初中數學思路
Ⅰ 初中數學解題基本思路
先說基礎知識部分,掌握好教材書本上的基本習題,這樣能完成比較基礎的填空題,
在說中檔題,基本上分成單一代數題或單一幾何題,或者代數幾何綜合在一起的題目,解題方法也都是不一樣的,代數主要是會計算(注意解題的步驟和簡便演算法,算律的使用等等),會解方程,會看函數的圖像,會看統計圖表,幾何題主要要對圖形的識別認識要清楚,例如一看就知道要證明全等,或者用四邊形的判定及性質,或者要用相似等等知識來解決,培養自己的『形感』。
再說大綜合題,基本上就是考卷上的最後兩題,這些題要求你使用數學知識解題技巧和方法特別靈活,一般地此類題的前幾問都不是特別難,你先有耐心把問題的條件先看清楚之後,考慮多種解題思路和辦法加以解決,例如在坐標系內有正方形邊上有動點求面積或者求解析式的問題,首先看看問題的已知邊長是多少,速度多少,朝哪個方向運動,然後求出相關長度,若求函數關系可以先看看從何處入手,分析,歸納,總結,分類,類比,對比,聯想,構造等等方法都可使用。
另外就是一定基礎要扎實,多做題,在實戰中總結經驗和心得體會。
Ⅱ 初中數學思路
23題一般是一道解直角三角形的題,基本思路是:從直角三角形入手,利用解的度數,先解能解的直角三角形,將解出來的邊用於另一個直角三角形,以此類推,就像放鞭炮一樣,點一個後邊就自然不用再點了;如果兩個或三個直角三角形都不能解,也就是都缺邊或缺角,這時就要設適當的線段為x,用數和x表示其它線段,然後用三角形的定義來建立含 x的方程。
24題一般是應用題,以分式方程和一元二次方程為主,分式方程以行程問題和工程問題為主,行程問題一般設速度為x,找時間等或時間差;工程問題如果有明確的工作量就和行程問題類似,如果沒有明確的工作量,則設單獨完成的時間為x,利用怎麼完成的來列方程;一元二次方程多以,增長率、面積和利潤為主,都有各自的公式,利用公式建立方程即可。希望能幫到你!有問題可以聯系我
Ⅲ 初中數學作題的思路
首先你要把老師講的定理啊什麼的記牢一點,做到了這一點你就要多做課外題了。像我中考的時候數學有很多題型都寫過甚至有原題!做證明題的時候,你要確定你是否把條件都用上了,最好把給的條件標在圖上。像有些做輔助線的題目,你就是要多做。像你有了思路,但還缺條件,再確定條件全部用上
在新課程下,教師也要順應改革的潮流,用新的觀念來引導自己。數學思想是數學的靈魂,數學方法是數學的行為。運用數學方法解決問題的過程就是感性認識不斷積累的過程,當這種量的積累達到一定程序時就產生了質的飛躍,從而上升為數學思想。在初中數學教材中集中了大量的優秀例題和習題,它們所體現的數學知識和數學方法固然重要,但其蘊涵的數學思想卻更顯重要,作為一線教師,要善於挖掘例題、習題的潛在功能。
Ⅳ 如何培養初中數學思維
一、在課堂中培養學生的數學思維
數學思維的培養不是靠說,而且靠我們在平時教學生活中的做。也就是說,數學思維是「只可意會而不可言傳」 的,需要學生在學習中一點一點地「悟」出來. 雖說數學思維的培養需要學生自行整理學習中的感觸,但是,我們也要對學生進行合適的引導。首先,讓學生變被動為主動。傳統的應試教育中,課堂往往是壓抑的,教師在講台上講,學生在下面聽,課堂的主導是教師。 但是,現在我們就要讓學生成為課堂的主導,讓課堂的氣氛「活」起來. 被動學習與主動學習的區別非常大。被動學習雖說能在短期內提高學生的成績,但是學生的興 趣與參與性已經被磨光了,學生很可能會對數學產生厭惡。主動學習則完全不一樣,學生主動參與到學習中,能夠保證學生對數學的長期熱情。
二、一題多解,訓練學生數學思維
每次講完一個解法後,我們可以引導學生 : 「這道題還有別的解法了嗎?」引導學生一題多解,能訓練學生的智力,讓學生敢於質疑,還能調動學生的積極性,培養學生的數學思維。
三、在作業中培養學生的數學思維
對於學生來說,課堂上短短的四十分鍾是遠遠不夠的,因為思維習慣的形成不是一天兩天的事情。因此,教師在給學生布置作業時,在夯實基礎的同時也要考慮拓展學生的思路,在作業中培養學生的數學思維。
教師可以布置一些推導公式之類的作業,讓學生能在拓展思路的同時掌握知識;每單元結束的時候,讓學生畫思維導圖,讓學生系統的對學習過的單元做一次復習; 最後,要定時的進行數學興趣小組的活動,激發學生的頭腦風暴,讓學生真正地在潛移默化中形成數學思維.
作業是檢驗學生對知識的掌握程度的一個重要手段,也是學生開拓思維的一個重要方法. 教師要利用好作業,讓學生學會學習,學會邏輯推理,學會建立數學思維。
Ⅵ 初中數學,求詳解及思路
2^a*5^b=10得到[(2^a)/2]*[(5^b)/5]=[2^(a-1)]*[5^(b-1)]=1=(2^0)*(5^0)
另一個同理,然後
左邊是兩式結合,右邊是(2^0)*(5^0),可以得到證明了
Ⅶ 初中數學題,過程,思路,講解。
以中點為原點,在水平和豎直方向建立坐標系,
設:A(m,n),B(-a,0),C(a,0),
則:(AD)²+(CD)²=m²+n²+a²
(AB)²+(AC)²=(m-a)²+n²+(m+a)²+n²=2(m²+a²+n²)
∴(AB)²+(AC)²=2[(AD)²+(CD)²]
Ⅷ 初中數學解題的幾種思路
隨著對數學對象的研究的深入發展,數學的解題方法需要不斷豐富和完善。數學教師鑽研習題、精通解題方法,能夠進一步促進教師熟練地掌握中學數學教材,夯實解題的基本功,掌握解題技巧,積累豐富教學經驗,提高業務水平和教學能力。本文介紹的幾種解題方法,均是初中數學中最常用的,有些方法甚至是教學大綱明確要求掌握的。
隨著社會科技的高速進步,數學學科的不斷發展,以及對數學對象的深入研究,初中數學的難度越來越大,給學生們帶來無形的學習壓力。數學題目由於難度不斷增加,僅僅靠用傳統的題海戰術來提高解題能力的做法難以收到良好的效果。所以,在數學教學中加深對解題方法的探討,使教師和學生們共同掌握規律性的方法,得到多數人的認可,這也是未來數學教學改革的方向之一。因此,本文通過列舉幾種常見的初中數學解題方法,給予同學們解題思路的指引,以達到掌握解題規律,緩解學習壓力以及提高學習效率的目的。
1 配方解題法
將一個式子或一個式子的某一部分通過恆等變形化為完全平方式或幾個完全平方式的和,這種方法稱之為配方法。通常用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化筒根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2 換元解題法
解數學題時,把某個式子看成一個整體,用一個變數去代替它,從而使問題得到簡化,這叫換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標准型問題標准化、復雜問題簡單化,變得容易處理。換元法又稱輔助元素法、 變數代換法。通過引進新的變數,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來。或者變為熟悉的形式,把復雜的計算和推證簡化。換元的方法有:局部換元、三角換元、均值換元等。換元的種類有:等參量換元、非等量換元。
3 待定系數解題法
它是中學數學中的一種比較常用的方法。有些時候通過題干就能確定出結果含有某種待定的系數,那麼可以通過題目的條件來列出關於待定系數的等式,找出其中的某種關系,從而來解決看似比較困哪的題目。
4 判別式法解題法
可以利用方程式ax2+bx+c=0中△=b2―4ac的定理,它的用處不僅可以用來斷定根的性質,而且對於代數式變形、求解方程組、不等式求解、幾何圖形分析更是一種解題方法。韋達定理最基本的用途在於根據一根求解另一個根或者根據兩個數的和與積,分別求出這兩個數。另外,利用判別式求出方程根的對稱函數以及判斷根的符號,甚者解答二次函數等復雜問題。判別式法應用面廣泛,運用靈活多變,是必須掌握的有效方法之一。
5 面積解題法
在平面幾何版塊中,根據幾何固定的面積公式推導與面積計算相關的性質,利用這種性質和關系證明或者計算面積的方法稱為面積法,利用面積法往往能收到事半功倍的效果。幾何題目中已知量和未知量都可以通過面積公式充分聯系起來,並計算出所需要求證的結果。面積解題法的便捷之處在於善於利用面積法來分析幾何元素間的聯系,適當的時候只要稍添置輔助線就能分析之間的數量關系。
6 反證解題法
反證解題法與正面解題的思路不同之處在於方法預先提出與命題結果截然相反的假設。下一步根據這個假設為起點,按照邏輯層層推理,最後推導出矛盾,以此斷定該假設為假命題,從反面肯定原命題為真命題。反證解題法有兩種,一類為歸謬反證法,另外一類為窮舉反證法。反證法命題證明一般過程為:提出假設;進行歸謬;求出結論。
提出反面假設是該方法的第一步,在做出假設之前,需要熟悉一些反設術語具體像:是與不是,存在或者不存在,是否平行,垂直與否,等於或是不等於,小於還是大於,至少有n個與至多有(n―1)個等等。其中反證解題法的關鍵是歸謬,雖然推出矛盾的過程是靈活多變的,但以反面假設為依據是基礎,否則推導過程將無法進行。通常導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾、與反設矛盾、自相矛盾。
7 其他解題法
①直接推演法:根據題目給定的條件為出發點,把所學的概念、公式、定理帶入題目之中進行推理或運算,最後推導結論,這是解題過程中的傳統方法,我們把這種解法叫做直接推演法。
②答案驗演算法:利用題目尋找合適的驗證條件,再根據下一步的驗證,試圖求出正確答案,同時也可以將提供的參考答案代入題目中進行驗證驗算,確定哪一個答案是正確的,這種方法叫做驗證法(也稱代人法)。這種方法常常運用於定量命題題目之中。
③數字圖形元素法:元素法通常把數字又或者圖形是代入題設條件或結論中去,從而獲得解答。這是特殊元素法的典型特點。
④排除法:由於選擇題的正確答案通常都是唯一的,教師引導學生根據數學知識或推理、演算,排除錯誤的選項,再把其餘的答案進行二次篩選,最終選出正確結論,這種方法的叫排除、篩選法。
⑤作圖法:依據已知的條件,畫出圖形,藉助圖形形象具體的特點把抽象的命題簡單化,以圖象的性質、特點來判斷,做出正確的選擇。這稱為圖解法。圖解法通常應用於選擇題或者是應用題。
⑥分析法:直接按照題目給予的條件和結論,按照邏輯順序一步一步作詳盡的分析、歸納和判斷,繼而不斷計算和推導正確答案,這一類方法稱為分析法。
8 結語
數學學科是學習其他理工科課程的前提和基礎,對學生們以後的工作和生活產生深遠影響。靈活有效的數學解題方法,往往能夠起到事半功倍的作用。教師在數學教學過程中,要善於剖析課程內容的重點和難點,探索不同種途徑構建適合學生的解題方法,從而不斷培養學生的數學思維以及解題能力。