當前位置:首頁 » 語數英語 » 小學數學教學論文大全

小學數學教學論文大全

發布時間: 2021-08-12 11:17:22

⑴ 小學數學論文,給幾篇例文

關於「0」

0,可以說是人類最早接觸的數了。我們祖先開始只認識沒有和有,其中的沒有便是0了,那麼0是不是沒有呢?記得小學里老師曾經說過「任何數減去它本身即等於0,0就表示沒有數量。」這樣說顯然是不正確的。我們都知道,溫度計上的0攝氏度表示水的冰點(即一個標准大氣壓下的冰水混合物的溫度),其中的0便是水的固態和液態的區分點。而且在漢字里,0作為零表示的意思就更多了,如:1)零碎;小數目的。2)不夠一定單位的數量……至此,我們知道了「沒有數量是0,但0不僅僅表示沒有數量,還表示固態和液態水的區分點等等。」

「任何數除以0即為沒有意義。」這是小學至中學老師仍在說的一句關於0的「定論」,當時的除法(小學時)就是將一份分成若干份,求每份有多少。一個整體無法分成0份,即「沒有意義」。後來我才了解到a/0中的0可以表示以零為極限的變數(一個變數在變化過程中其絕對值永遠小於任意小的已定正數),應等於無窮大(一個變數在變化過程中其絕對值永遠大於任意大的已定正數)。從中得到關於0的又一個定理「以零為極限的變數,叫做無窮小」。

「105、203房間、2003年」中,雖都有0的出現,粗「看」差不多;彼此意思卻不同。105、2003年中的0指數的空位,不可刪去。203房間中的0是分隔「樓(2)」與「房門號(3)」的(即表示二樓八號房),可刪去。0還表示……

愛因斯坦曾說:「要探究一個人或者一切生物存在的意義和目的,宏觀上看來,我始終認為是荒唐的。」我想研究一切「存在」的數字,不如先了解0這個「不存在」的數,不至於成為愛因斯坦說的「荒唐」的人。作為一個中學生,我的能力畢竟是有限的,對0的認識還不夠透徹,今後望(包括行動)能在「知識的海洋」中發現「我的新大陸」。

關於小學數學課堂教學評價的構想
素質教育要求教師充分挖掘每個學生的潛能,以促進學生素質的全面提高。為此,在小學數學課堂教學中 就要落實「掌握知識、發展智能、陶冶情操」的三維教學目標,使學生成為既有豐富的知識,又有高尚人格的 主體性的一代新人。這里的所謂人格,是指學生的能力特徵和品德特徵的總和。這不僅是小學數學課堂教學的 奮斗目標,也是督導評估小學數學課堂教學的依據。現就小學數學課堂教學評價問題,構想如下:
一、對小學數學課堂教學總體評價的構想
1.教學指導思想是否符合現代教學論原則;通過教與學雙邊活動是否充分調動全體學生的認識過程、情感 過程和意志過程。以促進每個學生掌握知識,培養和提高各種數學能力,完善人格,獲得全面的發展。
2.教學目的要求和教學內容的確定是否有利於全體學生比較系統地掌握小學數學最佳知識結構。即,那些 最基本、最具有代表性的概念、法則、規律、公式和數學思想組成的知識系統,並且是按照小學生身心發展規 律,能被小學生所接受、理解、難易適度的知識系統。
3.教學過程的設計是否有利於學生對知識的理解、技能的形成、潛在智能的開發和提高;是否通過「獲得 知識」和「應用知識」兩種途徑培養和形成學生良好的觀察能力、思維能力、分析和解決問題的能力,以及動 手操作和數學語言表達能力。
4.在課堂教學中是否既突出「面向每一個學生,面向學生的每個方面」的落實,又兼顧「因材施教」的推 進。
5.課堂教學是否較好地體現了「認知結構」、「教材結構」、「教學結構」三者和諧一致的整體關系。
6.全體學生在求知的全過程中,興趣、情感、信念、意志、性格等非智力因素投入的質量與程度如何,發 展趨向是否有利於學生形成良好的心理品質。
7.進行「知識」與「能力」方面的課時教學效果的量化測試和「智能」與「情意」方面相應的課外跟蹤考 查結合。
二、小學數學課堂教學「三維教學目標」評價的構想。
(一)對「掌握知識」的評價構想。
實施素質教育,並不是要改變知識及其應用在課堂教學中的核心地位,並非要降低小學數學課堂教學的質 量,而是對小學數學課堂教學質量所涉及的內容提出了更高、更加廣泛的要求。因此,在教學中應該把知識的 形成過程放在教學的首位,使學生經歷真正的認知過程,獲得具有生命力的有用的知識,掌握具有遷移的生動 的活潑的知識結構。那麼,應該如何評價小學數學課「掌握知識」的教學,筆者認為應包括以下內容:
1.「感知、理解新知」的評價內容。
①為導入新知所提供的感知材料是否充實;
②感知材料的選擇是否包羅新知的本質屬性;
③感知階段的誘導是否便於學生盡快進入新知的最近發現區,展開求知探索;
④新、舊知識交接點的確定,是否便於快速促成學生認知的正遷移,教師的點撥是否有助於激起學生「短 兵相接」的思維交鋒,順利完成認知的「同化」或「順應」;
⑤教學輔助手段的使用,是否有利於學生省時優質地發現和理解新知的本質。
2.「抽象、概括新知」的評價內容。
①思維階梯的鋪設是否有助於學生在揭示新知本質的求知過程中,展開高效的觀察與比較、分析與綜合、 判斷與推理、抽象與概括。
②學生在歸納總結新知的過程中是否經過了一個以具體形象思維為支柱,向抽象邏輯思維過渡,又將已理 解的抽象概念具體化的認知往返歷程。
③學生對已概括的新知理解得是否正確、全面、深入;學生對新知本質抽象概括得是否正確、全面、深入 淺出,表述具體嚴謹;是否達到了課時教學規定的教學目標。
④學生在探求、獲取新知中個性意識傾向性作用的發揮如何,全員參與的競爭質量與程度怎樣。
⑤教師指導學生求知獲取的「投入」與學生學會求知方法,得到收獲的「產出」是否成正比。
(二)對「發展能力」的評價構想。
能力的發展只能在掌握知識的過程中獲得,離開知識,能力就成了空中樓閣。「發展能力一定要結合知識 的傳授過程去進行,知識有其能力價值,它凝聚在知識之中,不思則暗,深思則寬,不著重分析挖掘,不在知 識傳授過程中充分發揮,就會落空。」發展能力必須結合知識體系有目的、有計劃,有序列,有層次地由低級 向高級逐步提高。練,是形成和發展能力的主要途徑。因此,就小學數學綜合課「發展能力」的評價而言,應 包括下列內容:
1.對課堂「半獨立性練習」層次的評價內容。
①給出的題目是否屬於緊扣新知要點的基本型題目;是否便於全體學生直接運用新知,起到鞏固理解,強 化記憶的作用。
②教師在指導學生運用新知的過程中,是否立足於學生主動積極地解決問題,以思維能力的訓練為核心, 突出基本技能的形成,「扶」與「放」適度,不包辦代替學生對新知的再現。
③學生運用新知解答基本型題目的技能和敘述算理,或法則或解題思路的語言表達能力是否達到規定的教 學目標。
④教師在本階段的課堂小結是否切中由學生板演和課堂巡視所反饋問題的要害;「結語」是否有助於學生 對新知要點的再現和發展。
2.對課堂「獨立性練習」層次的評價內容。
①本階段習題設計是否由三類不同要求的題構成;這些題目的編排是否便於培養和提高學生獨立運用知識 解決問題的能力。三類題目的要求如下:
低檔題:比基本型題目稍有變化,其目的是讓學生獨立運用新知解題形成技能,加深對新知的理解和記憶 。
中檔題:以新知為主體的綜合型題目,題目的編排既突出適度的綜合性,又帶有一定的思考性色彩,用以 培養和訓練學生解題的綜合能力和靈活性。
高檔題:思考性較強,略有難度的題目。這類題目不超越學生的知識范圍和思維能力的限制,用以解決「 吃不飽」學生的心理需求和「吃得飽」學生競爭意識的激勵,推進學生的求知慾和好勝心。
②在本階段中, 教師是否給予學生充足的獨立練習時間(區間為10至15分鍾);是否較好地完成本階段課 時教學任務,達到規定的教學目標。
3.對「獨立練習交流與課堂總結」層次的評價內容。
①教師在組織學生進行獨立練習交流中,是否為學生創設了寬松、和諧、自信、民主的課堂氛圍。
②教師對學生的解題交流與評定是否立足於培養學生思維的求異性、廣闊性、創造性;是否致力於培養學 生勇於探索、不斷進取、一絲不苟、精益求精的學習品質。
師生合作的課堂總結是否提綱挈領,簡明扼要,便於學生回顧求知過程,掌握新知要點,獲得求知啟迪 。
(三)對「陶冶情操」的評價構想。
人的智力商數是先天已有的,而情意商數卻是後天的培養和努力的結果。科學界已提出:一個人的「智商 」只佔其成功要素的20%,真正決定人類智慧的不是「智商」,而是「情商」。因此,一個具有主體性的人, 其核心素質是高尚的人格。通過小學數學課堂教學去陶冶學生應具備的道德情操、科學品質,已是當務之急。 為此,學生在求知過程中情意因素投入的質量與程度,應當作為評價教師課堂教學水平的一項重要內容。應該 評價教師在課堂教學中,是否把「陶冶情操」與「掌握知識」、「發展能力」同步進行,有機結合;是否做到 為此不遺餘力,持之以恆。
總括起來說,學生的「認識過程」、「情感過程」和「意志過程」是緊密聯系在一起的三個方面。學生從 事學習的正確認識是情感活動和意志活動的基礎;良好的情感又能推進學生的認識和行動;而堅強的意志則能 使學生鍥而不舍地提高認識和陶冶情操,去完成既定的學習任務。評價學生的「認識過程」,旨在界定學生揭 示事物的本質以及事物間的關系和規律的水平,為教師提供課堂教學改革的信息,有助於在教學中更好地發揮 教師的主導作用和學生的主體性,促進學生掌握知識,獲得智力技能和開拓學生的創造能力。評價學生的「情 感過程」,在於使教師在課堂教學中更加重視學生良好的情感和情操的培養。評價學生的「意志過程」,使教 師明確良好的意志品質是學生成才的必備素質,在教學中加強砥礪學生意志的教學力度,使學生具有高尚的學 習目的,在求知中勝不驕,敗不餒,知難勇進,百折不撓,不達目的決不罷休。
據上所述,小學數學課堂教學應該圍繞學生的「認識過程」、「情感過程」和「意志過程」去評價教與學的雙邊活動

學數學就是為了能在實際生活中應用,數學是人們用來解決實際問題的,其實數學問題就產生在生活中。比如說,上街買東西自然要用到加減法,修房造屋總要畫圖紙。類似這樣的問題數不勝數,這些知識就從生活中產生,最後被人們歸納成數學知識,解決了更多的實際問題。
我曾看見過這樣的一個報道:一個教授問一群外國學生:「12點到1點之間,分針和時針會重合幾次?」那些學生都從手腕上拿下手錶,開始撥表針;而這位教授在給中國學生講到同樣一個問題時,學生們就會套用數學公式來計算。評論說,由此可見,中國學生的數學知識都是從書本上搬到腦子中,不能靈活運用,很少想到在實際生活中學習、掌握數學知識。
從這以後,我開始有意識的把數學和日常生活聯系起來。有一次,媽媽烙餅,鍋里能放兩張餅。我就想,這不是一個數學問題嗎?烙一張餅用兩分鍾,烙正、反面各用一分鍾,鍋里最多同時放兩張餅,那麼烙三張餅最多用幾分鍾呢?我想了想,得出結論:要用3分鍾:先把第一、第二張餅同時放進鍋內,1分鍾後,取出第二張餅,放入第三張餅,把第一張餅翻面;再烙1分鍾,這樣第一張餅就好了,取出來。然後放第二張餅的反面,同時把第三張餅翻過來,這樣3分鍾就全部搞定。
我把這個想法告訴了媽媽,她說,實際上不會這么巧,總得有一些誤差,不過演算法是正確的。看來,我們必須學以致用,才能更好的讓數學服務於我們的生活。
數學就應該在生活中學習。有人說,現在書本上的知識都和實際聯系不大。這說明他們的知識遷移能力還沒有得到充分的鍛煉。正因為學了不能夠很好的理解、運用於日常生活中,才使得很多人對數學不重視。希望同學們到生活中學數學,在生活中用數學,數學與生活密不可分,學深了,學透了,自然會發現,其實數學很有用處。

⑵ 小學數學論文

給你篇範文看看吧。
題目: 貼近生活,化繁為簡
------將數學問題轉化到實際生活中來
中山市華僑中學 數學 林綿
「數學問題生活化」這是新課改數學教學理念之一。面對復雜繁瑣的數學問題,教師如果選擇的是直接的授課式灌輸教學,吸引的只是基礎好聰明靈活的學生,而有一大部分學生會覺得問題枯燥乏味,難以理解。如果可以轉化形式,把問題放入到實際生活中來,這樣會使得問題簡單化,而且可以豐富課堂,使得大多數學生願意接受老師的導,將思維放到自己平時熟悉的情境中,化繁為簡,從而去分析解決問題。在教學實踐中,我發現,只有教師導得好,學生的思維一旦打開,就如找到了泉眼,源源不斷的解法接踵而來,興趣培養出來了,數學學習就好像不再困難,學生自然就變被動學習為主動學習了。
思維是解題的關鍵,教師交給學生的應該是解決問題的能力-----即是思維的方向,而不是單一的方法或者答案。在教學中,我們常常容易將學生思維格式化,即告訴學生公式,結論,這一類題型該如何解決等等。。。。。。。這樣會使學生變得按部就班,不願意思考,思想的源泉一旦枯竭,數學學習就變得被動甚至討厭學習。因為我們知道,數學問題是多變的,同一個公式推導方法都有很多種,同一類型的題形式也是變換多樣的,今天我們教給學生的,考試不一定考到。「授之以魚不如授之以漁」,教給學生思考的方法,以不變應萬變,只有這樣,學生才有自信去迎接挑戰。
數學教學過程中,有些問題復雜,有些問題關系難理清,怎樣把問題簡單化,吸引大多數的學生動手去分析問題,這就要我們在教學中善於改變教法,簡化問題,使學生敢於去跟著老師思考問題。有很多的數學問題與實際生活聯系緊密,在教學中把數學問題生活化,創設問題情境,抽象復雜關系為簡單關系,這會使老師教得輕松,學生學得有味。
初中階段的學生最害怕應用題,一段文字里的關系,常常弄得學生暈頭轉向,等量關系找對了,數量關系又不清不楚。如果可以把問題轉為生活中具體的東西,問題就簡單化了。
例如一道行程關系應用題:肖明從家到學校上課,開始時以每分鍾走50米的速度走了2分鍾,這時他發現,若根據以往上學的經驗,再按這個速度走下去,將要遲到2分鍾。於是他立即加快速度,每分鍾多走了10米,結果早到了2分鍾。肖明家到學校有多遠?
分析:解應用題我們知道是找等量關系,可以設肖明家到學校有X米遠。等量關系即是:原來走所用的時間與改速後所用時間的關系。但這時,學生會很迷糊,一個遲到,一個早到,到底是否剛好准時到呢?問題出現,遲遲不敢動筆,如果教師此時把關系——實際比原來少用了四分鍾,答案直接告訴學生,那樣學生會依葫蘆畫瓢,關系是找對了,可是還是一知半解,為什麼呢?這樣的授法會使學生覺得數學深不可測,懼怕心理會產生。如果我們可以引導學生聯系實際生活,把問題放在我們上午上學時,本來我應該7:00到學校,會遲到2分鍾,即7:02分到校,但我改變了速度,所以早到即6:58到了學校。這樣,關系顯而易見,後來比原來少用了四分鍾,這樣可列方程為:(X-50*2)/50=(X-50*2)/(50+10)+4
這道題這樣分析學生基本上都可以自己得到關系,再遇到類似問題,學生就可以把這種方法結合來用,數學也就不困難了。
函數關系型題,也是學生害怕的一種題,兩個變數之間的關系,單一簡單還容易解決,稍微復雜一些的,學生就覺得束手無策。
例如:某旅社有客房120間,每間房間的日租金為50元,每天都客滿。旅社裝修後要提高日租金,經市場調查,如果一間房的日租金增加5元,則客房每天會出租減少6間,不考慮其他因素,旅社每間房的日租金提到多少元時,客房日租金的總收入最高?
分析:很多學生會考慮設一間房的日租金提高X元。並列出以下式子:Y=(50+X)(120-6X).顯然是錯的,基本的關系是對的,但是沒有處理好增加的5和減少的6的關系。這時老師可以引導學生把問題放到實際生活中,把數據換簡單,若是我們在交易買賣鉛筆時,每減少4角錢,可以賣出多兩只鉛筆,那麼減少2角呢?就是一隻;那1角呢,從而推出X元就可以賣多X/2隻。問題簡單化了,學生好像找到思考的邏輯方向,敢於去討論問題,增加5元與增加一元的區別,增加一元,即減少租出6/5間;增加X元,相當於減少(6/5)X間。這樣問題就迎刃而解,得出關系Y=(50+X)(120-6/5 X)
類似的,還有增長率問題,面積問題等等,這些學生害怕的問題,都可以在生活中找到原型。這樣的教學,在教的過程中不僅簡化了問題,使學生愛學肯學,提高學生的自信心,解題能力和處理問題的應變能力,而且使學生了解原來數學和生活是密切相關的,是有用的,從而使學生重視數學。學習的主動權回來了,學習就生動有趣了。
貼近生活,在生活中,與數學有關的知識太多了,如平時銀行存款,利息與本金的關系,買賣中成本和利潤的關系,生產中,效率和總量的關系等。只要我們細心觀察,在教學中,可以轉化的東西就非常的多。把問題簡單化,引導學生大膽設想,不僅解決的是問題,還可以開發學生思維,使得整堂課活潑生動,把數學的難拋之腦後,有的只是探討,研究,解決,總結,獲取。這樣,師生的收獲會非常豐厚。
貼近生活,化繁為簡。教師在教的過程中大膽設想,把問題生活化,原本枯燥的學習變成身邊觸手可見的事實,這會使學生學習的興趣越來越高,數學學習就不再困難了。

⑶ 小學數學教學方面的論文,求一篇3000字左右的小學數學論文

解題策略
——探索→猜測→檢驗→探索→猜測→檢驗→……
2002年推出的小學數學新課程標准與原大綱相比,有很多新的內容,其中「培養創新意識和實踐能力」、鼓勵「猜測」和「探索」,可以說是「新課標」中的靈魂」。「新課標」 雖然僅在「培養學生的計算能力」中提到「重視學生檢驗的習慣」,但我認為,作為數學檢驗習慣和數學檢驗能力的培養,理應貫穿數學教學內容的全部,理應貫穿數學教學的始終。而且如果把探索、猜測和檢驗有機結合起來,將構成一種非常重要的數學解題策略。這種解題策略可公式化為:探索→猜測→檢驗→探索→猜測→檢驗→……,這種解題策略是「培養創新意識和實踐能力」的重要途徑。
解題策略中的「猜測」當然不是毫無依據的瞎猜,而是在探索(至少是初步探索)基礎上有一定根據的猜測。既然是猜測,就不一定正確,就有必要進行檢驗。通過檢驗,又必然出現兩種可能:猜測正確和猜測有誤。如果猜測正確(經得起檢驗),則問題獲得解決;倘若猜測有誤,就應分析探索猜錯的原因,探索改善的途徑,並進一步作出新的較為合理的猜測。對新的猜測當然又必須進行新的檢驗,如此循環往復,直至求出問題的正確答案。這就是「探索→猜測→檢驗→探索→猜測→檢驗→……」的解題策略。
試看下面的例子:
一個籠子里有雞兔兩物,數一數有28個頭,有100個足,問雞兔各幾只?
這種「雞兔同籠」的問題,一般都是用「假設法」求解的,但「假設法」的思路(邏輯思維)難以被一般的小學生理解,如果我們運用「探索→猜測→檢驗→探索→猜測→檢驗→……」這一解題策略。那麼我們可以得到小學低年級學生也能理解和掌握的下列解答。
探索:因為100÷4=25,所以0<兔的只數<25。
猜測:取0~25的中間數13作為兔的只數,則雞的只數為28-13=15(只)
檢驗1:總足數=4×13+2×15=82
探索:因為82<100,所以13<兔只數<25。
猜測2:取13~25的中間數19作為兔只數,則雞的只數為28-19=9(只)
檢驗2:總足數=4×19+2×9=94。
探索:因為94<100,所以19<兔只數<25。
猜測3:取19~25的中間數22作為兔的只數,則雞的只數為28-22=6(只)
檢驗3:總足數=4×22+2×6=100,正好符合題意。
所以籠中有兔22隻,有雞6隻。
上述解答雖然看似麻煩費時,但富含探索意識。其中的不斷合理猜測與檢驗,並對檢驗結果進行校正,從而逐步逼近,直至找到正確答案的過程,符合人類探索、發現、發明、創造的認識過程,體現了「失敗乃成功之母」的認識特點,對學生具有極高的教育價值,真正能使學生的創新意識和探索能力得到有效培養。選取中間數的方法,蘊涵了「中值」、「優選」等重要的數學思想方法,這對學生進一步學習數學是大有裨益的。通過這種解題鍛煉,直接使學生掌握了探索→猜測→檢驗→探索→猜測→檢驗→……這一在實踐中(在數學中當然也不例外)解決問題的重要策略,這將有效地培養學生運用數學從事實踐工作的能力。
如果對第一次猜測導致的誤差執果溯因,進行分析並稍作邏輯推理,則可快捷獲得正確答案。
事實上通過探索和第一次猜測(13隻兔、15隻雞)並檢驗,得知足數82比實際少了100-82=18。導致這一誤差的原因雖然是猜測的兔子只數少於實際兔子只數。在總頭數28不變的情況下,每增加1隻兔,這時相應地減少1隻雞(或者理解為把1隻雞換成1隻兔),總足數便增加2,要增加18隻足,就需要增加18÷2=9(只)兔,因此,兔的只數應為13+9=22(只),從而雞的只數為28-22=6(只),經檢驗,結論正確。
後一解法較前一解法多一點邏輯思維的含量,顯然也是一種優秀的解題方法(策略),如果說前一種解法適合小學低年級的學生,那麼後一種解法完全適合小學高年級學生的認知特點和水平。
在小學數學教學中,根據學生的認知特點和知識水平並結合學生生活實際,精心設計一些探索性和開放性的問題,引導學生運用「探索→猜測→檢驗→探索→猜測→檢驗→……」這一解題策略求解,將有利於對學生創新意識,探索意識和實踐能力的培養。

⑷ 小學數學論文題目大全

學術堂整理來了十個畢業論文題目自供大家進行參考:

1、小學數學教師幾何知識掌握狀況的調查研究

2、小學數學教師教材知識發展情況研究

3、中日小學數學「數與代數」領域比較研究

4、浙江省Y縣縣域內小學數學教學質量差異研究

5、小學數學教師教科書解讀的影響因素及調控策略研究

6、中國、新加坡小學數學新課程的比較研究

7、小學數學探究式教學的實踐研究

8、基於教育游戲的小學數學教學設計研究

9、小學數學教學中創設有效問題情境的策略研究

10、小學數學生活化教學的研究

⑸ 小學數學教學論文

小學數學教學論文(2)

小學數學教學論文--在小學數學教學中培養學生的思維能力

培養學生的思維能力是現代學校教學的一項基本任務。我們要培養社會主義現代化建設所需要的人才,其基本條件之一就是要具有獨立思考的能力,勇於創新的精神。小學數學教學從一年級起就擔負著培養學生思維能力的重要任務。下面就如何培養學生思維能力談幾點看法。

一 培養學生的邏輯思維能力是小學數學教學中一項重要任務

思維具有很廣泛的內容。根據心理學的研究,有各種各樣的思維。在小學數學教學中應該培養什麼樣的思維能力呢?《小學數學教學大綱》中明確規定,要「使學生具有初步的邏輯思維能力。」這一條規定是很正確的。下面試從兩方面進行一些分析。首先從數學的特點看。數學本身是由許多判斷組成的確定的體系,這些判斷是用數學術語和邏輯術語以及相應的符號所表示的數學語句來表達的。並且藉助邏輯推理由一些判斷形成一些新的判斷。而這些判斷的總和就組成了數學這門科學。小學數學雖然內容簡單,沒有嚴格的推理論證,但卻離不開判斷推理,這就為培養學生的邏輯思維能力提供了十分有利的條件。再從小學生的思維特點來看。他們正處在從具體形象思維向抽象邏輯思維過渡的階段。這里所說的抽象邏輯思維,主要是指形式邏輯思維。因此可以說,在小學特別是中、高年級,正是發展學生抽象邏輯思維的有利時期。由此可以看出,《小學數學教學大綱》中把培養初步的邏輯思維能力作為一項數學教學目的,既符合數學的學科特點,又符合小學生的思維特點。

值得注意的是,《大綱》中的規定還沒有得到應有的和足夠的重視。一個時期內,大家談創造思維很多,而談邏輯思維很少。殊不知在一定意義上說,邏輯思維是創造思維的基礎,創造思維往往是邏輯思維的簡縮。就多數學生說,如果沒有良好的邏輯思維訓練,很難發展創造思維。因此如何貫徹《小學數學教學大綱》的目的要求,在教學中有計劃有步驟地培養學生邏輯思維能力,還是值得重視和認真研究的問題。

《大綱》中強調培養初步的邏輯思維能力,只是表明以它為主,並不意味著排斥其他思維能力的發展。例如,學生雖然在小學階段正在向抽象邏輯思維過渡,但是形象思維並不因此而消失。在小學高年級,有些數學內容如質數、合數等概念的教學,通過實際操作或教具演示,學生更易於理解和掌握;與此同時學生的形象思維也會繼續得到發展。又例如,創造思維能力的培養,雖然不能作為小學數學教學的主要任務,但是在教學與舊知識有密切聯系的新知識時,在解一些富有思考性的習題時,如果採用適當的教學方法,可以對激發學生思維的創造性起到促進作用。教學時應該有意識地加以重視。至於辯證思維,從思維科學的理論上說,它屬於抽象邏輯思維的高級階段;從個體的思維發展過程來說,它遲於形式邏輯思維的發展。據初步研究,小學生在10歲左右開始萌發辨證思維。因此在小學不宜過早地把發展辯證思維作為一項教學目的,但是可以結合某些數學內容的教學滲透一些辯證觀點的因素,為發展辯證思維積累一些感性材料。例如,通用教材第一冊出現,可以使學生初步地直觀地知道第二個加數變化了,得數也隨著變化了。到中年級課本中還出現一些表格,讓學生說一說被乘數(或被除數)變化,積(或商)是怎樣跟著變化的。這就為以後認識事物是相互聯系、變化的思想積累一些感性材料。

二 培養學生思維能力要貫穿在小學數學教學的全過程

現代教學論認為,教學過程不是單純的傳授和學習知識的過程,而是促進學生全面發展(包括思維能力的發展)的過程。從小學數學教學過程來說,數學知識和技能的掌握與思維能力的發展也是密不可分的。一方面,學生在理解和掌握數學知識的過程中,不斷地運用著各種思維方法和形式,如比較、分析、綜合、抽象、概括、判斷、推理;另一方面,在學習數學知識時,為運用思維方法和形式提供了具體的內容和材料。這樣說,絕不能認為教學數學知識、技能的同時,會自然而然地培養了學生的思維能力。數學知識和技能的教學只是為培養學生思維能力提供有利的條件,還需要在教學時有意識地充分利用這些條件,並且根據學生年齡特點有計劃地加以培養,才能達到預期的目的。如果不注意這一點,教材沒有有意識地加以編排,教法違背激發學生思考的原則,不僅不能促進學生思維能力的發展,相反地還有可能逐步養成學生死記硬背的不良習慣。

怎樣體現培養學生思維能力貫穿在小學數學教學的全過程?是否可以從以下幾方面加以考慮。

(一)培養學生思維能力要貫穿在小學階段各個年級的數學教學中。要明確各年級都擔負著培養學生思維能力的任務。從一年級一開始就要注意有意識地加以培養。例如,開始認識大小、長短、多少,就有初步培養學生比較能力的問題。開始教學10以內的數和加、減計算,就有初步培養學生抽象、概括能力的問題。開始教學數的組成就有初步培養學生分析、綜合能力的問題。這就需要教師引導學生通過實際操作、觀察,逐步進行比較、分析、綜合、抽象、概括,形成10以內數的概念,理解加、減法的含義,學會10以內加、減法的計算方法。如果不注意引導學生去思考,從一開始就有可能不自覺地把學生引向死記數的組成,機械地背誦加、減法得數的道路上去。而在一年級養成了死記硬背的習慣,以後就很難糾正。

(二)培養學生思維能力要貫穿在每一節課的各個環節中。不論是開始的復習,教學新知識,組織學生練習,都要注意結合具體的內容有意識地進行培養。例如復習20以內的進位加法時,有經驗的教師給出式題以後,不僅讓學生說出得數,還要說一說是怎樣想的,特別是當學生出現計算錯誤時,說一說計算過程有助於加深理解「湊十」的計算方法,學會類推,而且有效地消滅錯誤。經過一段訓練後,引導學生簡縮思維過程,想一想怎樣能很快地算出得數,培養學生思維的敏捷性和靈活性。在教學新知識時,不是簡單地告知結論或計演算法則,而是引導學生去分析、推理,最後歸納出正確的結論或計演算法則。例如,教學兩位數乘法,關鍵是通過直觀引導學生把它分解為用一位數乘和用整十數乘,重點要引導學生弄清整十數乘所得的部分積寫在什麼位置,最後概括出用兩位數乘的步驟。學生懂得算理,自己從直觀的例子中抽象、概括出計算方法,不僅印象深刻,同時發展了思維能力。在教學中看到,有的老師也注意發展學生思維能力,但不是貫穿在一節課的始終,而是在一節課最後出一兩道稍難的題目來作為訓練思維的活動,或者專上一節思維訓練課。這種把培養思維能力只局限在某一節課內或者一節課的某個環節內,是值得研究的。當然,在教學全過程始終注意培養思維能力的前提下,為了掌握某一特殊內容或特殊方法進行這種特殊的思維訓練是可以的,但是不能以此來代替教學全過程發展思維的任務。

(三)培養思維能力要貫穿在各部分內容的教學中。這就是說,在教學數學概念、計演算法則、解答應用題或操作技能(如測量、畫圖等)時,都要注意培養思維能力。任何一個數學概念,都是對客觀事物的數量關系或空間形式進行抽象、概括的結果。因此教學每一個概念時,要注意通過多種實物或事例引導學生分析、比較、找出它們的共同點,揭示其本質特徵,做出正確的判斷,從而形成正確的概念。例如,教學長方形概念時,不宜直接畫一個長方形,告訴學生這就叫做長方形。而應先讓學生觀察具有長方形的各種實物,引導學生找出它們的邊和角各有什麼共同特點,然後抽象出圖形,並對長方形的特徵作出概括。教學計演算法則和規律性知識更要注意培養學生判斷、推理能力。例如,教學加法結合律,不宜簡單地舉一個例子,就作出結論。最好舉兩三個例子,每舉一個例子,引導學生作出個別判斷〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,與先把3和5加在一起再同2相加,結果相同〕。然後引導學生對幾個例子進行分析、比較,找出它們的共同點,即等號左端都是先把前兩個數相加,再同第三個數相加,而等號右端都是先把後兩個數相加,再同第一個數相加,結果不變。最後作出一般的結論。這樣不僅使學生對加法結合律理解得更清楚,而且學到不完全歸納推理的方法。然後再把得到的一般結論應用到具體的計算(如57+28+12)中去並能說出根據什麼可以使計算簡便。這樣又學到演繹的推理方法至於解應用題引導學生分析數量關系,這里不再贅述。

三 設計好練習題對於培養學生思維能力起著重要的促進作用

培養學生的思維能力同學習計算方法、掌握解題方法一樣,也必須通過練習。而且思維與解題過程是密切聯系著的。培養思維能力的最有效辦法是通過解題的練習來實現。因此設計好練習題就成為能否促進學生思維能力發展的重要一環。一般地說,課本中都安排了一定數量的有助於發展學生思維能力的練習題。但是不一定都能滿足教學的需要,而且由於班級的情況不同,課本中的練習題也很難做到完全適應各種情況的需要。因此教學時往往要根據具體情況做一些調整或補充。為此提出以下幾點建議供參考。

(一)設計練習題要有針對性,要根據培養目標來進行設計。例如,為了了解學生對數學概念是否清楚,同時也為了培養學生運用概念進行判斷的能力,可以出一些判斷對錯或選擇正確答案的練習題。舉個具體例子:「所有的質數都是奇數。( )」如要作出正確判斷,學生就要分析偶數裡面有沒有質數。而要弄清這一點,要明確什麼叫做偶數,什麼叫做質數,然後應用這兩個概念的定義去分析能被2整除的數裡面有沒有一個數,它的約數只1和它自身。想到了2是偶數又是質數,這樣就可以斷定上面的判斷是錯誤的。

%

⑹ 小學數學論文

具體的內容肯定是沒有的,不過大概的主題有這么幾個:
教學方法、學生管理(數學課上的)、課堂(比如調動氛圍啊什麼的),還有就是可以寫教學內容中的東西(就是說某一章節的什麼什麼)
我也不是很了解這個,希望能有一點用吧。。

熱點內容
湯晶錦老師 發布:2025-06-26 00:46:06 瀏覽:418
身份證如何驗證 發布:2025-06-26 00:30:59 瀏覽:638
灰絲教師 發布:2025-06-26 00:13:15 瀏覽:620
如何卸載phpnow 發布:2025-06-25 19:33:24 瀏覽:300
啟鵬教育 發布:2025-06-25 17:07:17 瀏覽:270
直線射線線段教學反思 發布:2025-06-25 16:58:03 瀏覽:602
高考數學全國卷一答案 發布:2025-06-25 16:18:43 瀏覽:270
2016小學師德師風實施方案 發布:2025-06-25 15:28:33 瀏覽:759
甲狀腺結節明家訪談 發布:2025-06-25 13:21:39 瀏覽:251
老師我愛您手抄報 發布:2025-06-25 10:05:54 瀏覽:282