當前位置:首頁 » 語數英語 » 初中數學思想方法

初中數學思想方法

發布時間: 2021-08-03 13:48:58

『壹』 初中數學思想方法主要有哪些

根據大綱’‘精神,初中數學的基本思想主要指轉化、分類、數形結合等基本方法主要指待定系數法、消兒法、配方法、換元法、圖象法等由於數學方法在教材中大都有具體陳述,而數學思想卻是隱含在知識系統之中.這為強化數學思想方法帶來了一定困難_為此.下面談談轉化、分類討論、數形結合等在初中數學中的表現「〕1.轉化思想所謂轉化思想是指一種研究對象在一定條件下轉化為另一種研究對象的思維方式轉化思想是數學思想方法的核心,其它數學思想方法都是轉化的手段或策略)初中數學中運用轉化思想具體表現在以下三個方面:(l)把新問題轉化為原來研究過的問題如有理數減法轉化為加法,除法轉化為乘法等(助把復雜的問題轉化為簡單的問題(,新問題用已有的方法不能或難以解決時,建立新的研究方式如引進負數,建立數軸;變利用逆運算的性質解方程為利用等式的性質解方程,等等。‘2.分類討論思想所謂分類討論是指對於復雜的對象,為了研究的需要.根據對象本質屬性的相同點和差異性,將對象區分為不同種類,通過研究各類對象的性質,從而認識整體的性質的思想方式。在分類討論中要注意標準的同一性.即劃分始終是同一個標准、這個標准必須是科學合理的;分域的互斥性.即所分成的各類既要互不包含.義要使各類總和等於討論的全集;分域的逐級性,有的問題分類後還可在每,類中丙繼續分類。運用分類討論思想指導數學教學,有利於學生歸納、總結所學的數學知識,使之系統化、條理化.並逐步形成一個完整的知識結構網路,這有利於學生嚴密、清晰、合理地探索解題思路,提高數學思維能力。在初中數學中需要分類討淪的問題主要表現個方而:(扮有的數學概念、定理的論證包含多種情況.這類問題需要分類討論。如平面兒何中二角形的分類、四邊形的分類、角的分類、圓周角定理、圓冪定理、弦切角定理等的證明,都涉及到分類i寸論(約解含字毋參數或絕對值符號的為一程、不等式、討論算術根、正比例和反比例的數中二次項系數、,與圖象的開l:]方向等,由於這些參數的取位不同或要去掉絕對值符號就有不同的結果.這類問題需要分類討論(3)有的數學問題.雖結論惟一但導致這結論的前提不盡相同.這類問題也要分類討論3一效形結合思想所謂數形結合是指抽象的數學語言與形象直觀的圖形結合起來.從而實現由抽象向具體轉化的一種思維方式。著名數學家華羅庚說過:數缺形時不直觀,形少數時難人微有些數最關系.藉助於圖形的性質,可以使許多抽象的概念和復雜的關系直觀化、形象化、簡單化,而圖形的一些性質.藉助於數量的計算和分析.得以嚴謹化。在初中階段,數形結合的形可以是數軸、函數的圖象和幾何圖形等等.它們都具有形象化的特點數形結合思想在初中數學中主要表現在以下兩個方面;(l)以形助數,幫助學生深刻理解數學概念如教師可以用數軸上點和實數之間的對應關系來講清相反數、絕對值的概念以及比較兩個數大小的方法;運用函數圖象的性質討淪一元三次方程的根以及討論一7乙一次小等式等等(2)以數助形,幫助學生簡化解題方法。初中數學中還滲透了類比、歸納、聯想等數學思想方法這些思想力一法之間,是相互滲透、互相促進的,在數學教學中要有機地結合起來

『貳』 初中數學思想方法有哪些

中學數學中的數學思想方法

數學思想方法,從接受的難易程度可分為三內個層次:

一是基本容具體的數學
方法,如配方法、換元法、待定系數法、歸納法與演繹法等;二是科學的邏輯方
法,如觀察、歸納、類比、抽象概括等方法,以及分析法、綜合法與反證法等邏
輯方法;三是數學思想,如數形結合的思想、函數與方程的思想、分類討論的思
想及化歸與轉化的思想。
數學思想方法還可以按其他方式進行分類。
例如,
胡炯
濤認為:

最高層次的基本數學思想是數學教材的基礎與起點,整個中學教學的
內容均遵循著基本數學思想的軌跡而展開。
「符號化與變換思想」

「集合與對應
思想」以及「公理化與結構思想」構成了最高層次的基本數學思想。他認為中學
數學基本思想是指:

滲透在中學數學知識與方法中具有普遍而強有力適應性的
本質思想。歸納為十個方面內容:

符號思想、映射思想、化歸思想、分解思想、
轉換思想、參數思想、歸納思想、類比思想、演繹思想、模型思想。

邏輯學中的方法:

分析法、綜合法、反正法、歸納法;具體數
學方法:

配方法、換元法、待定系數法、同一法等

『叄』 初中數學思想方法引導

一.轉化
在有理數的運算中將減法轉化為加法,除法轉化為乘法。在解二元一次方程組時通過消化「二元」為「一元」,這些都是轉化思想方法應用的典型例證。應用轉化的思想,首先要把握好化繁為簡,化難為易,化未知為已知這個轉化的根本方向和基本原則。其次也要掌握好常用的一些轉化的具體方法。
如應用「變形」、「換元」、「添輔助線」等轉化方法。特別是數軸建立,使數與點之間建立了對應關系,使數形的結合和互相轉化有了可能,例如我們可以用數形轉化的思想解絕對值方程|X一2|=3。
從數軸上看,這個絕對值方程表示的幾何意義是,什麼點和數2表示的點的距離等於3 ? 從如圖的數軸可以直觀地得出,這樣的點有兩個,即數5和-1表示的點。

應用轉化的思想解數學題,還有兩點是必須注意的,一是要重視轉化條件,沒有一定的條件就不能轉化,二是不能忽略基礎知識,多項式相乘轉化為單項式乘法求解,而單項式的乘法還要進一步轉化為更基本的有理數乘法和指數運算,因此從某種意義上講,轉化就是把復雜的問題轉化為基本問題。
二.比較
比較是思維和理解的基礎,每當我們學習新知識的時候,我們都會習慣性地思考,它是在什麼舊知識的基礎上建立起來的,這就是比較。
比較可分為類比和對比,類比是相同點的比較,對比是不同點的比較,把列代數式與列算式進行類比,藉助於列算式的經驗來學習列代數式,就能做到以舊推新,有利於新知識的掌握。相反數與倒數是一對很容易混淆的概念,通過比較,找出不同,明確差異,就能避免混淆。
應用比較的思想要注意把類比與對比有機結合,既「比」聯系,又「比」區別。將一元一次不等式與一元一次方程的解法相比較,它們的解法步驟是完全相同的,解法原理是類似的,不同之處有兩點:一是在於不等式兩邊乘以或除以同一個負數時不等號要改變方向;二是不等式的解集是無限多個數。經過這樣求「同」存「異」比較,就能更准確地把握一元一次不等式的解法。
比較的思想方法在數學學習中還有著十分廣泛的應用,如特殊與一般的比較、知識的「縱向」和「橫向」的比較、正確與錯誤的比較等等,重要的是要掌握比較的思想,養成比較的習慣,學會比較的方法。
三.分類
分類是根據研究的需要,按照一定的原則對研究對象的一個劃分,分類的思想也是一種重要的數學思想方法。
初中數學教材中分類思想的應用比比皆是:有理數的分類,直線位置關系的分類等等。
正確完整的分類應該滿足下列原則:⑴按同一標准分類;⑵沒有遺漏;⑶沒有重復。
如把有理數分為:正有理數,負有理數。這就遺漏了既不是正有理數,又不是負有理數的有理數「0」。
分類,能幫助我們把紛繁的材料或研究對象條化、系統化,形成簡化的、有效率的思維方式。需要注意的是應把握好在什麼情況才需要分類及如何分類,盲目的分類及分類不當反而會把簡單的問題復化,把復雜的問題弄得更加復雜。

『肆』 初中數學學習方法:常用的數學思想方法

1、數形結合思想:就是根據數學問題的條件和結論之間的內在聯系,既分析其代數含義,又揭示其幾何意義,使數量關系和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解體思路,使問題得到解決。
2、聯系與轉化的思想:事物之間是相互聯系、相互制約的,是可以相互轉化的。數學學科的各部分之間也是相互聯系,可以相互轉化的。在解題時,如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡。如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動與靜的轉化等等。
3、分類討論的思想:在數學中,我們常常需要根據研究對象性質的差異,分各種不同情況予以考查,這種分類思考的方法,是一種重要的數學思想方法,同時也是一種重要的解題策略。
4、待定系數法:當我們所研究的數學式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母得值就可以了。為此,把已知條件代入這個待定形式的式子中,往往會得到含待定字母的方程或方程組,然後解這個方程或方程組就使問題得到解決。
5、配方法:就是把一個代數式設法構造成平方式,然後再進行所需要的變化。配方法是初中代數中重要的變形技巧,配方法在分解因式、解方程、討論二次函數等問題,都有重要的作用。
6、換元法:在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進一步解決問題的一種方法。換元法可以把一個較為復雜的式子化簡,把問題歸結為比原來更為基本的問題,從而達到化繁為簡,化難為易的目的。
7、分析法:在研究或證明一個命題時,又結論向已知條件追溯,既從結論開始,推求它成立的充分條件,這個條件的成立還不顯然,則再把它當作結論,進一步研究它成立的充分條件,直至達到已知條件為止,從而使命題得到證明。這種思維過程通常稱為「執果尋因」
8、綜合法:在研究或證明命題時,如果推理的方向是從已知條件開始,逐步推導得到結論,這種思維過程通常稱為「由因導果」
9、演繹法:由一般到特殊的推理方法。
10、歸納法:由一般到特殊的推理方法。
11、類比法:眾多客觀事物中,存在著一些相互之間有相似屬性的事物,在兩個或兩類事物之間,根據它們的某些屬性相同或相似,推出它們在其他屬性方面也可能相同或相似的推理方法。類比法既可能是特殊到特殊,也可能一般到一般的推理。

『伍』 初中數學常用思想方法有哪些

非常重要的:逆向思維
1:待定系數法
2:配方法
3:換元法
4:分析法
5:綜合法
6:演繹法
7:歸納法
8:類比法
再要加上你的不懈努力。數學就是要將普通教材吃透,再去攻克難點的題,對於初中差不多是這樣

『陸』 初中數學思想和方法有哪些

所謂數學思想方法是對數學知識的本質認識,是從某些具體的數學內容和對數學的認識過程中提煉上升的數學觀點,他在認識活動中被反復運用,帶有普遍的指導意義,是建立數學和用數學解決問題的指導思想;是在數學地提出問題、解決問題(包括數學內部問題和實際問題)過程中,所採用的各種方式、手段、途徑等。初中數學中常用的數學思想方法有:化歸思想方法、分類思想方法、數形結合的思想方法、函數思想方法、方程思想方法、模型思想方法、統計思想方法、用字母代替數的思想方法、運動變換的思想方法等。

『柒』 初中數學數學思想方法有哪些

初中數學是要方法,主要是做輔助線的辦法,還有幾何變換。

『捌』 初中數學常用思想方法有哪些

1、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式.通過配方解決數學問題的方法叫配方法.其中,用的最多的是配成完全平方式.配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它.
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式.因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用.因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等.
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法.我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決.
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用.
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用.
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法.它是中學數學中常用的方法之一.
6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法.運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決.
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法.反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種).用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論.
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行於、不平行於;垂直於、不垂直於;等於、不等於;大(小)於、不大(小)於;都是、不都是;至少有一個、一個也沒有;至少有n個、至多有(n一1)個;至多有一個、至少有兩個;唯一、至少有兩個.
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木.推理必須嚴謹.導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾.
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果.運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法.
用歸納法或分析法證明平面幾何題,其困難在添置輔助線.面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果.所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到.
9、幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決.所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射.中學數學中所涉及的變換主要是初等變換.有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易.另一方面,也可將變換的觀點滲透到中學數學教學中.將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識.
幾何變換包括:(1)平移;(2)旋轉;(3)對稱.
10、客觀性題的解題方法
選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型.選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面.
填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況.
要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧.下面通過實例介紹常用方法.
(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法.
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法).當遇到定量命題時,常用此法.
(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答.這種方法叫特殊元素法.
(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法.
(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法.圖解法是解選擇題常用方法之一.
(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法.

『玖』 數學常用的數學思想方法有哪些

數學常用的數學思想方法主要有:用字母表示數的思想,數形結合的思想,轉化思想 (化歸思想),分類思想,類比思想,函數的思想,方程的思想,無逼近思想等等。

1.用字母表示數的思想:這是基本的數學思想之一 .在代數第一冊第二章「代數初步知識」中,主要體現了這種思想。

2.數形結合:是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括。

3.轉化思想:在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。

4.分類思想:有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關系等都是通過分類討論的。

5.類比:類比推理在人們認識和改造客觀世界的活動中具有重要意義.它能觸類旁通,啟發思考,不僅是解決日常生活中大量問題的基礎,而且是進行科學研究和發明創造的有力工具.

6.函數的思想 :辯證唯物主義認為,世界上一切事物都是處在運動、變化和發展的過程中,這就要求我們教學中重視函數的思想方法的教學。

7.方程:是初中代數的主要內容.初中階段主要學習了幾類方程和方程組的解法,在初中階段就要形成方程的思想.所謂方程的思想,就是突出研究已知量與未知量之間的等量關系,通過設未知數、列方程或方程組,解方程或方程組等步驟,達到求值目的的解題思路和策略,

(9)初中數學思想方法擴展閱讀:

函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組),然後通過解方程(組)或不等式(組)來使問題獲解。

從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。整體思想方法在代數式的化簡與求值、解方程(組)、幾何解證等方面都有廣泛的應用。

熱點內容
師生迷情八 發布:2025-07-18 11:58:43 瀏覽:478
三字經教學視頻 發布:2025-07-18 11:46:47 瀏覽:45
希臘的歷史 發布:2025-07-18 10:33:00 瀏覽:654
人體中的數學 發布:2025-07-18 07:53:58 瀏覽:951
一級建造師機電教學視頻 發布:2025-07-18 07:50:21 瀏覽:528
班主任工作計劃小學四年級 發布:2025-07-18 05:17:52 瀏覽:912
淺談師德的心得體會 發布:2025-07-18 03:09:46 瀏覽:807
怎麼瀏覽谷歌 發布:2025-07-18 02:29:49 瀏覽:51
之女教師 發布:2025-07-18 01:03:04 瀏覽:369
奧數物理 發布:2025-07-17 23:41:12 瀏覽:318