數學基本公式
1. 數學問題基本公式
你做得不錯,總結歸納了,但是你的題目應該是有問題的
3
行船的問題,大凡是
順水的速度=靜水專速屬度+水速
逆水的=靜水速度-水速
你的那個沒有距離,所以求不出來
2
飛機飛行同航船一樣的
1
路程相同,時間比等於速度反比,所以下山的時間等於2*(3/8)=3/4
5*3/4=15/4
就是山路長,
2. 數學的基本計算公式,越多越好
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
小學數學幾何形體周長 面積 體積計算公式
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
3. 數學最基本地公式是
1 過兩點有且只有一條直線 2 兩點之間線段最短
3 同角或等角的補角相等 4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行 10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行 12兩直線平行,同位角相等
13 兩直線平行,內錯角相等 14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理 有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a+b=c
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a+b=c,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一
點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第
三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它
的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應
線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三
角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平
分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等
於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等
於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半
徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直
平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距
離相等的一條直線
109定理 不在同一直線上的三個點確定一條直線
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦
相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩
弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所
對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它
的內對角
121①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123切線的性質定理 圓的切線垂直於經過切點的半徑
124推論1 經過圓心且垂直於切線的直線必經過切點
125推論2 經過切點且垂直於切線的直線必經過圓心
126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,
圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等於它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積
相等
131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的
兩條線段的比例中項
132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割
線與圓交點的兩條線段長的比例中項
133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那麼切點一定在連心線上
135①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
136定理 相交兩圓的連心線垂直平分兩圓的公共弦
137定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139正n邊形的每個內角都等於(n-2)×180°/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142正三角形面積√3a/4 a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長計算公式:L=n∏R/180
145扇形面積公式:S扇形=n∏R/360=LR/2
146內公切線長= d-(R-r) 外公切線長= d-(R+r)
一、 數
正數:正數大於0
負數:負數小於0
0既不是正數,也不是負數;正數大於負數
整數包括:正整數,0,負整數
分數包括:正分數,負分數
有理數包括:整數,分數/有限小數,無限循環小數
數軸:在直線上取一點表示0(原點),選取單位長度,規定直線上向右的方向為正方向
任何一個有理數(實數)都可以用數軸上的一個點表示,點和數是一一對應的
兩個數只有符號不同,其中一個數為另一個的相反數;兩個互為相反數
0的相反數就是0
在數軸上,表示互為相反數的兩個點,位於原點兩側,且與原點距離相等
數軸上的兩個點表示的數,右邊的總比左邊的大
絕對值:數軸上,一個數所對應的點與原點的距離
正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值是0
兩個負數比較大小,絕對值大的反而小
有理數加法法則:同號相加,不變符號,絕對值相加
異號相加,絕對值相等得0;不等,符合和絕對值大的相同,絕對值相減
一個數加0,仍是這個數
加法交換律:A+B=B+A
加法結合律:(A+B)+C=A + (B+C)
有理數減法法則:減去一個數,等於加上這個數的相反數
有理數乘法法則:兩數相乘,同號得正,異號的負,絕對值相乘;任何數與0相乘,積為0
乘積為1的兩個有理數互為倒數;0沒有倒數
乘法交換律:AB=BA
乘法結合律:(AB)C=A (BC)
乘法分配律:A (B+C) =AB+AC
有理數除法法則:兩個有理數相除,同號得正,異號的負,絕對值相除
0除以任何非0的數都得0;0不能做除數
乘方:求n個相同因數a的積的運算;結果叫冪;a是底數;n是指數;an讀作a的n次冪
有理數混和運演算法則:先算乘方,再乘除,後加減;括弧里的先算
無理數:無限不循環小數,有正負之分。
算數平方根:一個正數x的平方等於a,即x2=a,則x是a的算數平方根,讀作「根號a」
0的算數平方根是0
平方根:一個數x的平方根等於a,即x2=a,則x是a的平方根(又叫:二次方根)
一個正數有兩個平方根,且互為相反數;0隻有一個,是它本身;負數沒有平方根
開平方:求一個數的平方根的運算;a叫做被開方數
立方根:一個數x的立方等於a,即x3=a,則x是a的立方根(又叫:三次方根)
每個數只有一個立方根,正數的是正數;0的是0;負數的是負數
開立方:求一個數的立方根的運算;a叫做被開方數
實數:有理數和無理數的統稱,包括有理數,無理數。相反數、倒數、絕對值的意義相同和有理數的。實數的運演算法則和有理數相同。計算後出現帶根號的無理數要化簡,使被開方數不含分母和開得盡的因數
二、式
代數式:用基本運算符號連接數字或字母的式子;單獨的數字或字母也是代數式
單項式:數字和字母的積;單獨的數字或字母也是單項式;數字因數叫做單項式的系數
多項式:幾個單項式的和;每個單項式叫做多項式的項,不含字母的叫常數項
單項式的次數:一個單項式中,所有字母的指數和;單獨的一個非零數的次數是0
多項的次數:次數最高的項的次數
同類項:所含字母相同,並且相同字母的指數也相同的項
合並同類項:把同類項合並成一項;合並同類項時,系數相加,字母和字母的指數不變
去括弧法則:括弧前面是加號,去括弧運算符號不變
括弧前面是減號,去括弧(一級運算)運算符號變
多重括弧,由裡面的括弧開始去
整式:單項式和多項式的統稱
整式加減運算:先去括弧,再合並同類項,知道式子最簡
同底數冪的乘法:同底數冪相乘,底數不變,指數相加,如am
4. 數學的所有計算公式
差倍問題
差÷(倍數-
1)
=小數
小數×倍數=大數
(
或小數+差=大數
)
植樹問題
1
非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+
1
=全長÷株距-
1
全長=株距×(株數-
1)
株距=全長÷(株數-
1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-
1
=全長÷株距-
1
全長=株距×(株數+
1)
株距=全長÷(株數+
1)
2
封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(
盈+虧)÷兩次分配量之差=參加分配的份數
(
大盈-小盈)÷兩次分配量之差=參加分配的份數
(
大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=
(
順流速度+逆流速度)÷2
水流速度=
(
順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=
(
售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<
1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-
20%)
運算定律共有五個:加法交換律、加法結合律、乘法交換律、乘法結合律、
乘法分配律,要求在理解的基礎上掌握,並能靈活運用。
運算性質指:
一個數加上兩個數的差;
一個數減去兩個數的和;
一個數減去
兩個數的差;
一個數乘以兩個數的商;
一個數除以兩個數的積;
一個數除以兩個
數的商;幾個數的和除以一個數等。這部分內容只是用於簡便運算。
運演算法則包括:
整數四則運演算法則、
小數四則運演算法則、
分數四則運演算法則,
要求在理解的基礎上掌握法則,並能運用法則熟練地進行計算。
公式在小學數學的運用中,重點是兩方面:
1
。運算定律或性質用字母公式表示
加法交換律:
a+b
=
b+a
加法結合律:
(
a+b
)
+c
=
a+
(
b+c
)
乘法交換律:
ab
=
ba
乘法結合律:
(
ab
)
c
=
a
(
bc
)
乘法分配律:
a
(
b+c
)=
ab+ac
2
。幾何形體的周長、面積、體積計算公式
長方形周長:
C
=
2
(
a+b
)
正方形周長:
C
=
4a
圓的周長:
C
=
2
π
r
,或(
π
d
)
長方形面積:
S
=
ab
正方形面積:
S
=
a2
平行四邊形面積:
S
=
ah
圓形面積:
S
=
π
r2
長方體體積:
V
=
abc
表面積
S
=
2
(
ab
+
ac
+
bc
)
正方體體積:
V
=
a3
表面積
S
=
6a2
圓柱體體積:
V
=
π
r2h
表面積
S
=
2
π
rh
+
2
π
r2
要使學生正確理解和掌握基礎知識,教師要認真學習大綱,認真鑽研教材,
正確理解大綱所要求學生掌握基礎知識的深度和廣度,
並要注重在使學生理解與
掌握知識的同時,
培養學生的能力,
能力發展了,
也就更促進對知識的理解和掌
握,它們之間是互相促進,密不可分的。
行程通常可以分為這樣幾類:
相遇問題:速度和×相遇時間=相遇路程;
追及問題:速度差×追及時間=路程差;
流水問題:關鍵是抓住水速對追及和相遇的時間不產生影響;
順水速度=船速+水速逆水速度=船速-水速
靜水速度=(順水速度+逆水速度)÷2
水速=(順水速度-逆水速度)÷2
5. 數學一些基本公式
梯形的面積公式——(上底+下底)X高÷2
長方形的面積公式——長X寬
正方形的面積公式——邊長X邊長
三角形面積公式
——
底*高
除以2
平行四邊形的面積公式——底X高
圓的面積公式——圓周率X半徑X半徑
扇形的面積公式——圓面積÷360X圓心角
長方體的體積公式——長X寬X高
正方體的體積公式——a
3
(3是立方)
圓柱體的體積公式——底面積X高
圓錐體的體積公式——底面積X高÷3
我只知道這些了……
6. 數學常用的公式
初中:平方差公式,完全平方式,一元二次方程求根公式,冪的運算,二次專根式,二次函數屬
高中:餘弦定理,正弦定理,二倍角公式,正切,圓的方程,橢圓公式,雙曲線公式,拋物線公式,離心率,等差數列通項,等比數列通項,向量公式,對數函數,指數函數,冪函數,線性規劃,
7. 數學所有計算公式
體積計算公式:
長方形的周長=(長+寬)×2 C=(a+b)×2
正方形的周長=邊長×4 C=4a
長方形的面積=長×寬 S=ab
正方形的面積=邊長×邊長 S=a·a=a²
三角形的面積=底×高÷2 S=ah÷2
平行四邊形的面積=底×高 S=ah
梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
直徑=半徑×2 d=2r
半徑=直徑÷2 r=d÷2
圓的周長=圓周率×直徑=圓周率×半徑×2 =πd=2πr
圓的面積=圓周率×半徑×半徑
三角形的面積=底×高÷2 S=a×h÷2
正方形的面積=邊長×邊長 S=a×a
長方形的面積=長×寬 S=a×b
平行四邊形的面積=底×高 S=a×h
梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
內角和:三角形的內角和=180度
長方體的體積=長×寬×高 V=abc
長方體(或正方體)的體積=底面積×高 V=Sh
正方體的體積=棱長×棱長×棱長 V=aaa
圓的周長=直徑×π L=πd=2πr
圓的面積=半徑×半徑×π S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。
S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。
S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。
V=Sh
圓錐的體積=1/3底面積×高。
V=1/3Sh