳潛,屢遭劉克庄等人彈劾。賈似道專權後被貶到梅州(今廣東省),不久(約公元1261年)死於任所,並在死後被追隨賈似道的周密丑詆不堪。他天資聰明好學,對數學、天文、土木建築、詩詞、音律、弓馬等都十分精通。他多次呼籲統治者施仁政,並把數學知識看成開源節流、施仁政、利國利民的有力工具。《數書九章》分大衍、天時、田域、測望、賦役、錢谷、營建、軍旅、市易九類81題,其成就之大,題設之復雜都超過以往算經,有的問題有88個條件,有的答案多達180條,軍事問題之多也是空前的,反映了秦氏對抗元戰爭的關注。大衍總數術系統解決了一次同餘式組解法;正負開方術把以增乘開方法為主導的求高次方程正根的方法發展到十分完備的程度,有的方程高達十次;線性方程組解法完全以互乘相消法取代直除法;提出了與海倫公式等價的三斜求積公式;使用了完整的十進小數表示法,等等,都是其傑出成就。
楊輝共撰五部數學著作,傳世的有四部,居元以前數學家之冠。楊輝,字謙光,錢塘(今杭州市)人,生平不詳,只知在今江浙一帶管錢糧,為政清廉。與其他大家比較,他的著作偏重於教育與普及。1261年,楊輝在劉徽注、李淳風等注釋、賈憲細草的《九章算術》基礎上作解題、比類,並補充了圖、乘除、纂類三卷,是為《詳解九章演算法》,今圖、乘除、方田、粟米、衰分上半部、商功之一部分已佚。商功章的比類中的垛積術發展了沈括的隙積術;「纂類」則打破了《九章算術》的分類格局,按方法分成乘除、互換、合率、分率、衰分、疊積、盈不足、方程、勾股九類。1262年又撰《日用演算法》,著重於改進乘除捷演算法,只有少量題目保存下來。1274年撰《乘除通變本末》三卷。卷上的「習算綱目」是一個從啟蒙到《九章》主要方法的數學教學計劃。本書還總結了九歸等乘除捷演算法及其口訣。次年編纂《田畝比類乘除捷法》二卷,引用了劉益的方法與題目,批評了《五曹算經》四不等田求法的錯誤。同年,編纂《續古摘奇演算法》二卷,對縱橫圖即幻方研究頗有貢獻。後三部書又常合稱為《楊輝演算法》。
十二、十三世紀,北方出現了許多天元術著作,大都失傳,流傳至今的最早的以天元術為主要方法的著作是李冶的《測圓海鏡》12卷(公元1248年)、《益古演段》三卷(公元1259年)。李冶(公元1192—1279年),字仁卿,號敬齋,真定欒城(今河北省)人,生於大興(今北京市)。其父為官清廉正直,李冶自幼受到良好的教養,且愛好數學,青年時便成為名重中原的學者,金詞賦科進士。入元,遂隱居於忻、崞〔guo郭〕(今山西省北部)一帶,在極為艱苦的條件下研究數學及各種學問,常粥𫘸〔zhan氈〕不繼,而聚書環堵。1251年起,主持封龍書院(今河北省)。1257、1260年兩次受到元主忽必烈召見,發表了立法度,正綱紀,進君子,退小人,減刑罰,止征戰,反對種族偏見的政治主張。他被聘為翰林學士。然而他羞於作唯天子、宰相之命是聽的御用文人,不久便以老病為辭回到封龍山。他一生文史著述頗多,僅存《敬齋古今黈》。《測圓海鏡》在洞淵九容基礎上考慮了勾股形與圓的10種基本關系,在卷二一十二中就15個勾股形與圓的關系提出了170個求圓徑長的問題,答案當然都相同。這些問題大都要用天元術列出方程。卷一是全書的理論基礎,包括圓城圖式、識別雜記等部分。圓城圖式以天、地、乾、坤等漢字表示點,是個創舉。識別雜記提出692條公式,除八條外都是正確的,集歷代勾股形與圓的關系研究之大成。《益古演段》64問,這是一部用天元術闡釋蔣周(可能是北宋人)《益古集》的方程列法的著作。其中保存了《益古集》的若干題目和舊術(方法)。
朱世傑有兩部重要著作《算學啟蒙》(公元1299年)、《四元玉鑒》(公元1303年)傳世。朱世傑,字漢卿,號松庭,燕山(今北京市)人,生平不詳。他在13世紀末以數學名家周遊全國20餘年,向他學習數學的人很多。《算學啟蒙》20門,259問,包括了從乘除及其捷演算法到增乘開方法、天元術等當時數學各方面的內容,形成了一個較完整的體系。《四元玉鑒》24門,288問,卷首給出古法七乘方圖(改進了的賈憲三角)等四種五幅圖,以及天元術、二元術、三元術、四元術的解法範例。創造四元消法,解決了多元高次方程組問題,以及高階等差級數求和問題,高次招差法問題,是本書最大的貢獻。此書是中國古代水平最高的數學著作。
楊輝、朱世傑等人對籌算乘除捷演算法的改進、總結,導致了珠算盤與珠算術的產生(大約在元中葉),完成了我國計算工具和計算技術的改革。元中後期,又出現了《丁巨演算法》、賈亨《演算法全能集》、何平子《詳明演算法》等改進乘除捷演算法的著作。
明清數學——從衰落到艱難的復興
元中葉之後,中國數學急劇衰落,元末的幾部著作只是對乘除捷演算法有所改進。明永樂年間(公元1403—1425年)修《永樂大典》,將前此的中國數學著作按起源、各種數學方法及音義、纂類等分類抄錄。漢唐宋元數學著作在明代大都散佚,清中葉修《四庫全書》,中國古算書多賴此重新面世。
明代八股取士,思想禁錮嚴重,學者們很少留心數學。顧應祥、唐順之是明代數學大家,全然不懂天元術和增乘開方法。景泰元年(公元1450年)吳敬撰《九章演算法比類大全》十卷,收集歷代應用題,亦拋棄了增乘開方法和天元術。元明之後,隨著籌算捷演算法的完備,珠算術產生並得到普及,明朝出現了一批有關珠算的著作。其最著者為程大位的《演算法統宗》(公元1592年),凡17卷,595問。此書適應商業發展的需要,以珠算為主要計算工具,並載有珠算開方法。此書在以後二、三百年問被多次翻刻、改編,流傳之廣是罕見的。程大位,字汝思,號渠賓,休寧(今黃山市屯溪區)人,曾在長江中下游地區經商,注意收集算經和數學問題,晚年撰成此書。
16世紀末,利瑪竇等歐洲傳教士來華,與徐光啟等一起翻譯《幾何原本》等著作。後來,傳教士們又引入了三角學、對數等西方初等數學,從此,中國數學開始了中西會通的階段。清朝260餘年,留下數學著作極多,都在不同程度上融會中西數學。
清宣城梅文鼎(公元1633—1721年)潛心於中西數學研究,著述甚多,其孫梅瑴成將他的著作編輯成《梅氏叢書輯要》60卷,其中數學著作13種40卷,內容遍及當時中國數學的各個門類,對清朝數學影響極大。
康熙皇帝愛好數學,他御定由梅瑴成、何國宗、明安圖、陳厚耀等編纂的《數理精蘊》53卷,全面系統地介紹了當時傳入的西方數學知識。上編立綱明體,為數理本源、幾何原本、算術原本等五卷;下編分條致用,為實用數學和借根方比例,以及對數、三角函數等40卷,表4種8卷,同樣對清朝數學產生了巨大影響。此書於雍正元年(公元1723年)印行。
1723年,雍正帝即位,認為傳教士不利於自己的統治,除少數供職於欽天監者外,將傳教士悉數趕到澳門。此後,西學的傳入遂告一段落,中國數學家一方面消化前此傳入的數學知識,一方面忙於整理中國古典數學著作。
1773年乾隆帝決定修《四庫全書》,戴震(公元1724—1777年)從《永樂大典》中輯出《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《五曹算經》、《五經算術》以及贗本《夏侯陽算經》等七部漢唐算經,並加校勘,《數書九章》、《測圓海鏡》、《四元玉鑒》等久佚的宋元算書也陸續輯出或發現,從此掀起了乾嘉時期(公元1736—1820年)研究整理中國古典數學的熱潮。古書注釋以李潢(?—公元1812年)《九章算術細草圖說》、羅士琳(公元1789—1853年)《四元玉鑒細草》影響較大。而開創性的研究則以焦循(公元1763—1820年)《里堂學算記》、汪萊(公元1768—1813年)《衡齋算學》、李銳(公元1768—1817年)《李氏算學遺書》最為有名。
18世紀初,法人杜德美(公元1668—1720年)傳入牛頓、格雷果里創造的三個三角函數的級數展開式。後來,三角函數和對數函數展開式的研究成為中國數學家的重要課題。明安圖(17世紀末至18世紀60年代)、董祐誠(公元1791—1823年)、項名達(公元1789—1850年)、戴煦(公元1805—1860年)等都作出了傑出貢獻。李善蘭(公元1811—1882年)的《方圓闡幽》、《弧矢啟秘》、《對數探源》(公元1845年)在三角函數與對數函數的研究上取得了更大的成就。他創造的尖錐術提出了幾個相當於定積分的公式,在接觸西方微積分思想之前獨立地接近了微積分學。李善蘭,字壬叔,號秋紉,浙江海寧人。幼年即嗜好數學,30餘歲即獲創造性成果。
1840年,列強用大炮轟開了清朝閉關自守的大門,中國逐漸淪為半封建半殖民地社會。西方數學以前所未有的規模大量傳入。1852年李善蘭到上海,與英國傳教士偉烈亞力(公元1815—1887年)合譯《幾何原本》後九卷、《代數學》13卷、《代微積拾級》18卷等許多西方數學著作,後者是中國第一部微積分學譯著。後來,華衡芳(公元1833—1902年)與英人傅蘭雅合譯了《代數術》、《微積溯源》、《三角數理》、《決疑數學》等書,後者是中國第一部概率論譯著。他們創造的許多術語至今還在使用。李善蘭還融會中西,著述頗豐。《橢圓正術解》等四種是關於圓錐曲線的研究,《級數回求》等是關於冪級數的研究,而《垛積比類》則在朱世傑基礎上系統解決了高階等差級數求和問題,並提出了著名的李善蘭恆等式。1872年撰《考數根法》,證明了費爾馬小定理,提出了素數判定法則。他的著作匯集為《則古昔齋算學》,包括14種科學著作。李善蘭是開展現代數學研究的第一位中國數學家。然而,總的說來,時處清末,經濟衰落,社會動盪,有志於現代數學的人沒有與現代工程技術結合的條件,不可能有大量可觀的成果,而士大夫階層更多的人抱有西學為我中華所固有的偏見,不求甚解。此後不久,尤其是維新變法和新文化運動之後,中國古代數學傳統基本中斷,中國數學研究納入了統一的現代數學。20世紀是中國數學復興的世紀,人們期待,在下個世紀中國將重新取得數學大國的地位。

3. 中國數學歷史
一、中國數學的起源與早期發展
據《易·系辭》記載:「上古結繩而治,後世聖人易之以書契」。在殷墟出土的甲骨文卜辭中有很多記數的文字。從一到十,及百、千、萬是專用的記數文字,共有13個獨立符號,記數用合文書寫,其中有十進制制的記數法,出現最大的數字為三萬。
算籌是中國古代的計算工具,而這種計算方法稱為籌算。算籌的產生年代已不可考,但可以肯定的是籌算在春秋時代已很普遍。
用算籌記數,有縱、橫兩種方式:
表示一個多位數字時,採用十進位值制,各位值的數目從左到右排列,縱橫相間〔法則是:一縱十橫,百立千僵,千、十相望,萬、百相當〕,並以空位表示零。算籌為加、減、乘、除等運算建立起良好的條件。
籌算直到十五世紀元朝末年才逐漸為珠算所取代,中國古代數學就是在籌算的基礎上取得其輝煌成就的。
在幾何學方面《史記·夏本記》中說夏禹治水時已使用了規、矩、准、繩等作圖和測量工具,並早已發現「勾三股四弦五」這個勾股定理〔西方稱勾股定理〕的特例。戰國時期,齊國人著的《考工記》匯總了當時手工業技術的規范,包含了一些測量的內容,並涉及到一些幾何知識,例如角的概念。
戰國時期的百家爭鳴也促進了數學的發展,一些學派還總結和概括出與數學有關的許多抽象概念。著名的有《墨經》中關於某些幾何名詞的定義和命題,例如:「圓,一中同長也」、「平,同高也」等等。墨家還給出有窮和無窮的定義。《莊子》記載了惠施等人的名家學說和桓團、公孫龍等辯者提出的論題,強調抽象的數學思想,例如「至大無外謂之大一,至小無內謂之小一」、「一尺之棰,日取其半,萬世不竭」等。這些許多幾何概念的定義、極限思想和其它數學命題是相當可貴的數學思想,但這種重視抽象性和邏輯嚴密性的新思想未能得到很好的繼承和發展。
此外,講述陰陽八卦,預言吉凶的《易經》已有了組合數學的萌芽,並反映出二進制的思想。
二、中國數學體系的形成與奠基
這一時期包括從秦漢、魏晉、南北朝,共400年間的數學發展歷史。秦漢是中國古代數學體系的形成時期,為使不斷豐富的數學知識系統化、理論化,數學方面的專書陸續出現。
現傳中國歷史最早的數學專著是1984年在湖北江陵張家山出土的成書於西漢初的漢簡《算數書》,與其同時出土的一本漢簡歷譜所記乃呂後二年(公元前186年),所以該書的成書年代至晚是公元前186年(應該在此前)。
西漢末年〔公元前一世紀〕編纂的《周髀算經》,盡管是談論蓋天說宇宙論的天文學著作,但包含許多數學內容,在數學方面主要有兩項成就:(1)提出勾股定理的特例及普遍形式;(2)測太陽高、遠的陳子測日法,為後來重差術(勾股測量法)的先驅。此外,還有較復雜的開方問題和分數運算等。
《九章算術》是一部經幾代人整理、刪補和修訂而成的古代數學經典著作,約成書於東漢初年〔公元前一世紀〕。全書採用問題集的形式編寫,共收集了246個問題及其解法,分屬於方田、粟米、衰分、少廣、商功、均輸、盈不足、方程和勾股九章。主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《方程》章中所引入的負數概念及正負數加減法法則,在世界數學史上都是最早的記載;書中關於線性方程組的解法和現在中學講授的方法基本相同。就《九章算術》的特點來說,它注重應用,注重理論聯系實際,形成了以籌算為中心的數學體系,對中國古算影響深遠。它的一些成就如十進制值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過這些國家傳到歐洲,促進了世界數學的發展。
魏晉時期中國數學在理論上有了較大的發展。其中趙爽(生卒年代不詳)和劉徽(生卒年代不詳)的工作被認為是中國古代數學理論體系的開端。三國吳人趙爽是中國古代對數學定理和公式進行證明的最早的數學家之一,對《周髀算經》做了詳盡的注釋,在《勾股圓方圖注》中用幾何方法嚴格證明了勾股定理,他的方法已體現了割補原理的思想。趙爽還提出了用幾何方法求解二次方程的新方法。263年,三國魏人劉徽注釋《九章算術》,在《九章算術注》中不僅對原書的方法、公式和定理進行一般的解釋和推導,系統地闡述了中國傳統數學的理論體系與數學原理,而且在其論述中多有創造,在卷1《方田》中創立割圓術(即用圓內接正多邊形面積無限逼近圓面積的辦法),為圓周率的研究工作奠定理論基礎和提供了科學的演算法,他運用「割圓術」得出圓周率的近似值為3927/1250(即3.1416);在《商功》章中,為解決球體積公式的問題而構造了「牟合方蓋」的幾何模型,為祖暅獲得正確結果開辟了道路;為建立多面體體積理論,運用極限方法成功地證明了陽馬術;他還撰著《海島算經》,發揚了古代勾股測量術----重差術。
南北朝時期的社會長期處於戰爭和分裂狀態,但數學的發展依然蓬勃。出現了《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作。約於公元四-五世紀成書的《孫子算經》給出「物不知數」問題並作了解答,導致求解一次同餘組問題在中國的濫暢;《張丘建算經》的「百雞問題」引出三個未知數的不定方程組問題。
公元五世紀,祖沖之、祖暅父子的工作在這一時期最具代表性,他們在《九章算術》劉徽注的基礎上,將傳統數學大大向前推進了一步,成為重視數學思維和數學推理的典範。他們同時在天文學上也有突出的貢獻。其著作《綴術》已失傳,根據史料記載,他們在數學上主要有三項成就:(1)計算圓周率精確到小數點後第六位,得到3.1415926 <π< 3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值,歐洲直到十六世紀德國人鄂圖(valentinus otto)和荷蘭人安托尼茲(a.anthonisz)才得出同樣結果;(2)祖暅在劉徽工作的基礎上推導出球體體積的正確公式,並提出"冪勢既同則積不容異"的體積原理,即二立體等高處截面積均相等則二體體積相等的定理。歐洲十七世紀義大利數學家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)發展了二次與三次方程的解法。
同時代的天文歷學家何承天創調日法,以有理分數逼近實數,發展了古代的不定分析與數值逼近演算法。
三、中國數學教育制度的建立
隋朝大興土木,客觀上促進了數學的發展。唐初王孝通撰《緝古算經》,主要是通過土木工程中計算土方、工程的分工與驗收以及倉庫和地窖計算等實際問題,討論如何以幾何方式建立三次多項式方程,發展了《九章算術》中的少廣、勾股章中開方理論。
隋唐時期是中國封建官僚制度建立時期,隨著科舉制度與國子監制度的確立,數學教育有了長足的發展。656年國子監設立算學館,設有算學博士和助教,由太史令李淳風等人編纂注釋《算經十書》〔包括《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《張丘建算經》、《夏侯陽算經》、《緝古算經》、《五曹算經》、《五經算術》和《綴術》〕,作為算學館學生用的課本。對保存古代數學經典起了重要的作用。
由於南北朝時期的一些重大天文發現在隋唐之交開始落實到歷法編算中,使唐代歷法中出現一些重要的數學成果。公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式,這在數學史上是一項傑出的創造,唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。
唐朝後期,計算技術有了進一步的改進和普及,出現很多種實用算術書,對於乘除演算法力求簡捷。
四、中國數學發展的高峰
唐朝亡後,五代十國仍是軍閥混戰的繼續,直到北宋王朝統一了中國,農業、手工業、商業迅速繁榮,科學技術突飛猛進。從公元十一世紀到十四世紀〔宋、元兩代〕,籌算數學達到極盛,是中國古代數學空前繁榮,碩果累累的全盛時期。這一時期出現了一批著名的數學家和數學著作,列舉如下:賈憲的《黃帝九章演算法細草》〔11世紀中葉〕,劉益的《議古根源》〔12世紀中葉〕,秦九韶的《數書九章》〔1247〕,李冶的《測圓海鏡》〔1248〕和《益古演段》〔1259〕,楊輝的《詳解九章演算法》〔1261〕、《日用演算法》〔1262〕和《楊輝演算法》〔1274-1275〕,朱世傑的《算學啟蒙》〔1299〕和《四元玉鑒》〔1303〕等等。 宋元數學在很多領域都達到了中國古代數學,也是當時世界數學的巔峰。其中主要的工作有:
公元1050年左右,北宋賈憲(生卒年代不詳)在《黃帝九章演算法細草》中創造了開任意高次冪的「增乘開方法」,公元1819年英國人霍納(william george horner)才得出同樣的方法。賈憲還列出了二項式定理系數表,歐洲到十七世紀才出現類似的「巴斯加三角」。(《黃帝九章演算法細草》已佚)
公元1088—1095年間,北宋沈括從「酒家積罌」數與「層壇」體積等生產實踐問題提出了「隙積術」,開始對高階等差級數的求和進行研究,並創立了正確的求和公式。沈括還提出「會圓術」,得出了我國古代數學史上第一個求弧長的近似公式。他還運用運籌思想分析和研究了後勤供糧與運兵進退的關系等問題。
公元1247年,南宋秦九韶在《數書九章》中推廣了增乘開方法,敘述了高次方程的數值解法,他列舉了二十多個來自實踐的高次方程的解法,最高為十次方程。歐洲到十六世紀義大利人菲爾洛(scipio del ferro)才提出三次方程的解法。秦九韶還系統地研究了一次同餘式理論。
公元1248年,李冶(李治,公元1192一1279年)著的《測圓海鏡》是第一部系統論述「天元術」(一元高次方程)的著作,這在數學史上是一項傑出的成果。在《測圓海鏡?序》中,李冶批判了輕視科學實踐,以數學為「九九賤技」、「玩物喪志」等謬論。
公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。
公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(etienne bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(james gregory)和公元1676一1678年間牛頓(issac newton)才提出內插法的一般公式。
公元十四世紀我國人民已使用珠算盤。在現代計算機出現之前,珠算盤是世界上簡便而有效的計算工具。
五、中國數學的衰落與日用數學的發展
這一時期指十四世紀中葉明王朝建立到明末的1582年。數學除珠算外出現全面衰弱的局面,當中涉及到中算的局限、十三世紀的考試制度中已刪減數學內容、明代大興八段考試制度等復雜的問題,不少中外數學史家仍探討當中涉及的原因。
明代最大的成就是珠算的普及,出現了許多珠算讀本,及至程大位的《直指演算法統宗》〔1592〕問世,珠算理論已成系統,標志著從籌算到珠算轉變的完成。但由於珠算流行,籌算幾乎絕跡,建立在籌算基礎上的古代數學也逐漸失傳,數學出現長期停滯。
六、西方初等數學的傳入與中西合璧
十六世紀末開始,西方傳教士開始到中國活動,由於明清王朝制定天文歷法的需要,傳教士開始將與天文歷算有關的西方初等數學知識傳入中國,中國數學家在「西學中源」思想支配下,數學研究出現了一個中西融合貫通的局面。
十六世紀末,西方傳教士和中國學者合譯了許多西方數學專著。其中第一部且有重大影響的是義大利傳教士利馬竇和徐光啟合譯的《幾何原本》前6卷〔1607〕,其嚴謹的邏輯體系和演譯方法深受徐光啟推崇。徐光啟本人撰寫的《測量異同》和《勾股義》便應用了《幾何原本》的邏輯推理方法論證中國的勾股測望術。此外,《幾何原本》課本中絕大部份的名詞都是首創,且沿用至今。在輸入的西方數學中僅次於幾何的是三角學。在此之前,三角學只有零星的知識,而此後獲得迅速發展。介紹西方三角學的著作有鄧玉函編譯的《大測》〔2卷,1631〕、《割圓八線表》〔6卷〕和羅雅谷的《測量全義》〔10卷,1631〕。在徐光啟主持編譯的《崇禎歷書》〔137卷,1629-1633〕中,介紹了有關圓椎曲線的數學知識。
入清以後,會通中西數學的傑出代表是梅文鼎,他堅信中國傳統數學「必有精理」,對古代名著做了深入的研究,同時又能正確對待西方數學,使之在中國紮根,對清代中期數學研究的高潮是有積極影響的。與他同時代的數學家還有王錫闡和年希堯等人。 清康熙帝愛好科學研究,他「御定」的《數理精蘊》〔53卷,1723〕,是一部比較全面的初等數學書,對當時的數學研究有一定影響。
七、傳統數學的整理與復興
乾嘉年間形成一個以考據學為主的干嘉學派,編成《四庫全書》,其中數學著作有《算經十書》和宋元時期的著作,為保存瀕於湮沒的數學典籍做出重要貢獻。
在研究傳統數學時,許多數學家還有發明創造,例如有「談天三友」之稱的焦循、汪萊及李銳作出不少重要的工作。李善蘭在《垛積比類》〔約1859〕中得到三角自乘垛求和公式,現在稱之為「李善蘭恆等式」。這些工作較宋元時期的數學進了一步。阮元、李銳等人編寫了一部天文學家和數學家傳記《疇人傳》46卷〔1795-1810〕,開數學史研究之先河。
八、西方數學再次東進
1840年鴉戰爭後,閉關鎖國政策被迫中止。同文館內添設「算學」,上海江南製造局內添設翻譯館,由此開始第二次翻譯引進的高潮。主要譯者和著作有:李善蘭與英國傳教士偉烈亞力合譯的《幾何原本》後9卷〔1857〕,使中國有了完整的《幾何原本》中譯本;《代數學》13卷〔1859〕;《代微積拾級》18卷〔1859〕。李善蘭與英國傳教士艾約瑟合譯《圓錐曲線說》3卷,華蘅芳與英國傳教士傅蘭雅合譯《代數術》25卷〔1872〕,《微積溯源》8卷〔1874〕,《決疑數學》10卷〔1880〕等。在這些譯著中,創造了許多數學名詞和術語,至今仍在應用。 1898年建立京師大學堂,同文館並入。1905年廢除科舉,建立西方式學校教育,使用的課本也與西方其它各國相仿。
九、中國現代數學的建立
這一時期是從20世紀初至今的一段時間,常以1949年新中國成立為標志劃分為兩個階段。
中國近現代數學開始於清末民初的留學活動。較早出國學習數學的有1903年留日的馮祖荀,1908年留美的鄭之蕃,1910年留美的胡明復和趙元任,1911年留美的姜立夫,1912年留法的何魯,1913年留日的陳建功和留比利時的熊慶來〔1915年轉留法〕,1919年留日的蘇步青等人。他們中的多數回國後成為著名數學家和數學教育家,為中國近現代數學發展做出重要貢獻。其中胡明復1917年取得美國哈佛大學博士學位,成為第一位獲得博士學位的中國數學家。隨著留學人員的回國,各地大學的數學教育有了起色。最初只有北京大學1912年成立時建立的數學系,1920年姜立夫在天津南開大學創建數學系,1921年和1926年熊慶來分別在東南大學〔今南京大學〕和清華大學建立數學系,不久武漢大學、齊魯大學、浙江大學、中山大學陸續設立了數學系,到1932年各地已有32所大學設立了數學系或數理系。1930年熊慶來在清華大學首創數學研究部,開始招收研究生,陳省身、吳大任成為國內最早的數學研究生。三十年代出國學習數學的還有江澤涵〔1927〕、陳省身〔1934〕、華羅庚〔1936〕、許寶騤〔1936〕等人,他們都成為中國現代數學發展的骨幹力量。同時外國數學家也有來華講學的,例如英國的羅素〔1920〕,美國的伯克霍夫〔1934〕、奧斯古德〔1934〕、維納〔1935〕,法國的阿達馬〔1936〕等人。1935年中國數學會成立大會在上海召開,共有33名代表出席。1936年〈中國數學會學報〉和《數學雜志》相繼問世,這些標志著中國現代數學研究的進一步發展。 解放以前的數學研究集中在純數學領域,在國內外共發表論著600餘種。在分析學方面,陳建功的三角級數論,熊慶來的亞純函數與整函數論研究是代表作,另外還有泛函分析、變分法、微分方程與積分方程的成果;在數論與代數方面,華羅庚等人的解析數論、幾何數論和代數數論以及近世代數研究取得令世人矚目的成果;在幾何與拓撲學方面,蘇步青的微分幾何學,江澤涵的代數拓撲學,陳省身的纖維叢理論和示性類理論等研究做了開創性的工作:在概率論與數理統計方面,許寶騤在一元和多元分析方面得到許多基本定理及嚴密證明。此外,李儼和錢寶琮開創了中國數學史的研究,他們在古算史料的注釋整理和考證分析方面做了許多奠基性的工作,使我國的民族文化遺產重放光彩。
1949年11月即成立中國科學院。1951年3月《中國數學學報》復刊〔1952年改為《數學學報》〕,1951年10月《中國數學雜志》復刊〔1953年改為《數學通報》〕。1951年8月中國數學會召開建國後第一次國代表大會,討論了數學發展方向和各類學校數學教學改革問題。
建國後的數學研究取得長足進步。50年代初期就出版了華羅庚的《堆棧素數論》〔1953〕、蘇步青的《射影曲線概論》〔1954〕、陳建功的《直角函數級數的和》〔1954〕和李儼的《中算史論叢》5集〔1954-1955〕等專著,到1966年,共發表各種數學論文約2萬余篇。除了在數論、代數、幾何、拓撲、函數論、概率論與數理統計、數學史等學科繼續取得新成果外,還在微分方程、計算技術、運籌學、數理邏輯與數學基礎等分支有所突破,有許多論著達到世界先進水平,同時培養和成長起一大批優秀數學家。
60年代後期,中國的數學研究基本停止,教育癱瘓、人員喪失、對外交流中斷,後經多方努力狀況略有改變。1970年《數學學報》恢復出版,並創刊《數學的實踐與認識》。1973年陳景潤在《中國科學》上發表《大偶數表示為一個素數及一個不超過二個素數的乘積之和》的論文,在哥德巴赫猜想的研究中取得突出成就。此外中國數學家在函數論、馬爾可夫過程、概率應用、運籌學、優選法等方面也有一定創見。
1978年11月中國數學會召開第三次代表大會,標志著中國數學的復甦。1978年恢復全國數學競賽,1985年中國開始參加國際數學奧林匹克數學競賽。1981年陳景潤等數學家獲國家自然科學獎勵。1983年國家首批授於18名中青年學者以博士學位,其中數學工作者佔2/3。1986年中國第一次派代表參加國際數學家大會,加入國際數學聯合會,吳文俊應邀作了關於中國古代數學史的45分鍾演講。近十幾年來數學研究碩果累累,發表論文專著的數量成倍增長,質量不斷上升。1985年慶祝中國數學會成立50周年年會上,已確定中國數學發展的長遠目標。代表們立志要不懈地努力,爭取使中國在世界上早日成為新的數學大國。
不用給分啦~純屬義務勞動
4. 數學發展歷史
數學的發展歷史可以分為以下幾個主要時期:
1. 數學形成時期 內容:這是人類建立最基本的數學概念的時期。人類從數數開始,逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本、最簡單的幾何形式。算術與幾何在這個時期還沒有分開。
2. 初等數學時期 時間:從公元前5世紀開始,直到17世紀,大約持續了兩千年。 內容:這個時期逐漸形成了初等數學的主要分支,包括算數、幾何、代數。這些成果構成了中學數學的主要內容。
3. 變數數學時期 時間:產生於17世紀。 內容:變數數學的產生大體上經歷了兩個決定性的重大步驟。第一步是解析幾何的產生,第二步是微積分學的發展。微積分是高等數學中研究函數的微分、積分以及有關概念和應用的數學分支,內容主要包括極限、微分學、積分學及其應用。微分學是一套關於變化率的理論,包括求導數的運算。
4. 現代數學時期 時間:大致從19世紀上期葉開始。 內容:數學發展的現代階段以其所有的基礎代數、幾何、分析中的深刻變化為特徵,標志著數學進入了一個新的發展階段。
