古代數學著作
Ⅰ 關於中國古代數學的著作
(1)兩漢時期:《九章算術》約成書於東漢,分九章介紹了許多算術命題及其解法,是當時世界上最先進的應用數學,它的出現標志中國古代數學形成了完整的體系。
(2)南北朝時期:①魏晉時期的數學家劉徽,運用極限理論,提出了計算圓周率的正確方法。②南朝祖沖之精確地計算出圓周率是在3.1415926-3.1415927之間,這一成果比外國早近一千年。它的專著《綴術》對數學發展有傑出的貢獻。
1、劉徽
劉徽(約225年—約295年),漢族,山東濱州鄒平市人,魏晉時期偉大的數學家,中國古典數學理論的奠基人之一。作為中國數學史上一位偉大的數學家,名著《九章算術注》和《海島算經》是中國最寶貴的數學遺產。
2、趙爽
趙爽,又名嬰,字君卿,中國數學家。東漢末至三國時代吳國人。是中國歷史上著名的數學家和天文學家。生平不詳,大約182-250年。代表作《勾股圓方圖注》。
3、祖沖之
祖沖之(429-500歲),生於建康(今南京),南北朝傑出的數學家、天文學家。撰寫的《大明歷》是當時最科學、最進步的歷法,為後世天文研究提供了正確的方法。其主要著作有《安邊論》《綴術》《述異記》《歷議》等。
4、賈憲
賈憲,北宋人,於1050年左右完成了《黃帝九章算經細草》。原著遺失了,但主要內容被楊輝(大約十三世紀中)抄錄,因此可以傳世。
5、楊輝
楊輝(生卒年不詳),字謙光,漢族,錢塘(今浙江杭州)人,南宋傑出的數學家和數學教育家。
著有數學著作5種21卷,即《詳解九章演算法》12卷,《日用演算法》2卷,《乘除通變本末》3卷,《田畝比類乘除捷法》2卷和《續古摘奇演算法》2卷(其中《詳解》和《日用演算法》已非完書)。後三種合稱為《楊輝演算法》。
Ⅲ 中國古代的數學名著有哪些
例如現在所知道的最早的數學著作《周髀算經》和《九章算術》,它們都是公元紀元前後的作品,到現在已有兩千年左右的歷史了。能夠使兩千年前的數學書籍流傳到現在,這本身就是一項了不起的成就。
開始,人們是用抄寫的方法進行學習並且把數學知識傳給下一代的。直到北宋,隨著印刷術的發展,開始出現印刷本的數學書籍,這恐怕是世界上印刷本數學著作的最早出現。現在收藏於北京圖書館、上海圖書館、北京大學圖書館的傳世南宋本《周髀算經》、《九章算術》等五種數學書籍,更是值得珍重的寶貴文物。
從漢唐時期到宋元時期,歷代都有著名算書出現:或是用中國傳統的方法給已有的算書作註解,在註解過程中提出自己新的演算法;或是另寫新書,創新說,立新意。在這些流傳下來的古算書中凝聚著歷代數學家的勞動成果,它們是歷代數學家共同留下來的寶貴遺產。
《算經十書》是指漢、唐一千多年間的十部著名數學著作,它們曾經是隋唐時候國子監算學科(國家所設學校的數學科)的教科書。十部算書的名字是:《周髀算經》、《九章算術》、《海島算經》、《五曹算經》、《孫子算經》、《夏侯陽算經》、《張丘建算經》、《五經算術》、《緝古算經》、《綴術》。
這十部算書,以《周髀算經》為最早,不知道它的作者是誰,據考證,它成書的年代當不晚於西漢後期(公元前一世紀)。《周髀算經》不僅是數學著作,更確切地說,它是講述當時的一派天文學學說——「蓋天說」的天文著作。就其中的數學內容來說,書中記載了用勾股定理來進行的天文計算,還有比較復雜的分數計算。當然不能說這兩項演算法都是到公元前一世紀才為人們所掌握,它僅僅說明在現在已經知道的資料中,《周髀算經》是比較早的記載
Ⅳ 中國古代算術名著有什麼
《周髀算經》、《九章算術》、《海島算經》、《張丘建算經》、《夏侯陽算經》、《五經算術》、《輯古算經》、《綴術》。便是「算經十書」。
《周髀算經》
這十部算書,以《周髀算經》為最早,不知道它的作者是誰,據考證,它成書的年代當不晚於西漢後期(公元前一世紀)。《周髀算經》不僅是數學著作,更確切地說,它是講述當時的一派天文學學說——「蓋天說」的天文著作。就其中的數學內容來說,書中記載了用勾股定理來進行的天文計算,還有比較復雜的分數計算。當然不能說這兩項演算法都是到公元前一世紀才為人們所掌握,它僅僅說明在現在已經知道的資料中,《周髀算經》是比較早的記載。
《九章算術》
對古代數學的各個方面全面完整地進行敘述的是《九章算術》,它是十部算書中最重要的一部。它對以後中國古代數學發展所產生的影響,正像古希臘歐幾里得(約前330—前275)《幾何原本》對西方數學所產生的影響一樣,是非常深刻的。在中國,它在一千幾百年間被直接用作數學教育的教科書。它還影響到國外,朝鮮和日本也都曾拿它當作教科書。
《九章算術》,也不知道確實的作者是誰,只知道西漢早期的著名數學家張蒼(前201—前152)、耿壽昌等人都曾經對它進行過增訂刪補。《漢書·藝文志》中沒有《九章算術》的書名,但是有許商、杜忠二人所著的《算術》,因此有人推斷其中或者也含有許、杜二人的工作。1984年,湖北江陵張家山西漢早期古墓出土《算數書》書簡,推算成書當比《九章算術》早一個半世紀以上,內容和《九章算術》極相類似,有些算題和《九章算術》算題文句也基本相同,
可見兩書有某些繼承關系。可以說《九章算術》是在長時期里經過多次修改逐漸形成的,雖然其中的某些演算法可能早在西漢之前就已經有了。正如書名所反映的,全書共分九章,一共搜集了二百四十六個數學問題,連同每個問題的解法,分為九大類,每類算是一章。
從數學成就上看,首先應該提到的是:書中記載了當時世界上最先進的分數四則運算和比例演算法。書中還記載有解決各種面積和體積問題的演算法以及利用勾股定理進行測量的各種問題。《九章算術》中最重要的成就是在代數方面,書中記載了開平方和開立方的方法,並且在這基礎上有了求解一般一元二次方程(首項系數不是負)的數值解法。還有整整一章是講述聯立一次方程解法的,這種解法實質上和現在中學里所講的方法是一致的。這要比歐洲同類演算法早出一千五百多年。在同一章中,還在世界數學史上第一次記載了負數概念和正負數的加減法運演算法則。
《九章算術》不僅在中國數學史上佔有重要地位,它的影響還遠及國外。在歐洲中世紀,《九章算術》中的某些演算法,例如分數和比例,就有可能先傳入印度再經阿拉伯傳入歐洲。再如「盈不足」(也可以算是一種一次內插法),在阿拉伯和歐洲早期的數學著作中,就被稱作「中國演算法」。現在,作為一部世界科學名著,《九章算術》已經被譯成許多種文字出版。
《孫子算經》
約成書於四、五世紀,作者生平和編寫年代都不清楚。現在傳本的《孫子算經》共三卷。卷上敘述算籌記數的縱橫相間制度和籌算乘除法則,卷中舉例說明籌算分數演算法和籌算開平方法。
《孫子算經》中國是世界上最早採用十進位值制記數的國家,春秋戰國之際已普遍應用的籌算,即嚴格遵循了十進位值制。關於算籌記數法現在僅見的資料載於《孫子算經》。《孫子算經》三卷,成書年代約為公元4世紀,該書上卷是關於籌演算法則的系統介紹,下卷則有著名的「物不知數」題,亦稱「孫子問題」。 引卷下第31題,可謂是後世「雞兔同籠」題的始祖,後來傳到日本,變成「鶴龜算」。書中是這樣敘述的:「今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數,有35個頭;從下面數,有94隻腳。求籠中各有幾只雞和兔?
具有重大意義的是卷下第26題:「今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二,問物幾何?答曰:『二十三』」。《孫子算經》不但提供了答案,而且還給出了解法。南宋大數學家秦九韶則進一步開創了對一次同餘式理論的研究工作,推廣「物不知數」的問題。德國數學家高斯﹝K.F. Gauss.公元1777-1855年﹞於公元1801年出版的《算術探究》中明確地寫出了上述定理。公元1852年,英國基督教士偉烈亞士﹝Alexander Wylie公元1815-1887年﹞將《孫子算經》「物不知數」問題的解法傳到歐洲,公元1874年馬蒂生﹝L.Mathiesen﹞指出孫子的解法符合高斯的定理,從而在西方的數學史里將這一個定理稱為「中國的剩餘定理」﹝Chinese remainder theorem﹞。
《五曹算經》
《五曹算經》是一部為地方行政人員所寫的應用算術書(作者不可詳,有的認為其作者是甄鸞),全書分為田曹、兵曹、集曹、倉曹、金曹等五個項目,所以稱為 「 五曹 」 算經。所講問題的解法都淺顯易懂,數字計算都盡可能地避免分數。 引全書共收67個問題。它的著者和年代都沒有記載。歐陽修《新唐書》卷五十九《藝文志》有:「甄鸞《五曹算經》五卷」其它各書也有類似的記載。甄鸞是公元535-566年前後的人。
《五曹算經》此系南宋刊本《五曹算經》卷首書影,刻於南宋嘉定五年(一二一二年)。《五曹算經》是我國的一部數學古籍,作者是北周的甄鸞(字叔遵,河北無極人),他通曉天文歷法,曾任司隸大夫、漢中郡守等職務。唐李淳風等曾為之作注。
《夏侯陽算經》
夏侯陽算經,算經十書之一。原書已失傳無考。北宋元豐九年(1084年)所刻《夏侯陽算經》是唐中葉的一部算書。引用當時流傳的乘除捷法,解答日常生活中的應用問題,保存了很多數學史料。
《張丘建算經》
《張邱建算經》的作者是張邱建,大約作於5世紀後期,裡面有對最大公約數、最小公倍數的應用問題,不有竺差級數問題,最著名的是提出了不定方程組 —— 百雞問題,但是沒有具體說明其解灶。《夏侯陽算經》估計是北魏時代的作品。裡面概括地敘述了乘除速演算法則、分數法則,解釋了 」 法除 」 、 「 步除 」 、 「 約除 」 、 「 開平方 」 、 「 方立 」 等法則,另外推廣了十進小數的應用,全與現在的表示法不同,計算結果有奇零時借用分、厘、毫、絲等長度單位名稱表示文以下的十進小數。 引「百雞問題」是《張邱建算經》中的一個著名數學問題,它給出了由三個未知量的兩個方程組成的不定方程組的解。百雞問題是:「今有雞翁一,值錢五;雞母一,值錢三;雞雛三,值錢一。凡百錢買雞百隻,問雞翁母雛各幾何。」依題意即解
自張邱建以後,中國數學家對百雞問題的研究不斷深入,百雞問題也幾乎成了不定方程的代名詞,從宋代到清代圍繞百雞問題的數學研究取得了很好的成就。
《海島算經》
《海島算經》是三國時期劉徽(約225—約295)所作。這部書中講述的都是利用標桿進行兩次、三次、最復雜的是四次測量來解決各種測量數學的問題。這些測量數學,正是中國古代非常先進的地圖學的數學基礎。此外,劉徽對《九章算術》所作的注釋工作也是很有名的。一般地說,可以把這些注釋看成是《九章算術》中若干演算法的數學證明。劉徽注中的「割圓術」開創了中國古代圓周率計算方面的重要方法(參見本書第98頁),他還首次把極限概念應用於解決數學問題。
《緝古算經》
王孝通撰《緝古算經》。唐武德八年(625)五月,王孝通撰《緝古算經》在長安成書,這是中國現存最早解三次方程的著作。
唐代立於學官的十部算經中,王孝通《緝古算經》是唯一的一部由唐代學者撰寫的。王孝通主要活動於六世紀末和七世紀初。他出身於平民,少年時期便開始潛心鑽研數學,隋朝時以歷算入仕,入唐後被留用,唐朝初年做過算學博士(亦稱算歷博士),後升任通直郎、太史丞。畢生從事數學和天文工作。唐武德六年(623),因行用的傅仁均《戊寅元歷》推算日月食與實際天象不合,與吏部郎中祖孝孫受命研究傅仁均歷存在的問題,武德九年(626)又與大理卿崔善為奉詔校勘傅仁均歷,駁正術錯三十餘處,並付太史施行。王孝通所著《緝古算術》,被用作國子監算學館數學教材,奉為數學經典,故後人稱為《緝古算經》。全書一卷(新、舊《唐書》稱四卷,但由於一卷的題數與王孝通自述相符,因此可能在卷次分法上有所不同)共二十題。第一題為推求月球赤緯度數,屬於天文歷法方面的計算問題,第二題至十四題是修造觀象台、修築堤壩、開挖溝渠,以及建造倉廩和地窖等土木工程和水利工程的施工計算問題,第十五至二十題是勾股問題。這些問題反映了當時開鑿運河、修築長城和大規模城市建設等土木和水利工程施工計算的實際需要。
《五經算術》
北周甄鸞所著,共二卷。書中對《易經》、 《詩經》、《尚書》、 《周禮》、《儀禮》、《禮記》、《論語》、《左傳》等儒家經典及其古注中與數字有關的地方詳加註釋,對研究經學的人或可有一定的幫助,但就數學的內容而論,其價值有限。現傳本亦系抄自《永樂大典》。
《數術記遺》
徐岳(?——220)的《數術記遺》,《數術記遺》以與劉洪問答的形式,介紹了14種計算方法,「未滿百言,而骨削質奧,思緯淹通,依然東京風骨。」也就是在這部書中,徐岳在中國也是在世界歷史上第一次記載算盤的樣式,並第一次珠算定名,在世界珠算史上寫下了光輝的一頁。 其中著錄了十四種古演算法。第一種叫"積算",就是當時通用的籌算。還有太乙算、兩儀算、三才算、五行算、八卦算、九宮算、運籌算、了知算、成數算、把頭算、龜算、珠算、計數。"《數術記遺》仲介紹的一種心算方法。原文說:』既舍數術,宜從心計。』注中說:』言舍數術者,謂不用算籌,當以意計之。』這說明計算時不用珠、籌、針等工具,只用心算完成。但從注中所舉各例來看,此處"計算",與現代對心算的理解,又有不同之處。現在的心算,指在數字運算時,不用計算工具,只用意念完成。而"計數"的范圍頗廣,在測量及其它方面,不但不用計算工具,而且想出巧妙辦法,不通過數字運算,直接可得所要求的數字結果。"
《綴術》
《綴術》是南北朝時期著名數學家祖沖之的著作。很可惜,這部書在唐宋之際公元十世紀前後失傳了。宋人刊刻《算經十書》的時候就用當時找到的另一部算書《數術記遺》來充數。祖沖之的著名工作——關於圓周率的計算(精確到第七位小數),記載在《隋書·律歷志》中。
Ⅳ 我國古代哪些數學著作記載了負數和負數的運演算法則
據考古學家考證,在《九章算術》的《方程》篇中,就提出了負數的概念,並寫出了負數加減法的運演算法則。此外,我國古代的許多數學著作甚至歷法都提到了負數和負數的運演算法則。
南宋時期的秦九韶在《數術九章算術》一書中記載有關於作為高次方程常數項的結果「時常為負」。
楊輝在《詳解九章算術演算法》一書中,把「益」、「從」、「除」和「消」分別改為了「加」與「減」,這更加明確了正負與加減的關系。
元代數學家朱世傑在《算學啟蒙》一書中,第一次將「正負術」列入了全書的《總括》之中,這說明,那時的人們已經把正負數作為一個專門的數學研究科目。
在這本書中,朱世傑還寫出了正負數的乘法法則,這是人們對正負數研究邁出的新的一步。
我國對正負數的認識不但比歐洲人早,而且也比古印度人早。印度開始運用負數的年代比我國晚700多年,直至630年,印度古代著名的大數學家婆羅摩笈多才開始使用負數,他用小點或圓圈來表示負號。而在歐洲,人們認識負數的年代大約比我國晚了1000多年。
Ⅵ 最完整的中國古代數學著作是哪一部
《九章算術》
現存最早的中國古 代數學著作之一,是《算經十書》中最重要的一種。其作者已不可考。西漢的 張蒼、耿壽昌曾經作過增補和整理,其 時大體已成定本。三國時期,劉徽為 《九章》作注,唐代李淳風又重新做注 (656年),作為《算數十經》之一, 將其版刻印刷,作為通用教材。
《九章算術》共收有246個數學問 題,分為九大類:方田(田畝計算和分 數計算)、粟米(糧食交易計算)、衰 分(分配比例的演算法)、少廣(開平方 和開立方)、商功(工程數學問題,以
體積的計算為主)、均輸(稅收等更 加復雜的比例問題)、盈不足(雙設 法)、方程(一次方程組的解法和正負 數的加減法)、勾股(勾股定理的應 用)。在一個或幾個問題之後,還列出 了這些問題的解法。
《九章算術》總結了自周朝以來的 中國古代數學,它的出現標志著中國古 代數學體系的形成,是中國古代數學體 系的初期代表作。《九章算術》的許多 數學問題都是世界上記載最早的,如關 於分數、雙設法、一次方程等的論述。
Ⅶ 古代數學著作《詳解九章演算法》作者是誰
解答:1261年,中國宋朝的楊輝著《詳解九章演算法》
作者簡介:楊輝,字謙光,漢族,錢塘(今杭州)人,南宋傑出的數學家和數學教育家,生平履歷不詳。由現存文獻可推知,楊輝擔任過南宋地方行政官員,為政清廉,足跡遍及蘇杭一帶,他署名的數學書共五種二十一卷。他在總結民間乘除捷演算法、"垛積術"、縱橫圖以及數學教育方面,均做出了重大的貢獻。他是世界上第一個排出豐富的縱橫圖和討論其構成規律的數學家。著有《詳解九章演算法》、《日用演算法》、《乘除通變本末》、《田畝比類乘除捷法》、《續古摘奇演算法》。與秦九韶、李冶、朱世傑並稱"宋元數學四大家"。
楊輝一生留下了大量的著述,他著名的數學書共五種二十一卷,它們是:《詳解九章演算法》12卷(1261年),《日用演算法》2卷(1262年),《乘除通變本末》3卷(1274年,第3卷與他人合編),《田畝比類乘除捷法》2卷(1275年),《續古摘奇演算法》2卷(1275年,與他人合編),其中後三種為楊輝後期所著,一般稱之為《楊輝演算法》。他非常重視數學教育的普及和發展,在《演算法通變本末》中,楊輝為初學者制訂的"習算綱目"是中國數學教育史上的重要文獻。
Ⅷ 中國古代的數學名著有哪些
中國古代數學,和天文學以及其他許多科學技術一樣,也取得了極其輝煌的成就。可以毫不誇張地說,直到明代中葉以前,在數學的許多分支領域里,中國一直處於遙遙領先的地位。中國古代的許多數學家曾經寫下了不少著名的數學著作。許多具有世界意義的成就正是因為有了這些古算書而得以流傳下來。這些中國古代數學名著是了解古代數學成就的豐富寶庫。
例如現在所知道的最早的數學著作《周髀算經》和《九章算術》,它們都是公元紀元前後的作品,到現在已有兩千年左右的歷史了。能夠使兩千年前的數學書籍流傳到現在,這本身就是一項了不起的成就。
開始,人們是用抄寫的方法進行學習並且把數學知識傳給下一代的。直到北宋,隨著印刷術的發展,開始出現印刷本的數學書籍,這恐怕是世界上印刷本數學著作的最早出現。現在收藏於北京圖書館、上海圖書館、北京大學圖書館的傳世南宋本《周髀算經》、《九章算術》等五種數學書籍,更是值得珍重的寶貴文物。
從漢唐時期到宋元時期,歷代都有著名算書出現:或是用中國傳統的方法給已有的算書作註解,在註解過程中提出自己新的演算法;或是另寫新書,創新說,立新意。在這些流傳下來的古算書中凝聚著歷代數學家的勞動成果,它們是歷代數學家共同留下來的寶貴遺產。
《算經十書》是指漢、唐一千多年間的十部著名數學著作,它們曾經是隋唐時候國子監算學科(國家所設學校的數學科)的教科書。十部算書的名字是:《周髀算經》、《九章算術》、《海島算經》、《五曹算經》、《孫子算經》、《夏侯陽算經》、《張丘建算經》、《五經算術》、《緝古算經》、《綴術》。
這十部算書,以《周髀算經》為最早,不知道它的作者是誰,據考證,它成書的年代當不晚於西漢後期(公元前一世紀)。《周髀算經》不僅是數學著作,更確切地說,它是講述當時的一派天文學學說——「蓋天說」的天文著作。就其中的數學內容來說,書中記載了用勾股定理來進行的天文計算,還有比較復雜的分數計算。當然不能說這兩項演算法都是到公元前一世紀才為人們所掌握,它僅僅說明在現在已經知道的資料中,《周髀算經》是比較早的記載。
對古代數學的各個方面全面完整地進行敘述的是《九章算術》,它是十部算書中最重要的一部。它對以後中國古代數學發展所產生的影響,正像古希臘歐幾里得(約前330—前275)《幾何原本》對西方數學所產生的影響一樣,是非常深刻的。在中國,它在一千幾百年間被直接用作數學教育的教科書。它還影響到國外,朝鮮和日本也都曾拿它當作教科書。
《九章算術》,也不知道確實的作者是誰,只知道西漢早期的著名數學家張蒼(前201—前152)、耿壽昌等人都曾經對它進行過增訂刪補。《漢書·藝文志》中沒有《九章算術》的書名,但是有許商、杜忠二人所著的《算術》,因此有人推斷其中或者也含有許、杜二人的工作。1984年,湖北江陵張家山西漢早期古墓出土《算數書》書簡,推算成書當比《九章算術》早一個半世紀以上,內容和《九章算術》極相類似,有些算題和《九章算術》算題文句也基本相同,可見兩書有某些繼承關系。可以說《九章算術》是在長時期里經過多次修改逐漸形成的,雖然其中的某些演算法可能早在西漢之前就已經有了。正如書名所反映的,全書共分九章,一共搜集了二百四十六個數學問題,連同每個問題的解法,分為九大類,每類算是一章。
從數學成就上看,首先應該提到的是:書中記載了當時世界上最先進的分數四則運算和比例演算法。書中還記載有解決各種面積和體積問題的演算法以及利用勾股定理進行測量的各種問題。《九章算術》中最重要的成就是在代數方面,書中記載了開平方和開立方的方法,並且在這基礎上有了求解一般一元二次方程(首項系數不是負)的數值解法。還有整整一章是講述聯立一次方程解法的,這種解法實質上和現在中學里所講的方法是一致的。這要比歐洲同類演算法早出一千五百多年。在同一章中,還在世界數學史上第一次記載了負數概念和正負數的加減法運演算法則。
《九章算術》不僅在中國數學史上佔有重要地位,它的影響還遠及國外。在歐洲中世紀,《九章算術》中的某些演算法,例如分數和比例,就有可能先傳入印度再經阿拉伯傳入歐洲。再如「盈不足」(也可以算是一種一次內插法),在阿拉伯和歐洲早期的數學著作中,就被稱作「中國演算法」。現在,作為一部世界科學名著,《九章算術》已經被譯成許多種文字出版。
《算經十書》中的第三部是《海島算經》,它是三國時期劉徽(約225—約295)所作。這部書中講述的都是利用標桿進行兩次、三次、最復雜的是四次測量來解決各種測量數學的問題。這些測量數學,正是中國古代非常先進的地圖學的數學基礎。此外,劉徽對《九章算術》所作的注釋工作也是很有名的。一般地說,可以把這些注釋看成是《九章算術》中若干演算法的數學證明。劉徽注中的「割圓術」開創了中國古代圓周率計算方面的重要方法(參見本書第98頁),他還首次把極限概念應用於解決數學問題。
《算經十書》的其餘幾部書也記載有一些具有世界意義的成就。例如《孫子算經》中的「物不知數」問題(一次同餘式解法,參見本書第106頁),《張丘建算經》中的「百雞問題」(不定方程問題)等等都比較著名。而《緝古算經》中的三次方程解法,特別是其中所講述的用幾何方法列三次方程的方法,也是很具特色的。
《綴術》是南北朝時期著名數學家祖沖之的著作。很可惜,這部書在唐宋之際公元十世紀前後失傳了。宋人刊刻《算經十書》的時候就用當時找到的另一部算書《數術記遺》來充數。祖沖之的著名工作——關於圓周率的計算(精確到第六位小數),記載在《隋書·律歷志》中(參見本書第101頁)。
《算經十書》中用過的數學名詞,如分子、分母、開平方、開立方、正、負、方程等等,都一直沿用到今天,有的已有近兩千年的歷史了。
中國古代數學,經過從漢到唐一千多年間的發展,已經形成了更加完備的體系。在這基礎上,到了宋元時期(公元十世紀到十四世紀)又有了新的發展。宋元數學,從它的發展速度之快、數學著作出現之多和取得成就之高來看,都可以說是中國古代數學史上最光輝的一頁。
特別是公元十三世紀下半葉,在短短幾十年的時間里,出現了秦九韶(1202—1261)、李冶(1192—1279)、楊輝、朱世傑四位著名的數學家。所謂宋元算書就指的是一直流傳到現在的這四大家的數學著作,包括:
秦九韶著的《數書九章》(公元1247年);
李冶的《測圓海鏡》(公元1248年)和《益古演段》(公元1259年);
楊輝的《詳解九章演算法》(公元1261年)、《日用演算法》(公元1262年)、《楊輝演算法》(公元1274—1275年),
朱世傑的《算學啟蒙》(公元1299年)和《四元玉鑒》(公元1303年)。
《數書九章》主要講述了兩項重要成就:高次方程數值解法和一次同餘式解法(分別參見本書第119頁和第110頁)。書中有的問題要求解十次方程,有的問題答案竟有一百八十條之多。《測圓海鏡》和《益古演段》講述了宋元數學的另一項成就:天元術(用代數方法列方程,參見本書第121頁);也還講述了直角三角形和內接圓所造成的各線段間的關系,這是中國古代數學中別具一格的幾何學。楊輝的著作講述了宋元數學的另一個重要側面:實用數學和各種簡捷演算法。這是應當時社會經濟發展而興起的一個新的方向,並且為珠算盤的產生創造了條件。朱世傑的《算學啟蒙》不愧是當時的一部啟蒙教科書,由淺入深,循序漸進,直到當時數學比較高深的內容。《四元玉鑒》記載了宋元數學的另兩項成就:四元術(求解高次方程組問題,參見本書第123頁)和高階等差級數、高次招差法(參見本書第131頁)。
宋元算書中的這些成就,和西方同類成果相比:高次方程數值解法比霍納(1786—1837)方法早出五百多年,四元術要比貝佐(1730—1783)①早出四百多年,高次招差法比牛頓(1642—1727)等人早出近四百年。
宋元算書中所記載的輝煌成就再次證明:直到明代中葉之前,中國科學技術的許多方面,是處在遙遙領先地位的。
宋元以後,明清時期也有很多算書。例如明代就有著名的算書《演算法統宗》。這是一部風行一時的講珠算盤的書。入清之後,雖然也有不少算書,但是像《算經十書》、宋元算書所包含的那樣重大的成就便不多見了。特別是在明末清初以後的許多算書中,有 不少是介紹西方數學的。這反映了在西方資本主義發展進入近代科學時期以後我國科學技術逐漸落後的情況,同時也反映了中國數學逐漸融合到世界數學發展總的潮流中去的一個過程。
中國數學發展的歷史表明:中國數學曾經為世界數學的發展作出過卓越的貢獻,只是在近代才逐漸落後了。我們深信,經過努力,中國數學一定能迎頭趕上世界
Ⅸ 我國古代數學名著有哪些
《周髀算經》是中國現存最早的一部數學典籍,成書時間大約在兩漢之間 (紀元之後).也有史家認為它的出現更早,是孕於周而成於西漢,甚至更有人說它出現在紀元前1000年.
《九章算術》約成書於公元紀元前後,它系統地總結了我國從先秦到西漢中期的數學成就.該書作者已無從查考,只知道西漢著名數學家張蒼、耿壽昌等人曾經對它進行過增訂刪補.全書分做九章,一共搜集了246個數學問題,按解題的方法和應用的范圍分為九大類,每一大類作為一章.
南北朝是中國古代數學的蓬勃發展時期,計有《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作問世.
《算經十書》是指漢、唐一千多年間的十部著名數學著作,它們曾經是隋唐時候國子監算學科(國家所設學校的數學科)的教科書。十部算書的名字是:《周髀算經》、《九章算術》、《海島算經》、《五曹算經》、《孫子算經》、《夏侯陽算經》、《張丘建算經》、《五經算術》、《緝古算經》、《綴術》。
公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式;唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式.
賈憲在《黃帝九章演算法細草》中提出開任意高次冪的「增乘開方法」,同樣的方法至1819年才由英國人霍納發現;賈憲的二項式定理系數表與17世紀歐洲出現的「巴斯加三角」是類似的.遺憾的是賈憲的《黃帝九章演算法細草》書稿已佚.
秦九韶是南宋時期傑出的數學家.1247年,他在《數書九章》中將「增乘開方法」加以推廣,論述了高次方程的數值解法,並且例舉20多個取材於實踐的高次方程的解法(最高為十次方程).16世紀義大利人菲爾洛才提出三次方程的解法.另外,秦九韶還對一次同餘式理論進行過研究.
李冶於1248年發表《測圓海鏡》,該書是首部系統論述「天元術」(一元高次方程)的著作,在數學史上具有里程碑意義.尤其難得的是,在此書的序言中,李冶公開批判輕視科學實踐活動,將數學貶為「賤技」、「玩物」等長期存在的士風謬論.
公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和.公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法.公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式.郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式.
公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(Bezout)才提出同樣的解法.朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(Gregory)和公元1676一1678年間牛頓(Newton)才提出內插法的一般公式.
14世紀中、後葉明王朝建立以後,統治者奉行以八股文為特徵的科舉制度,在國家科舉考試中大幅度消減數學內容,於是自此中國古代數學便開始呈現全面衰退之勢.
明代珠算開始普及於中國.1592年程大位編撰的《直指演算法統宗》是一部集珠算理論之大成的著作.但是有人認為,珠算的普及是抑制建立在籌算基礎之上的中國古代數學進一步發展的主要原因之一.
由於演算天文歷法的需要,自16世紀末開始,來華的西方傳教士便將西方一些數學知識傳入中國.數學家徐光啟向義大利傳教士利馬竇學習西方數學知識,而且他們還合譯了《幾何原本》的前6卷(1607年完成).徐光啟應用西方的邏輯推理方法論證了中國的勾股測望術,因此而撰寫了《測量異同》和《勾股義》兩篇著作.鄧玉函編譯的《大測》〔2卷〕、《割圓八線表》〔6卷〕和羅雅谷的《測量全義》〔10卷〕是介紹西方三角學的著作.
Ⅹ 最早記錄在我國古代哪部數學著作中
《周髀算經》是中國現存最早的一部數學典籍,成書時間大約在兩漢之間 (紀元之回後).也有史家認為它答的出現更早,是孕於周而成於西漢,甚至更有人說它出現在紀元前1000年.
《九章算術》約成書於公元紀元前後,它系統地總結了我國從先秦到西漢中期的數學成就.該書作者已無從查考,只知道西漢著名數學家張蒼、耿壽昌等人曾經對它進行過增訂刪補.全書分做九章,一共搜集了246個數學問題,按解題的方法和應用的范圍分為九大類,每一大類作為一章.
南北朝是中國古代數學的蓬勃發展時期,計有《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作問世.
》、《海島算經》等10部數學著作.所以當時的數學教育制度對繼承古代數學經典是有積極意義的.
公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式;唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式.