當前位置:首頁 » 語數英語 » 數學一考研

數學一考研

發布時間: 2021-08-08 20:10:19

1. 考研數學什麼

考研數學一
高等數學、線性代數、概率論與數理統計
考研數學二
高等數學、線性代數
考研數學三
微積分、線性代數、概率論與數理統計

2. 考研數學1包括哪些內容

考研數學從卷種上來看是分為數學一、數學二和數學三,從所考難度、考試范圍及適用專業這幾個方面,能很好的區分考研數學一、二、三,請同學一定要注意。

  • 就所考范圍:

數一與數三在題目類型的分布上是一致的,1-4、9-12、15-19屬於高等數學的題目,5-6、13、20-21屬於線性代數的題目,7-8、14、22-23屬於概率論與數理統計的題目;而數學二不同,1-6、9-13、15-21均是高等數學的題目,7-8、14、22-23為線性代數的題目。

也就是說數學一和數學三會考高等數學、線性代數、概率論與數理統計,數學二隻考高等數學、線性代數。

可以從上面的題型分布看出:

1、線性代數數學一、二、三均考察線性代數這門學科,而且所佔比例均為22%,從歷年的考試大綱來看,數一、二、三對線性代數部分的考察區別不是很大,唯一不同的是數一的大綱中多了向量空間部分的知識,不過通過研究近五年的考試真題,我們發現對數一獨有知識點的考察只在09、10年的試卷中出現過,其餘年份考查的均是大綱中共同要求的知識點。所以根據以往的經驗來看,今年的考研數學中數一、數二、數三線性代數部分的題目也不會有太大的差別!

2、概率論與數理統計數學二不考察,數學一與數學三均佔22%,從歷年的考試大綱來看,數一比數三多了區間估計與假設檢驗部分的知識,但是對於數一與數三的大綱中均出現的知識在考試要求上也還是有區別的,比如數一要求了解泊松定理的結論和應用條件,但是數三就要求掌握泊松定理的結論和應用條件,廣大的考研學子們都知道大綱中的「了解」與「掌握」是兩個不同的概念,因此,建議廣大考研黨在復習概率這門學科的時候一定要對照歷年的考試大綱,不要做無用功!3、高等數學數學一、二、三均考察,而且所佔比重最大,數一、三的試卷中所佔比例為56%,數二所佔比例78%。由於考察的內容比較多,故我們只從大的方向上對數一、二、三做簡單的區別。以同濟六版教材為例,數一考察的范圍是最廣的,基本涵蓋整個教材(除課本上標有*號的內容);數二不考察向量代數與空間解析幾何、三重積分、曲線積分、曲面積分以及無窮級數;數三不考察向量空間與解析幾何、三重積分、曲線積分、曲面積分以及所有與物理相關的應用。

  • 就難度而言:

數學一和數學三不相上下,都不容易,數學二相對來說要簡單

  • 就適用專業:

數學一主要適用於理工學類,數學二適用於農、林、地、礦、油等專業,數學三適用於經濟學及管理學類。

綜上所述:

如果學的是自動化,是要數學一,數學一所考范圍已經在上面的內容作了詳細的闡述。數學一是這三類裡面最難的一類,請不要忽視,加油!祝金榜題名!

3. 考研數學考的是什麼內容

考研時的知識點基本上都是高數、線代與概率論的知識點。一般統考不會超過課本知識,但是難度比課本習題難度大很多。一般可以參考每年的數學考研大綱。數學一考研數學內容:

高等數學

一、函數、極限、連續

考試內容:函數的概念及表示法函數的有界性、單調性、周期性和奇偶性復合函數、反函數、分段函數和隱函數

二、一元函數微分學

考試內容:導數和微分的概念導數的幾何意義和物理意義函數的可導性與連續性之間的關系平面曲線的切線和法;線導數和微分的四則運算基本初等函數的導數復合函數、反函數、隱函數以及參數方程所確定的函數的微分法高階導數。

一階微分形式的不變性微分中值定理洛必達(L'Hospital)法則函數單調性的判別函數的極值函數圖形的凹凸性、拐點及漸近線函數圖形的描繪函數的最大值與最小值弧微分曲率的概念曲率圓與曲率半徑

四、向量代數和空間解析幾何

考試內容:向量的概念向量的線性運算向量的數量積和向量積向量的混合積兩向量垂直、平行的條件兩向量的夾角向量的坐標表達式及其運算單位向量方向數與方向餘弦曲面方程和空間曲線方程的概念

平面方程直線方程平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件點到平面和點到直線的距離球面柱面旋轉曲面常用的二次曲面方程及其圖形空間曲線的參數方程和一般方程空間曲線在坐標面上的投影曲線方程

五、多元函數微分學

考試內容:多元函數的概念二元函數的幾何意義二元函數的極限與連續的概念有界閉區域上多元連續函數的性質多元函數的偏導數和全微分全微分存在的必要條件和充分條件多元復合函數、隱函數的求導法二階偏導數方向導數和梯度空間曲線的切線和法平面曲面的切平面和法線二元函數的二階泰勒公式多元函數的極值和條件極值多元函數的最大值、最小值及其簡單應用

六、多元函數積分學

考試內容:二重積分與三重積分的概念、性質、計算和應用兩類曲線積分的概念、性質及計算兩類曲線積分的關系格林(Green)公式平面曲線積分與路徑無關的條件二元函數全微分的原函數兩類曲面積分的概念、性質及計算兩類曲面積分的關系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及計算曲線積分和曲面積分的應用

七、無窮級數

考試內容常數項級數的收斂與發散的概念收斂級數的和的概念級數的基本性質與收斂的必要條件幾何級數與級數及其收斂性正項級數收斂性的判別法交錯級數與萊布尼茨定理任意項級數的絕對收斂與條件收斂函數項級數的收斂域與和函數的概念冪級數及其收斂半徑、收斂區間(指開區間)和收斂域

冪級數的和函數冪級數在其收斂區間內的基本性質簡單冪級數的和函數的求法初等函數的冪級數展開式函數的傅里葉(Fourier)系數與傅里葉級數狄利克雷(Dirichlet)定理函數在上的傅里葉級數函數在上的正弦級數和餘弦級數

八、常微分方程

考試內容:常微分方程的基本概念變數可分離的微分方程齊次微分方程一階線性微分方程伯努利(Bernoulli)方程全微分方程可用簡單的變數代換求解的某些微分方程可降階的高階微分方程線性微分方程解的性質及解的結構定理二階常系數齊次線性微分方程高於二階的某些常系數齊次線性微分方程簡單的二階常系數非齊次線性微分方程歐拉(Euler)方程微分方程的簡單應用

線性代數

一、行列式

考試內容行列式的概念和基本性質行列式按行(列)展開定理

二、矩陣

考試內容:矩陣的概念矩陣的線性運算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉置逆矩陣的概念和性質矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價分塊矩陣及其運算

三、向量

考試內容:向量的概念向量的線性組合與線性表示向量組的線性相關與線性無關向量組的極大線性無關組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關系向量空間及其相關概念維向量空間的基變換和坐標變換過渡矩陣向量的內積線性無關向量組的正交規范化方法規范正交基正交矩陣及其性質

四、線性方程組

考試內容:線性方程組的克拉默(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件線性方程組解的性質和解的結構齊次線性方程組的基礎解系和通解解空間非齊次線性方程組的通解

五、矩陣的特徵值和特徵向量

考試內容:矩陣的特徵值和特徵向量的概念、性質相似變換、相似矩陣的概念及性質矩陣可相似對角化的充分必要條件及相似對角矩陣實對稱矩陣的特徵值、特徵向量及其相似對角矩陣

六、二次型

考試內容:二次型及其矩陣表示合同變換與合同矩陣二次型的秩慣性定理二次型的標准形和規范形用正交變換和配方法化二次型為標准形二次型及其矩陣的正定性

概率論與數理統計

一、隨機事件和概率

考試內容:隨機事件與樣本空間事件的關系與運算完備事件組概率的概念概率的基本性質古典型概率幾何型概率條件概率概率的基本公式事件的獨立性獨立重復試驗

二、隨機變數及其分布

考試內容:隨機變數隨機變數分布函數的概念及其性質離散型隨機變數的概率分布連續型隨機變數的概率密度常見隨機變數的分布隨機變數函數的分布

三、多維隨機變數及其分布

考試內容:多維隨機變數及其分布二維離散型隨機變數的概率分布、邊緣分布和條件分布二維連續型隨機變數的概率密度、邊緣概率密度和條件密度隨機變數的獨立性和不相關性常用二維隨機變數的分布兩個及兩個以上隨機變數簡單函數的分布

四、隨機變數的數字特徵

考試內容:隨機變數的數學期望(均值)、方差、標准差及其性質隨機變數函數的數學期望矩、協方差、相關系數及其性質

五、大數定律和中心極限定理

考試內容:切比雪夫(Chebyshev)不等式切比雪夫大數定律伯努利(Bernoulli)大數定律辛欽(Khinchine)大數定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列維-林德伯格(Levy-Lindberg)定理

六、數理統計的基本概念

考試內容:總體個體簡單隨機樣本統計量樣本均值樣本方差和樣本矩分布分布分布分位數正態總體的常用抽樣分布

七、參數估計

考試內容:點估計的概念估計量與估計值矩估計法最大似然估計法估計量的評選標准區間估計的概念單個正態總體的均值和方差的區間估計兩個正態總體的均值差和方差比的區間估計

八、假設檢驗

考試內容:顯著性檢驗假設檢驗的兩類錯誤單個及兩個正態總體的均值和方差的假設檢驗

(3)數學一考研擴展閱讀:

一、須使用數學一的招生專業

1.工學門類中的力學、機械工程、光學工程、儀器科學與技術、冶金工程、動力工程及工程熱物理、電氣工程、電子科學與技術、信息與通信工程、控制科學與工程、網路工程、電子信息工程、計算機科學與技術、土木工程、測繪科學與技術、交通運輸工程、船舶與海洋工程、航空宇航科學與技術、兵器科學與技術、核科學與技術、生物醫學工程等20個一級學科中所有的二級學科、專業。

2.授工學學位的管理科學與工程一級學科。

二、須使用數學二的招生專業

工學門類中的紡織科學與工程、輕工技術與工程、農業工程、林業工程、食品科學與工程等5個一級學科中所有的二級學科、專業。

三、須選用數學一或數學二的招生專業(由招生單位自定)

工學門類中的材料科學與工程、化學工程與技術、地質資源與地質工程、礦業工程、石油與天然氣工程、環境科學與工程等一級學科中對數學要求較高的二級學科、專業選用數學一,對數學要求較低的選用數學二。

四、須使用數學三的招生專業

1.經濟學門類的各一級學科。

2.管理學門類中的工商管理、農林經濟管理一級學科。

3.授管理學學位的管理科學與工程一級學科。

4. 考研的數學一是什麼意思啊

我是工科生,考研數學就考數學一。數學一包含高等數學
線性代數
概率論與數專理統計三大部分,其中屬高等代數是最核心的部分,所佔分數值最大,也最難。與數學一類似的還有數學二
數學三
數學四,其中數學四又稱數學農,難度依次遞減。

5. 考研數學考一哪些

研究生入學考試中,數學是比較特殊的一門,它兼具專業課和公共課的雙重性質,是工學、經濟學、管理學等學科專業碩士研究生入學考試的必考科目,考查內容涉及高等數學、概率統計以及線性代數三個部分,分為四個類型,即數學一、數學二、數學三以及數學四,分別對應對數學要求不同的專業。四個不同類型的考試范圍、難度和側重點不同,例如:數學二不考概率統計,數學一以外高等數學考察內容較少,數學三和數學四對概率統計要求較高。因此,首先考生應該明確自己欲報專業對數學的要求,以便有針對性地進行復習。對於大多數需要考3門公共課的考生來說,數學相對於另外兩門是最難學也最難考的,也因此,歷年來數學在3門公共課各自的平均分中幾乎都是最低的。

大學考研所說的數學一、二、三和四
是根據考研大綱來的,具體內容可以參考每年的考研大綱
他具體描述了一、二、三和四考試內容
一般是一,考試范圍最廣,越到後面考試范圍越小
但這並不是等同於考試的難易,有時候數一並不比數四考試難多少
工學類各專業的數學(一)、數學(二),經濟學類各專業的數學(三)、數學(四)。
金融專業考數幾,要根據具體學校來,有的數三,有的數四。

一最難,其次就是三。
一、二是理工類,一考高數、線代、和概率三門。二不考概率,高數也考得較少,復習起來相對輕松。
三、四是經濟類,他們的高數都考的比較少,叫微積分,不過偏重於概率(比一還多),四考的要少於三,不過具體區別我不大清楚。

6. 考研數學是考哪些內容

考研數學從考試內容上來看,涵蓋了高等數學、線性代數、概率論與數理統計;試卷結構上來看,設有三種題型:選擇題(8道共32分)、填空題(6道共24分)、解答題(9道共94分)。

但因為考研數學從卷種上來看是分為數學一、數學二和數學三,所以就所考難度、考試范圍及適用專業上還是有再區分的,請同學一定要注意。

  • 就所考范圍:

數一與數三在題目類型的分布上是一致的,1-4、9-12、15-19屬於高等數學的題目,5-6、13、20-21屬於線性代數的題目,7-8、14、22-23屬於概率論與數理統計的題目;而數學二不同,1-6、9-13、15-21均是高等數學的題目,7-8、14、22-23為線性代數的題目。

也就是說數學一和數學三會考高等數學、線性代數、概率論與數理統計,數學二隻考高等數學、線性代數。

可以從上面的題型分布看出:

1、線性代數

數學一、二、三均考察線性代數這門學科,而且所佔比例均為22%,從歷年的考試大綱來看,數一、二、三對線性代數部分的考察區別不是很大,唯一不同的是數一的大綱中多了向量空間部分的知識,不過通過研究近五年的考試真題,我們發現對數一獨有知識點的考察只在09、10年的試卷中出現過,其餘年份考查的均是大綱中共同要求的知識點。所以根據以往的經驗來看,今年的考研數學中數一、數二、數三線性代數部分的題目也不會有太大的差別!

2、概率論與數理統計

數學二不考察,數學一與數學三均佔22%,從歷年的考試大綱來看,數一比數三多了區間估計與假設檢驗部分的知識,但是對於數一與數三的大綱中均出現的知識在考試要求上也還是有區別的,比如數一要求了解泊松定理的結論和應用條件,但是數三就要求掌握泊松定理的結論和應用條件,廣大的考研學子們都知道大綱中的「了解」與「掌握」是兩個不同的概念,因此,建議廣大考研黨在復習概率這門學科的時候一定要對照歷年的考試大綱,不要做無用功!

3、高等數學

數學一、二、三均考察,而且所佔比重最大,數一、三的試卷中所佔比例為56%,數二所佔比例78%。由於考察的內容比較多,故我們只從大的方向上對數一、二、三做簡單的區別。

以同濟六版教材為例,數一考察的范圍是最廣的,基本涵蓋整個教材(除課本上標有*號的內容);數二不考察向量代數與空間解析幾何、三重積分、曲線積分、曲面積分以及無窮級數;數三不考察向量空間與解析幾何、三重積分、曲線積分、曲面積分以及所有與物理相關的應用。

  • 就難度而言:

數學一和數學三不相上下,都不容易,數學二相對來說要簡單

  • 就適用專業:

數學一主要適用於理工學類,數學二適用於農、林、地、礦、油等專業,數學三適用於經濟學及管理學類。

所以同學在備考的時候,首先要根據往年的研究生招生專業目錄確定自己所要考的是數學一、數學二還是數學三,以及前一年份的大綱來大致確定數學所考范圍。然後可以依照9月份教育部公布的最新考研大綱對復習計劃做微調。不要盲目的開始復習,這樣是會做無用功。

7. 考研數學一和數學二的區別

1、數學一:

①高等數學(函數、極限、連續、一元函數微積分學、向量代數與空間解析幾何、多元 函數的微積分學、無窮級數、常微分方程)

②線性代數(行列式、矩陣、向量、線性方程組、 矩陣的特徵值和特徵向量、二次型)

③概率論與數理統計(隨機事件和概率、隨機變數及其概 率分布、二維隨機變數及其概率分布、隨機變數的數字特徵、大數定律和中心極限定理、數 理統計的基本概念、參數估計、假設檢驗)。

數學二:

①高等數學(函數、極限、連續、一元函數微積分學、常微分方程)

②線性代數(行列式、 矩陣、向量、線性方程組、矩陣的特徵值和特徵向量)。

一般情況下,工科類的為數學一和數學二:

【考數一的專業】

其中工學類中的力學、機械工程、光學工程、儀器科學與技術、冶金工程、動力工程及工程熱物理、電氣工程、電子科學與技術、信息與通信工程、控制科學與工程、計算機科學與技術、土木工程、水利工程、測繪科學與技術、交通運輸工程、船舶與海洋科學與技術、兵器科學與技術、核科學與技術、生物醫學工程等20個一級學科中所有的二級學科和專業,以及授予工學學位的管理科學與工程的一級學科均要求使用數學一考試試卷。

【考數二的專業】

而工學類中的紡織科學與工程、輕工技術與工程、農業工程、林業工程、食品科學與工程等5個一級學科中的二級學科和專業均要求使用是數學二考試試卷。

除此之外,還有一些工科類要求的數學試卷難易程度是由招生單位決定的,比如材料科學與工程、化學工程與技術、地質資料與地質工程、礦業工程、石油與天然氣工程、環境科學與工程等一級學科,對數學要求高的二級學科則選取數學一,要求較低的則選取數學二。

【考數三的專業】

經濟類和管理類的為數學三,經濟類和管理類包括經濟學類的各一級學科、管理學類中的工商管理、農業經濟管理的一級學科和授予管理學學位的管理科學與工程的一級學科。

(7)數學一考研擴展閱讀

全國碩士研究生統一招生考試(Unified National Graate Entrance Examination),簡稱「考研」。是指教育主管部門和招生機構為選拔研究生而組織的相關考試的總稱,由國家考試主管部門和招生單位組織的初試和復試組成。

思想政治理論、外國語、大學數學等公共科目由全國統一命題,專業課主要由各招生單位自行命題(部分專業通過全國聯考的方式進行命題)。碩士研究生招生方式分為全日制和非全日制兩種。培養模式分為學術型碩士和專業型碩士研究生兩種。

選拔要求因層次、地域、學科、專業的不同而有所區別。考研國家線劃定分為A、B類,其中一區實行A類線,二區實行B類線。

一區包括:北京、天津、河北、山西、遼寧、吉林、黑龍江、上海、江蘇、浙江、安徽、福建、江西、山東、河南、湖北、湖南、廣東、重慶、四川、陝西。

二區包括:內蒙古、廣西、海南、貴州、雲南、西藏、甘肅、青海、寧夏、新疆。

熱點內容
2年級的英語 發布:2025-07-05 13:33:31 瀏覽:773
初中物理電動機 發布:2025-07-05 11:48:09 瀏覽:245
慈利教育網 發布:2025-07-05 11:15:09 瀏覽:622
奧特曼黑歷史 發布:2025-07-05 05:13:59 瀏覽:8
2017全國二語文試卷 發布:2025-07-05 02:17:04 瀏覽:679
德陽是哪個省的 發布:2025-07-05 01:20:18 瀏覽:562
歐豪年彩墨教學視頻 發布:2025-07-05 00:38:16 瀏覽:713
教學實踐內容 發布:2025-07-04 21:32:22 瀏覽:431
雲南教育論文 發布:2025-07-04 18:10:10 瀏覽:16
班主任培養總結 發布:2025-07-04 14:40:37 瀏覽:89