當前位置:首頁 » 語數英語 » 初中數學試題及答案

初中數學試題及答案

發布時間: 2021-08-02 07:30:39

『壹』 初中趣味數學題帶答案

1. 下詩出於清朝數學家徐子雲的著作,請算出詩中有多少僧人?

巍巍古寺在雲中,不知寺內多少僧。

三百六十四隻碗,看看用盡不差爭。

三人共食一隻碗,四人共吃一碗羹。

請問先生明算者,算來寺內幾多僧?

解答:三人共食一隻碗:則吃飯時一人用三分之一個碗,

四人共吃一碗羹:則吃羹時一人用四分之一個碗,

兩項合計,則每人用1/3+1/4=7/12個碗,

設共有和尚X人,依題意得:

7/12X=364

解之得,X=624

2. 小趙,小錢,小孫,小李4人討論一場足球賽決賽究竟是哪個隊奪冠。小趙說:「D對必敗,而C隊能勝。」小錢說:「A隊,C隊勝於B隊敗會同時出現。」小孫說:「A隊,B隊C 隊都能勝。」小李說:「A隊敗,C隊,D隊勝的局面明顯。」

他們的話中已說中了哪個隊取勝,請問你猜對究竟哪個隊奪冠嗎?

解答:小趙,小錢,小孫,小李4人討論一場足球賽決賽究竟是哪個隊奪冠。小趙說:「D 對必敗,而C隊能勝。」小錢說:「A隊,C隊勝與B隊敗會同時出現。」小孫說:「A隊,B 隊C隊都能勝。」小李說:「A隊敗,C隊,D隊勝的局面明顯。」

小趙的話說明D隊敗

小錢的話說明B隊敗

小孫的話說明D隊敗

小李的話說明A隊敗

所以,C隊勝利

3. 有一位農民遇見魔鬼,魔鬼說:"我有一個主意,可以讓你發財!只要你從我身後這座橋走過去,你的錢就會增加一倍,走回來又會增加一倍,每過一次橋,你的錢都能增加一倍,不

過你必須保證每次在你的錢數加倍後要給我a個鋼板,農民大喜,馬上過橋,三次過橋後,口袋剛好只有a個鋼板,付給魔鬼,分文不剩,請有含a的單項式表示農民最初口袋裡的鋼板數。

解答:設最初錢數為x

2[2(2x-a)-a]-a=0

解方程得x=7a/8

4. 有一次,一隻貓抓了20隻老鼠,排成一列。貓宣布了它的決定:首先將站在奇數位上的老鼠吃掉,接著將剩下的老師重新按1、2、3、4…編號,再吃掉所有站在奇數位上的老鼠。如此重復,最後剩下的一隻老鼠將被放生。一隻聰明的老鼠聽了,馬上選了一個位置,最後剩下的果然是它,貓將它放走了!

你知道這只聰明的小老鼠站的是第幾個位置嗎?

解答:排在第16個。第1次能被2整除的剩下了,第2次能被4(2的平方)整除的剩下了,第3次能被8(2的3次方)整除的剩下了,第4次能被16(2的4次方)整除的剩下了,所以只有第16個不會被吃掉。

5. 《孫子算經》是唐初作為「算學」教科書的著名的《算經十書》之一,共三卷,上卷敘述算籌記數的制度和乘除法則,中卷舉例說明籌算分數法和開平方法,都是了解中國古代籌算的重要資料。下卷收集了一些算術難題,「雞兔同籠」問題是其中之一。原題如下:令有雉(雞)兔同籠,上有三十五頭,下有九十四足。問雄、兔各幾何?

解答:設x為雉數,y為兔數,則有

x+y=b,2x+4y=a

解之得:y=b/2-a,

x=a-(b/2-a)

根據這組公式很容易得出原題的答案:兔12隻,雉22隻。

拓展資料:

數學(mathematics或maths,來自希臘語,「máthēma」;經常被縮寫為「math」),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。數學家和哲學家對數學的確切范圍和定義有一系列的看法。

而在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。

『貳』 初三數學試題及答案

1)因為D是AB中點,且FD⊥AB,所以AF=FB
2)連接FD,CF,因為F為三等分點,所以∠ADF=60°,即三角形CDF為等邊,而C是AD中點,所以AC=CF=DF,即DF⊥AF
3)過點F作FM⊥CE,即FM=√3/2,所以BF=√7
設FH=x,所以BH.BF=BE.BC,即(√7-x)√7=3,x=4√7/7

『叄』 初中數學規律題(附答案和講解)

初中數學規律題解題基本方法
初中數學考試中,經常出現數列的找規律題,本文就此類題的解題方法進行探索:
一、基本方法——看增幅
(一)如增幅相等(此實為等差數列):對每個數和它的前一個數進行比較,如增幅相等,則第n個數可以表示為:a+(n-1)b,其中a為數列的第一位數,b為增幅,(n-1)b為第一位數到第n位的總增幅。然後再簡化代數式a+(n-1)b。
例:4、10、16、22、28……,求第n位數。
分析:第二位數起,每位數都比前一位數增加6,增幅相都是6,所以,第n位數是:4+(n-1)×6=6n-2
(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅為等差數列)。如增幅分別為3、5、7、9,說明增幅以同等幅度增加。此種數列第n位的數也有一種通用求法。
基本思路是:1、求出數列的第n-1位到第n位的增幅;
2、求出第1位到第第n位的總增幅;
3、數列的第1位數加上總增幅即是第n位數。
舉例說明:2、5、10、17……,求第n位數。
分析:數列的增幅分別為:3、5、7,增幅以同等幅度增加。那麼,數列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,總增幅為:
〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1
所以,第n位數是:2+ n2-1= n2+1
此解法雖然較煩,但是此類題的通用解法,當然此題也可用其它技巧,或用分析觀察湊的方法求出,方法就簡單的多了。
(三)增幅不相等,但是,增幅同比增加,即增幅為等比數列,如:2、3、5、9,17增幅為1、2、4、8.
(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此類題大概沒有通用解法,只用分析觀察的方法,但是,此類題包括第二類的題,如用分析觀察法,也有一些技巧。
二、基本技巧
(一)標出序列號:找規律的題目,通常按照一定的順序給出一系列量,要求我們根據這些已知的量找出一般規律。找出的規律,通常包序列號。所以,把變數和序列號放在一起加以比較,就比較容易發現其中的奧秘。
例如,觀察下列各式數:0,3,8,15,24,……。試按此規律寫出的第100個數是 。
解答這一題,可以先找一般規律,然後使用這個規律,計算出第100個數。我們把有關的量放在一起加以比較:
給出的數:0,3,8,15,24,……。
序列號: 1,2,3, 4, 5,……。
容易發現,已知數的每一項,都等於它的序列號的平方減1。因此,第n項是n2-1,第100項是1002-1。
(二)公因式法:每位數分成最小公因式相乘,然後再找規律,看是不是與n2、n3,或2n、3n,或2n、3n有關。
例如:1,9,25,49,(),(),的第n為(2n-1)2
(三)看例題:
A: 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案與3有關且............即:n3+1
B:2、4、8、16.......增幅是2、4、8.. .....答案與2的乘方有關 即:2n
(四)有的可對每位數同時減去第一位數,成為第二位開始的新數列,然後用(一)、(二)、(三)技巧找出每位數與位置的關系。再在找出的規律上加上第一位數,恢復到原來。
例:2、5、10、17、26……,同時減去2後得到新數列:
0、3、8、15、24……,
序列號:1、2、3、4、5
分析觀察可得,新數列的第n項為:n2-1,所以題中數列的第n項為:(n2-1)+2=n2+1
(五)有的可對每位數同時加上,或乘以,或除以第一位數,成為新數列,然後,在再找出規律,並恢復到原來。
例 : 4,16,36,64,?,144,196,… ?(第一百個數)
同除以4後可得新數列:1、4、9、16…,很顯然是位置數的平方。
(六)同技巧(四)、(五)一樣,有的可對每位數同加、或減、或乘、或除同一數(一般為1、2、3)。當然,同時加、或減的可能性大一些,同時乘、或除的不太常見。
(七)觀察一下,能否把一個數列的奇數位置與偶數位置分開成為兩個數列,再分別找規律。
三、基本步驟
1、 先看增幅是否相等,如相等,用基本方法(一)解題。
2、 如不相等,綜合運用技巧(一)、(二)、(三)找規律
3、 如不行,就運用技巧(四)、(五)、(六),變換成新數列,然後運用技巧(一)、(二)、(三)找出新數列的規律
4、 最後,如增幅以同等幅度增加,則用用基本方法(二)解題
四、練習題
例1:一道初中數學找規律題
0,3,8,15,24,••••••
2,5,10,17,26,•••••
0,6,16,30,48••••••
(1)第一組有什麼規律?
(2)第二、三組分別跟第一組有什麼關系?
(3)取每組的第7個數,求這三個數的和?
2、觀察下面兩行數
2,4,8,16,32,64, ...(1)
5,7,11,19,35,67...(2)
根據你發現的規律,取每行第十個數,求得他們的和。(要求寫出最後的計算結果和詳細解題過程。)
3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑 排列的珠子,前2002個中有幾個是黑的?
4、 3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……
用含有N的代數式表示規律
寫出兩個連續技術的平方差為888的等式
五、對於數表
1、先看行的規律,然後,以列為單位用數列找規律方法找規律
2、看看有沒有一個數是上面兩數或下面兩數的和或差

『肆』 初中數學60道題目及答案

先化簡,再求值:(a+2)(a-2)+a(1-a),其中a=5
原式=a2-4+a-a2=a-4
當a=5時,原式=5-4=1

江南生態食品加工廠收購了一批質量為10000千克的某種山貨,根據市場需求對其進行粗加工和精加工處理,已知精加工的該種山貨質量比粗加工的質量3倍還多2000千克,求粗加工的該種山貨質量.
解:設粗加工的該種山貨質量為x kg,根據題意,得
x+(3x+2000)=10000.
解得 x=2000.
答:粗加工的該種山貨質量為2000 kg.

2009年有80名教師參加「城鄉教師援助工程」活動,隨機調查後發現,平均每位教師可以讓150名學生受益.請你估算有多少學生將從這項活動中受益.
解:由題意,150×80=12 000(名)
答:有12000名學生將從這項活動中受益.
不等式-3x+1>4的解集是__________.
答案:x<-1

思路分析:

考點解剖:此題考查了解一元一次不等式,注意在不等式兩邊同除以一個負數,不等號方向要改變.

解題思路:根據解一元一次不等式的步驟解題.注意不等號方向的改變.

解答過程:

解:-3x+1>4,-3x>3,x<-1.故填:x<-1

規律總結:解一元一次不等式的常見步驟:去分母、去括弧、移項、合並同類項、化系數為1.

點P(m-1,2m+1)在第二象限,則m的取值范圍是(-½<m<1 )
不等式2-x≤1的解集為______{x︱x≥1}_________.
思路分析:

考點解剖:本題考查了一元一次不等式的解法,題目簡單

解題思路:按照移項、系數化為1等步驟來解答.

解答過程:

解:移項得,-x≤1-2,

合並同類項得,-x≤-1,

系數化為1得,x≥1.

故答案為:x≥1.

規律總結:移項要變號,不等式性質3,不等式兩邊同時乘以或除以一個不為零的負數,不等號的方向要改變.

解不等式2(x―2)≤6―3x,並寫出它的正整數解.

答案:

解:去括弧,得2x―4≤6―3x.

移項,得2x+3x≤6+4.

合並同類項,得5x≤10.

不等式兩邊同除以5,得x≤2.

它的正整數解為1,2.
為了對學生進行愛國主義教育,某校組織學生去看演出,有甲乙兩種票,已知甲乙兩種票的單價比為4:3,單價和為42元.

(1)甲乙兩種票的單價分別是多少元?

(2)學校計劃拿出不超過750元的資金,讓七年級一班的36名學生首先觀看,且規定購買甲種票必須多於15張,有哪幾種購買方案?

為鼓勵學生參加體育鍛煉,學校計劃拿出不超過3200元的資金購買一批籃球和排球,已知籃球和排球的單價比為3:2,單價和為160元.

(1)籃球和排球的單價分別是多少元?

(2)若要求購買的籃球和排球的總數量是36個,且購買的排球數少於11個,有哪幾種購買方案?
某班到畢業時共結余班費1800元,班委會決定拿出不少於270元但不超過300元的資金為老師購買紀念品,其餘資金用於在畢業晚會上給50位同學每人購買一件T恤或一本影集作為紀念品.已知每件T恤比每本影集貴9元,用200元恰好可以買到2件T恤和5本影集.

⑴求每件T恤和每本影集的價格分別為多少元?

⑵有幾種購買T恤和影集的方案?

『伍』 初中數學圓--經典練習題(含答案)

對於已經步入初三的同學們,掌握好有關於圓的知識內容,對於後面接觸弧、扇形、橢圓等相關知識內容都有一定的幫助,一起來看看小編幫大家整理的有關於初中數學圓知識點的內容有哪些吧。

初三數學圓的知識點總結歸納

圓的定義:

(1)平面上到定點的距離等於定長的所有點組成的圖形叫做圓。

(2)平面上一條線段,繞它的一端旋轉360°,留下的軌跡叫圓。

圓心:

(1)如定義(1)中,該定點為圓心

(2)如定義(2)中,繞的那一端的端點為圓心。

(3)圓任意兩條對稱軸的交點為圓心。

(4)垂直於圓內任意一條弦且兩個端點在圓上的線段的二分點為圓心。

註:圓心一般用字母O表示

直徑:通過圓心,並且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。

半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。

圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。

圓的半徑或直徑決定圓的大小,圓心決定圓的位置。

圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。

圓的周長與直徑的比值叫做圓周率。圓的周長除以直徑的商是一個固定的數,把它叫做圓周率,它是一個無限不循環小數(無理數),用字母π表示。計算時,通常取它的近似值,π≈3.14。

直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。

圓的面積公式:圓所佔平面的大小叫做圓的面積。πr^2,用字母S表示。

一條弧所對的圓周角是圓心角的二分之一。

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。

在同圓或等圓中,如果兩條弧相等,那麼他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。

在同圓或等圓中,如果兩條弦相等,那麼他們所對的圓心角相等,所對的弧相等,所對的弦心距也相等。

周長計算公式

1.、已知直徑:C=πd

2、已知半徑:C=2πr

3、已知周長:D=cπ

4、圓周長的一半:12周長(曲線)

5、半圓的長:12周長+直徑

面積計算公式:

1、已知半徑:S=πr平方

2、已知直徑:S=π(d2)平方

3、已知周長:S=π(c2π)平方

點、直線、圓和圓的位置關系

1、點和圓的位置關系

①點在圓內<=>點到圓心的距離小於半徑

②點在圓上<=>點到圓心的距離等於半徑

③點在圓外<=>點到圓心的距離大於半徑

2.過三點的圓不在同一直線上的三個點確定一個圓。

3.外接圓和外心經過三角形的三個頂點可以做一個圓,這個圓叫做三角形的外接圓。外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心。

4.直線和圓的位置關系

相交:直線和圓有兩個公共點叫這條直線和圓相交,這條直線叫做圓的割線。

相切:直線和圓有一個公共點叫這條直線和圓相切,這條直線叫做圓的切線,這個點叫做切點。

相離:直線和圓沒有公共點叫這條直線和圓相離。

5.直線和圓位置關系的性質和判定

如果⊙O的半徑為r,圓心O到直線l的距離為d,那麼

①直線l和⊙O相交<=>d<r;< p=""></r;<>

②直線l和⊙O相切<=>d=r;

③直線l和⊙O相離<=>d>r。

圓和圓定義:

兩個圓沒有公共點且每個圓的點都在另一個圓的外部時,叫做這兩個圓的外離。

兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的外部,叫做兩個圓的外切。

兩個圓有兩個交點,叫做兩個圓的相交。

兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的內部,叫做兩個圓的內切。

兩個圓沒有公共點且每個圓的點都在另一個圓的內部時,叫做這兩個圓的內含。

原理:圓心距和半徑的數量關系:

兩圓外離<=>d>R+r兩圓外切<=>d=R+r兩圓相交<=>R-r<d=r)</d

兩圓內切<=>d=R-r(R>r)兩圓內含<=>dr)

正多邊形和圓

1、正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。

2、正多邊形與圓的關系:

(1)將一個圓n(n≥3)等分(可以藉助量角器),依次連結各等分點所得的多邊形是這個圓的內接正多邊形。

(2)這個圓是這個正多邊形的外接圓。

3、正多邊形的有關概念:

(1)正多邊形的中心——正多邊形的外接圓的圓心。

(2)正多邊形的半徑——正多邊形的外接圓的半徑。

(3)正多邊形的邊心距——正多邊形中心到正多邊形各邊的距離。

(4)正多邊形的中心角——正多邊形每一邊所對的外接圓的圓心角。

4、正多邊形性質:

(1)任何正多邊形都有一個外接圓。

(2)正多邊形都是軸對稱圖形,當邊數是偶數時,它又是中心對稱圖形,正n邊形的對稱軸有n條。(3)邊數相同的正多邊形相似。

練習題

1、已知:弦AB把圓周分成1:5的兩部分,這弦AB所對應的圓心角的度數為________。

2、已知:⊙O中的半徑為4cm,弦AB所對的劣弧為圓的1/3,則弦AB的長為_______cm, AB的弦心距為_____cm。

3、如圖,在⊙O中,AB∥CD,⌒AC的度數為450,則∠COD的度數為_______。

4、如圖,在三角形ABC中,∠A=70°,⊙O截△ABC的三邊所得的弦長相等,則 ∠BOC=( )。

A.140° B.135° C.130° D.125°

熱點內容
猥褒怎麼念 發布:2025-07-22 10:21:39 瀏覽:456
教師技能大賽方案 發布:2025-07-22 09:15:41 瀏覽:92
師德模範事跡簡介 發布:2025-07-22 07:53:42 瀏覽:25
考個教師 發布:2025-07-22 06:50:45 瀏覽:523
課堂點睛五上語文答案 發布:2025-07-22 06:25:33 瀏覽:783
教師角色定位 發布:2025-07-22 05:21:38 瀏覽:10
二年級數學下冊課件 發布:2025-07-22 04:34:56 瀏覽:247
女友本命年送什麼 發布:2025-07-22 03:39:32 瀏覽:410
軟體工程師英語 發布:2025-07-22 01:45:58 瀏覽:620
你的班主任老師 發布:2025-07-22 01:04:08 瀏覽:429