高中數學必修5數列
① 高中數學必修五,所有有關數列的公式
(1)
n>=2時
s(n-1)=2a(n-1)
1
an=sn-s(n-1)=2an-2a(n-1)
得an=2a(n-1)
=>數列是等比數列,且公比為2
n=1時
a1=2a1
1
a1=-1
an=(-1)*2^n=-2^(n-1)
(2)
1.若an=0
是滿足題意的
2.an≠內0時
和第一題思想差不多
不過容得先把sn的表達式變一下型
sn=an(sn-1/2)
化簡得
2sn=1
1/(an-1)
2s(n-1)=1
1/(a(n-1)-1)
兩式相減
2an
=
1/(an-1)-1/(a(n-1)-1)
依次往下列
2a(n-1)=
1/(a(n-1)-1)-1(a(n-2)-1)
。
。
。
2a2
=
1/(a2-1)-1/(a1-1)
2a1
=
2a1
所有等式兩邊都相加
2sn=1/(an-1)-1/(a1-1)
2a1
前面已經得出2sn=1
1/(an-1)
於是得出2a1-1/(a1-1)=1
解得
a1=0或a1=3/2(a1≠0)
a1=3/2
做不下去了。。。可能方向錯了
② 高一數學必修5 等差數列和等比數列 的所有公式
你好,我也是修過必修五這門課的數學,下面是等差和等比所有公式:
希望對你有幫助:
.
等差數列公式an=a1+(n-1)d
前n項和公式為:Sn=na1+n(n-1)d/2
Sn=(a1+an)n/2
若m+n=p+q則:存在am+an=ap+aq
若m+n=2p則:am+an=2ap
(1)等比數列的通項公式是:An=A1×q^(n-1)
若通項公式變形為an=a1/q*q^n(n∈N*),當q>0時,
則可把an看作自變數n的函數,點(n,an)是曲線y=a1/q*q^x上的一群孤立的點。
(2) 任意兩項am,an的關系為an=am·q^(n-m)
(3)從等比數列的定義、通項公式、前n項和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。
(5) 等比求和:Sn=a1+a2+a3+.......+an
①當q≠1時,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q) ②當q=1時, Sn=n×a1(q=1)
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
祝你學習進步!但願對你有所幫助!!!!
③ 高一數學必修5數列
以下內容來自http://e.qq.com/a/20071112/000098.htm
求數列通項公式常用以下幾種方法:
一、題目已知或通過簡單推理判斷出是等比數列或等差數列,直接用其通項公式。
例:在數列{an}中,若a1=1,an+1=an+2(n1),求該數列的通項公式an。
解:由an+1=an+2(n1)及已知可推出數列{an}為a1=1,d=2的等差數列。所以an=2n-1。此類題主要是用等比、等差數列的定義判斷,是較簡單的基礎小題。
二、已知數列的前n項和,用公式
S1 (n=1)
Sn-Sn-1 (n2)
例:已知數列{an}的前n項和Sn=n2-9n,第k項滿足5
(A) 9 (B) 8 (C) 7 (D) 6
解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8 ∴k=8 選 (B)
此類題在解時要注意考慮n=1的情況。
三、已知an與Sn的關系時,通常用轉化的方法,先求出Sn與n的關系,再由上面的(二)方法求通項公式。
例:已知數列{an}的前n項和Sn滿足an=SnSn-1(n2),且a1=-,求數列{an}的通項公式。
解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,兩邊同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-} 是以-為首項,-1為公差的等差數列,∴-= -,Sn= -,
再用(二)的方法:當n2時,an=Sn-Sn-1=-,當n=1時不適合此式,所以,
- (n=1)
- (n2)
四、用累加、累積的方法求通項公式
對於題中給出an與an+1、an-1的遞推式子,常用累加、累積的方法求通項公式。
例:設數列{an}是首項為1的正項數列,且滿足(n+1)an+12-nan2+an+1an=0,求數列{an}的通項公式
解:∵(n+1)an+12-nan2+an+1an=0,可分解為[(n+1)an+1-nan](an+1+an)=0
又∵{an}是首項為1的正項數列,∴an+1+an ≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,這n-1個式子,將其相乘得:∴ -=-,
又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈N*)
五、用構造數列方法求通項公式
題目中若給出的是遞推關系式,而用累加、累積、迭代等又不易求通項公式時,可以考慮通過變形,構造出含有 an(或Sn)的式子,使其成為等比或等差數列,從而求出an(或Sn)與n的關系,這是近一、二年來的高考熱點,因此既是重點也是難點。
例:已知數列{an}中,a1=2,an+1=(--1)(an+2),n=1,2,3,……
(1)求{an}通項公式 (2)略
解:由an+1=(--1)(an+2)得到an+1--= (--1)(an--)
∴{an--}是首項為a1--,公比為--1的等比數列。
由a1=2得an--=(--1)n-1(2--) ,於是an=(--1)n-1(2--)+-
又例:在數列{an}中,a1=2,an+1=4an-3n+1(n∈N*),證明數列{an-n}是等比數列。
證明:本題即證an+1-(n+1)=q(an-n) (q為非0常數)
由an+1=4an-3n+1,可變形為an+1-(n+1)=4(an-n),又∵a1-1=1,
所以數列{an-n}是首項為1,公比為4的等比數列。
若將此問改為求an的通項公式,則仍可以通過求出{an-n}的通項公式,再轉化到an的通項公式上來。
又例:設數列{an}的首項a1∈(0,1),an=-,n=2,3,4……(1)求{an}通項公式。(2)略
解:由an=-,n=2,3,4,……,整理為1-an=--(1-an-1),又1-a1≠0,所以{1-an}是首項為1-a1,公比為--的等比數列,得an=1-(1-a1)(--)n-
④ 高一數學必修五數列的知識體系。
數列
一.數列的概念:數列是一個定義域為正整數集N*(或它的有限子集{1,2,3,…,n})的特殊函數,數列的通項公式也就是相應函數的解析式。如
(1)已知 ,則在數列 的最大項為__
(答: );
(2)數列 的通項為 ,其中 均為正數,則 與 的大小關系為___
(答: );
(3)已知數列 中, ,且 是遞增數列,求實數 的取值范圍
(答: );
(4)一給定函數 的圖象在下列圖中,並且對任意 ,由關系式 得到的數列 滿足 ,則該函數的圖象是 ()
(答:A)
A B C D
二.等差數列的有關概念:
1.等差數列的判斷方法:定義法 或 。如
設 是等差數列,求證:以bn= 為通項公式的數列 為等差數列。
2.等差數列的通項: 或 。如
(1)等差數列 中, , ,則通項
(答: );
(2)首項為-24的等差數列,從第10項起開始為正數,則公差的取值范圍是______
(答: )
3.等差數列的前 和: , 。如
(1)數列 中, , ,前n項和 ,則 =_, =_
(答: , );
(2)已知數列 的前n項和 ,求數列 的前 項和
(答: ).
4.等差中項:若 成等差數列,則A叫做 與 的等差中項,且 。
提醒:
(1)等差數列的通項公式及前 和公式中,涉及到5個元素: 、 、 、 及 ,其中 、 稱作為基本元素。只要已知這5個元素中的任意3個,便可求出其餘2個,即知3求2。
(2)為減少運算量,要注意設元的技巧,如奇數個數成等差,可設為…, …(公差為 );偶數個數成等差,可設為…, ,…(公差為2 )
三.等差數列的性質:
1.當公差 時,等差數列的通項公式 是關於 的一次函數,且斜率為公差 ;前 和 是關於 的二次函數且常數項為0.
2.若公差 ,則為遞增等差數列,若公差 ,則為遞減等差數列,若公差 ,則為常數列。
3.當 時,則有 ,特別地,當 時,則有 .如
(1)等差數列 中, ,則 =____
(答:27);
(2)在等差數列 中, ,且 , 是其前 項和,則
A、 都小於0, 都大於0
B、 都小於0, 都大於0
C、 都小於0, 都大於0
D、 都小於0, 都大於0
(答:B)
4.若 、 是等差數列,則 、 ( 、 是非零常數)、 、 ,…也成等差數列,而 成等比數列;若 是等比數列,且 ,則 是等差數列. 如
等差數列的前n項和為25,前2n項和為100,則它的前3n和為 。
(答:225)
5.在等差數列 中,當項數為偶數 時, ;項數為奇數 時, , (這里 即 ); 。如
(1)在等差數列中,S11=22,則 =______
(答:2);
(2)項數為奇數的等差數列 中,奇數項和為80,偶數項和為75,求此數列的中間項與項數
(答:5;31).
6.若等差數列 、 的前 和分別為 、 ,且 ,則
.如
設{ }與{ }是兩個等差數列,它們的前 項和分別為 和 ,若 ,那麼 ___________
(答: )
7.「首正」的遞減等差數列中,前 項和的最大值是所有非負項之和;「首負」的遞增等差數列中,前 項和的最小值是所有非正項之和。法一:由不等式組 確定出前多少項為非負(或非正);法二:因等差數列前 項是關於 的二次函數,故可轉化為求二次函數的最值,但要注意數列的特殊性 。上述兩種方法是運用了哪種數學思想?(函數思想),由此你能求一般數列中的最大或最小項嗎?如
(1)等差數列 中, , ,問此數列前多少項和最大?並求此最大值。
(答:前13項和最大,最大值為169);
(2)若 是等差數列,首項 ,
,則使前n項和 成立的最大正整數n是
(答:4006)
8.如果兩等差數列有公共項,那麼由它們的公共項順次組成的新數列也是等差數列,且新等差數列的公差是原兩等差數列公差的最小公倍數. 注意:公共項僅是公共的項,其項數不一定相同,即研究 .
四.等比數列的有關概念:
1.等比數列的判斷方法:定義法 ,其中 或
。如
(1)一個等比數列{ }共有 項,奇數項之積為100,偶數項之積為120,則 為____
(答: );
(2)數列 中, =4 +1 ( )且 =1,若 ,求證:數列{ }是等比數列。
2.等比數列的通項: 或 。如
設等比數列 中, , ,前 項和 =126,求 和公比 .
(答: , 或2)
3.等比數列的前 和:當 時, ;當 時, 。如
(1)等比數列中, =2,S99=77,求
(答:44);
(2) 的值為__________
(答:2046);
特別提醒:等比數列前 項和公式有兩種形式,為此在求等比數列前 項和時,首先要判斷公比 是否為1,再由 的情況選擇求和公式的形式,當不能判斷公比 是否為1時,要對 分 和 兩種情形討論求解。
4.等比中項:若 成等比數列,那麼A叫做 與 的等比中項。提醒:不是任何兩數都有等比中項,只有同號兩數才存在等比中項,且有兩個 。如已知兩個正數 的等差中項為A,等比中項為B,則A與B的大小關系為______(答:A>B)
提醒:(1)等比數列的通項公式及前 和公式中,涉及到5個元素: 、 、 、 及 ,其中 、 稱作為基本元素。只要已知這5個元素中的任意3個,便可求出其餘2個,即知3求2;(2)為減少運算量,要注意設元的技巧,如奇數個數成等比,可設為…, …(公比為 );但偶數個數成等比時,不能設為… ,…,因公比不一定為正數,只有公比為正時才可如此設,且公比為 。如有四個數,其中前三個數成等差數列,後三個成等比數列,且第一個數與第四個數的和是16,第二個數與第三個數的和為12,求此四個數。(答:15,,9,3,1或0,4,8,16)
5.等比數列的性質:
(1)當 時,則有 ,特別地,當 時,則有 .如
(1)在等比數列 中, ,公比q是整數,則 =___
(答:512);
(2)各項均為正數的等比數列 中,若 ,則
(答:10)。
(2) 若 是等比數列,則 、 、 成等比數列;若 成等比數列,則 、 成等比數列; 若 是等比數列,且公比 ,則數列 ,…也是等比數列。當 ,且 為偶數時,數列 ,…是常數數列0,它不是等比數列. 如
(1)已知 且 ,設數列 滿足 ,且 ,則 .
(答: );
(2)在等比數列 中, 為其前n項和,若 ,則 的值為______
(答:40)
(3)若 ,則 為遞增數列;若 , 則 為遞減數列;若 ,則 為遞減數列;若 , 則 為遞增數列;若 ,則 為擺動數列;若 ,則 為常數列.
(4) 當 時, ,這里 ,但 ,這是等比數列前 項和公式的一個特徵,據此很容易根據 ,判斷數列 是否為等比數列。如若 是等比數列,且 ,則 =
(答:-1)
(5) .如設等比數列 的公比為 ,前 項和為 ,若 成等差數列,則 的值為¬¬_____
(答:-2)
(6) 在等比數列 中,當項數為偶數 時, ;項數為奇數 時, .
(7)如果數列 既成等差數列又成等比數列,那麼數列 是非零常數數列,故常數數列 僅是此數列既成等差數列又成等比數列的必要非充分條件。如設
數列 的前 項和為 ( ), 關於數列 有下列三個命題:①若 ,則 既是等差數列又是等比數列;②若 ,則 是等差數列;③若 ,則 是等比數列。這些命題中,真命題的序號是
(答:②③)
五.數列的通項的求法:
⑴公式法:①等差數列通項公式;②等比數列通項公式。如已知數列 試寫出其一個通項公式:__________
(答: )
⑵已知 (即 )求 ,用作差法: 。如
①已知 的前 項和滿足 ,求
(答: );
②數列 滿足 ,求
(答: )
⑶已知 求 ,用作商法: 。如數列 中, 對所有的 都有 ,則 ______
(答: )
⑷若 求 用累加法:
。如已知數列 滿足 , ,則 =________
(答: )
⑸已知 求 ,用累乘法: 。如已知數列 中, ,前 項和 ,若 ,求
(答: )
⑹已知遞推關系求 ,用構造法(構造等差、等比數列)。特別地,(1)形如 、 ( 為常數)的遞推數列都可以用待定系數法轉化為公比為 的等比數列後,再求 。如①已知 ,求 (答: );②已知 ,求 (答: );(2)形如 的遞推數列都可以用倒數法求通項。如①已知 ,求 (答: );②已知數列滿足 =1, ,求 (答: )
注意:(1)用 求數列的通項公式時,你注意到此等式成立的條件了嗎?( ,當 時, );(2)一般地當已知條件中含有 與 的混合關系時,常需運用關系式 ,先將已知條件轉化為只含 或 的關系式,然後再求解。如數列 滿足 ,求 (答: )
六.數列求和的常用方法:
1.公式法:①等差數列求和公式;②等比數列求和公式,特別聲明:運用等比數列求和公式,務必檢查其公比與1的關系,必要時需分類討論.;③常用公式: , , .如
(1)等比數列 的前 項和Sn=2n-1,則 =_____
(答: );
(2)計算機是將信息轉換成二進制數進行處理的。二進制即「逢2進1」,如 表示二進制數,將它轉換成十進制形式是 ,那麼將二進制 轉換成十進制數是_______
(答: )
2.分組求和法:在直接運用公式法求和有困難時,常將「和式」中「同類項」先合並在一起,再運用公式法求和. 如求: (答: )
3.倒序相加法:若和式中到首尾距離相等的兩項和有其共性或數列的通項與組合數相關聯,則常可考慮選用倒序相加法,發揮其共性的作用求和(這也是等差數列前 和公式的推導方法). 如
①求證: ;
②已知 ,則 =______
(答: )
4.錯位相減法:如果數列的通項是由一個等差數列的通項與一個等比數列的通項相乘構成,那麼常選用錯位相減法(這也是等比數列前 和公式的推導方法).
如(1)設 為等比數列, ,已知 , ,①求數列 的首項和公比;②求數列 的通項公式.(答:① , ;② );
(2)設函數 ,數列 滿足:
,①求證:數列 是等比數列;②令
,求函數 在點 處的導數 ,並比較 與 的大小。(答:①略;② ,當 時, = ;當 時, < ;當 時, > )
5.裂項相消法:如果數列的通項可「分裂成兩項差」的形式,且相鄰項分裂後相關聯,那麼常選用裂項相消法求和.常用裂項形式有:
① ; ② ;
③ , ;
④ ;⑤ ;
⑥ .
如(1)求和:
(答: );
(2)在數列 中, ,且Sn=9,則n=_____
(答:99);
6.通項轉換法:先對通項進行變形,發現其內在特徵,再運用分組求和法求和。如
①求數列1×4,2×5,3×6,…, ,…前 項和 =
(答: );
②求和:
(答: )
七.「分期付款」、「森林木材」型應用問題
1.這類應用題一般可轉化為等差數列或等比數列問題.但在求解過程中,務必「卡手指」,細心計算「年限」.對於「森林木材」既增長又砍伐的問題,則常選用「統一法」統一到「最後」解決.
2.利率問題:①單利問題:如零存整取儲蓄(單利)本利和計算模型:若每期存入本金 元,每期利率為 ,則 期後本利和為:
(等差數列問題);②復利問題:按揭貸款的分期等額還款(復利)模型:若貸款(向銀行借款) 元,採用分期等額還款方式,從借款日算起,一期(如一年)後為第一次還款日,如此下去,分 期還清。如果每期利率為 (按復利),那麼每期等額還款 元應滿足: (等比數列問題).
⑤ 高中數學必修五數列
一、知識綱要
(1)數列的概念,通項公式,數列的分類,從函數的觀點看數列.
(2)等差、等比數列的定義.
(3)等差、等比數列的通項公式.
(4)等差中項、等比中項.
(5)等差、等比數列的前n項和公式及其推導方法.
二、方法總結
1.數列是特殊的函數,有些題目可結合函數知識去解決,體現了函數思想、數形結合的思想.
2.等差、等比數列中,1a、na、n、)(qd、nS 「知三求二」,體現了方程(組)的思想、整體思想,有時用到換元法.
3.求等比數列的前n項和時要考慮公比是否等於1,公比是字母時要進行討論,體現了分類討論的思想.
4.數列求和的基本方法有:公式法,倒序相加法,錯位相減法,拆項法,裂項法,累加法,等價轉化等.
⑥ 數學必修5數列所有公式
等差數列的通項公式
;
其前n項和公式為
.
等比數列的通項公式
;
其前n項的和公式為
或
.
分期付款(按揭貸款)
每次還款
元(貸款
元,
次還清,每期利率為
).
數列的通項公式與前n項的和的關系
⑦ 高中數學必修5重要公式
高中數學必修5主要是數列 ,一般是高考17題,【三角函數和數列2選1】
數列基本公式:
9、一般數列的通項an與前n項和Sn的關系:an=
10、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。
11、等差數列的前n項和公式:Sn= Sn= Sn=
當d≠0時,Sn是關於n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關於n的正比例式。
12、等比數列的通項公式: an= a1 qn-1 an= ak qn-k
(其中a1為首項、ak為已知的第k項,an≠0)
13、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關於n的正比例式);
當q≠1時,Sn= Sn=
三、有關等差、等比數列的結論
14、等差數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數列。
15、等差數列{an}中,若m+n=p+q,則
16、等比數列{an}中,若m+n=p+q,則
17、等比數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數列。
18、兩個等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。
19、兩個等比數列{an}與{bn}的積、商、倒數組成的數列
{an bn}、 、 仍為等比數列。
20、等差數列{an}的任意等距離的項構成的數列仍為等差數列。
21、等比數列{an}的任意等距離的項構成的數列仍為等比數列。
22、三個數成等差的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d
23、三個數成等比的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什麼?)
24、{an}為等差數列,則 (c>0)是等比數列。
25、{bn}(bn>0)是等比數列,則{logcbn} (c>0且c 1) 是等差數列。
26. 在等差數列 中:
(1)若項數為 ,則
(2)若數為 則, ,
27. 在等比數列 中:
(1) 若項數為 ,則
(2)若數為 則,
四、數列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關鍵是找數列的通項結構。
28、分組法求數列的和:如an=2n+3n
29、錯位相減法求和:如an=(2n-1)2n
30、裂項法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、求數列{an}的最大、最小項的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函數f(n)的增減性 如an=
33、在等差數列 中,有關Sn 的最值問題——常用鄰項變號法求解:
(1)當 >0,d<0時,滿足 的項數m使得 取最大值.
(2)當 <0,d>0時,滿足 的項數m使得 取最小值。
在解含絕對值的數列最值問題時,注意轉化思想的應用。
⑧ 高中數學必修5(數列)
1.是1/(2N-1)
2.是-1的N次方/(N*(N+1))
3.是SQR(2)-1^N*(-1)/(2……n-1)^2
⑨ 高中數學必修5數列
1、A(n)/B(n)=2An/2Bn=(A1+A2n-1)/(B1+B2n-1)=S2n-1/T2n-1,現在只需證明F(n)增減性就行了,F(n+1)-F(n)=-5/(2n+1)(2n-1)<0 所以F(m)<F(n).
2、An=2+d(n-1) Bn=B1+2(n-1) An/Bn=<3(2n-1)+1>/(4n-3)=<2+d(n-1)>/<B1+2(n-1) n任取兩值可求出B1=0.5 d =3 所以 An=3n-1 Bn=0.5+2(n-1) 很明顯內An是整數 Bn不是,所以他們不容可能相等的項 方法應該是這樣的不知道算錯了沒 還有看了一下1樓的肯定是錯的 2、3樓應該把題弄錯了 F(x)應該是(3x+1)/(2x-1) 不是的話條件Sn/Tn=F(n)不可能成立