當前位置:首頁 » 語數英語 » 中國數學的起源

中國數學的起源

發布時間: 2021-08-16 00:58:47

A. 數學的起源

數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻.

基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態.

代數學可以說是最為人們廣泛接受的「數學」.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一.幾何學則是最早開始被人們研究的數學分支.

直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起.從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程.而其後更發展出更加精微的微積分.

(1)中國數學的起源擴展閱讀

數學名言

外國人物

萬物皆數.——畢達哥拉斯

幾何無王者之道.——歐幾里德

數學是上帝用來書寫宇宙的文字.——伽利略

我決心放棄那個僅僅是抽象的幾何.這就是說,不再去考慮那些僅僅是用來練思想的問題.我這樣做,是為了研究另一種幾何,即目的在於解釋自然現象的幾何。

數學家們都試圖在這一天發現素數序列的一些秩序,我們有理由相信這是一個謎,人類的心靈永遠無法滲入。——歐拉

數學中的一些美麗定理具有這樣的特性: 它們極易從事實中歸納出來, 但證明卻隱藏的極深.數學是科學之王.——高斯

這就是結構好的語言的好處,它簡化的記法常常是深奧理論的源泉.——拉普拉斯(Pierre Simon Laplace 1749-1827)

B. 中國數學發展的歷史

中國數學發展史

中國古代是一個在世界上數學領先的國家,用近代科目來分類的話,可以看出無論在算術、代數、幾何和三角各方而都十分發達。現在就讓我們來簡單回顧一下初等數學在中國發展的歷史。

(一)屬於算術方面的材料
大約在3000年以前中國已經知道自然數的四則運算,這些運算只是一些結果,被保存在古代的文字和典籍中。乘除的運算規則在後來的「孫子算經」(公元三世紀)內有了詳細的記載。中國古代是用籌來計數的,在我們古代人民的計數中,己利用了和我們現在相同的位率,用籌記數的方法是以縱的籌表示單位數、百位數、萬位數等;用橫的籌表示十位數、千位數等,在運算過程中也很明顯的表現出來。「孫子算經」用十六字來表明它,「一從十橫,百立千僵,千十相望,萬百相當。」
和其他古代國家一樣,乘法表的產生在中國也很早。乘法表中國古代叫九九,估計在2500年以前中國已有這個表,在那個時候人們便以九九來代表數學。現在我們還能看到漢代遺留下來的木簡(公元前一世紀)上面寫有九九的乘法口訣。
現有的史料指出,中國古代數學書「九章算術」(約公元一世紀前後)的分數運演算法則是世界上最早的文獻,「九章算術」的分數四則運算和現在我們所用的幾乎完全一樣。
古代學習算術也從量的衡量開始認識分數,「孫子算經」(公元三世紀)和「夏候陽算經」(公元六、七世紀)在論分數之前都開始講度量衡,「夏侯陽算經」卷上在敘述度量衡後又記著:「十乘加一等,百乘加二等,千乘加三等,萬乘加四等;十除退一等,百除退二等,千除退三等,萬除退四等。」這種以十的方冪來表示位率無疑地也是中國最早發現的。
小數的記法,元朝(公元十三世紀)是用低一格來表示,如13.56作1356 。在算術中還應該提出由公元三世紀「孫子算經」的物不知數題發展到宋朝秦九韶(公元1247年)的大衍求一術,這就是中國剩餘定理,相同的方法歐洲在十九世紀才進行研究。
宋朝楊輝所著的書中(公元1274年)有一個1—300以內的因數表,例如297用「三因加一損一」來代表,就是說297=3×11×9,(11=10十1叫加一,9=10—1叫損一)。楊輝還用「連身加」這名詞來說明201—300以內的質數。
(二)屬於代數方面的材料
從「九章算術」卷八說明方程以後,在數值代數的領域內中國一直保持了光輝的成就。
「九章算術」方程章首先解釋正負術是確切不移的,正象我們現在學習初等代數時從正負數的四則運算學起一樣,負數的出現便豐富了數的內容。
我們古代的方程在公元前一世紀的時候已有多元方程組、一元二次方程及不定方程幾種。一元二次方程是借用幾何圖形而得到證明。 不定方程的出現在二千多年前的中國是一個值得重視的課題,這比我們現在所熟知的希臘丟番圖方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中國在公元七世紀的唐代王孝通「緝古算經」已有記載,用「從開立方除之」而求出數字解答(可惜原解法失傳了),不難想像王孝通得到這種解法時的愉快程度,他說誰能改動他著作內的一個字可酬以千金。
十一世紀的賈憲已發明了和霍納(1786—1837)方法相同的數字方程解法,我們也不能忘記十三世紀中國數學家秦九韶在這方面的偉大貢獻。
在世界數學史上對方程的原始記載有著不同的形式,但比較起來不得不推中國天元術的簡潔明了。四元術是天元術發展的必然產物。
級數是古老的東西,二千多年前的「周髀算經」和「九章算術」都談到算術級數和幾何級數。十四世紀初中國元代朱世傑的級數計算應給予很高的評價,他的有些工作歐洲在十八、九世紀的著作內才有記錄。十一世紀時代,中國已有完備的二項式系數表,並且還有這表的編制方法。
歷史文獻揭示出在計算中有名的盈不足術是由中國傳往歐洲的。
內插法的計算,中國可上溯到六世紀的劉焯,並且七世紀末的僧一行有不等間距的內插法計算。
十四世紀以前,屬於代數方面許多問題的研究,中國是先進國家之一。
就是到十八,九世紀由李銳(1773—1817),汪萊(1768—1813)到李善蘭(1811—1882),他們在這一方面的研究上也都發表了很多的名著。
(三)屬於幾何方面的材料
自明朝後期(十六世紀)歐幾里得「幾何原本」中文譯本一部分出版之前,中國的幾何早已在獨立發展著。應該重視古代的許多工藝品以及建築工程、水利工程上的成就,其中蘊藏了豐富的幾何知識。
中國的幾何有悠久的歷史,可靠的記錄從公元前十五世紀談起,甲骨文內己有規和矩二個字,規是用來畫圓的,矩是用來畫方的。
漢代石刻中矩的形狀類似現在的直角三角形,大約在公元前二世紀左右,中國已記載了有名的勾股定理(勾股二個字的起源比較遲)。
圓和方的研究在古代中國幾何發展中佔了重要位置。墨子對圓的定義是:「圓,一中同長也。」—個中心到圓周相等的叫圓,這解釋要比歐幾里得還早一百多年。
在圓周率的計算上有劉歆(?一23)、張衡(78—139)、劉徽(263)、王蕃(219—257)、祖沖之(429—500)、趙友欽(公元十三世紀)等人,其中劉徽、祖沖之、趙友欽的方法和所得的結果舉世聞名。
祖沖之所得的結果π=355/133要比歐洲早一千多年。
在劉徽的「九章算術」注中曾多次顯露出他對極限概念的天才。 在平面幾何中用直角三角形或正方形和在立體幾何中用錐體和長方柱體進行移補,這構成中國古代幾何的特點。
中國數學家善於把代數上的成就運用到幾何上,而又用幾何圖形來證明代數,數值代數和直觀幾何有機的配合起來,在實踐中獲得良好的效果.
正好說明十八、九世紀中國數學家對割圓連比例的研究和項名達(1789—1850)用割圓連比例求出橢圓周長。這都是繼承古代方法加以發揮而得到的(當然吸收外來數學的精華也是必要的)。

(四)屬於三角方面的材料
三角學的發生由於測量,首先是天文學的發展而產生了球面三角,中國古代天文學很發達,因為要決定恆星的位置很早就有了球面測量的知識;平面測量術在「周牌算經」內已記載若用矩來測量高深遠近。

劉徽的割圓術以半徑為單位長求圓內正六邊形,十二二邊形等的每一邊長,這答數是和2sinA的值相符(A是圓心角的一半),以後公元十二世紀趙友欽用圓內正四邊形起算也同此理,我們可以從劉徽、趙友欽的計算中得出7.5o、15o、22.5o、30o、45o等的正弦函數值。

在古代歷法中有計算二十四個節氣的日晷影長,地面上直立一個八尺長的「表」,太陽光對這「表」在地面上的射影由於地球公轉而每一個節氣的影長都不同,這些影長和「八尺之表」的比,構成一個餘切函數表(不過當時還沒有這個名稱)。

十三世紀的中國天文學家郭守敬(1231—1316)曾發現了球面三角上的三個公式。 現在我們所用三角函數名詞:正弦,餘弦,正切,餘切,正割,餘割,這都是我國十六世紀已有的名稱,那時再加正矢和余矢二個函數叫做八線。

在十七世紀後期中國數學家梅文鼎(1633—1721)已編了一本平面三角和一本球面三角的書,平面三角的書名叫「平三角舉要」,包含下列內容:(1)三角函數的定義;(2)解直角三角形和斜三角形;(3)三角形求積,三角形內容圓和容方;(4)測量。這已經和現代平面三角的內容相差不遠,梅文鼎還著書講到三角上有名的積化和差公式。十八世紀以後,中國還出版了不少三角學方面的書籍。

C. 數學起源於哪裡

數學起源於公元前4世紀。公元前6世紀前,數學主要是關於「數」的研究。這一時期在古埃及、巴比倫、印度與中國等地區發展起來的數學,主要是計數、初等算術與演算法,幾何學則可以看作是應用算術。

從公元前6世紀開始,希臘數學的興起,突出了對「形」的研究。數學於是成為了關於數與形的研究。公元前4世紀的希臘哲學家亞里士多德將數學定義為「數學是量的科學。」(其中「量」的涵義是模糊的,不能單純理解為「數量」。)

直到16世紀,英國哲學家培根將數學分為「純粹數學」與「混合數學」。在17世紀,笛卡兒認為:「凡是以研究順序和度量為目的科學都與數學有關。」在19世紀,根據恩格斯的論述, 數學可以定義為:「數學是研究現實世界的空間形式與數量關系的科學。」

從20世紀80年代開始,學者們將數學簡單的定義為關於「模式」的科學:「數學這個領域已被稱為模式的科學, 其目的是要揭示人們從自然界和數學本身的抽象世界中所觀察到的結構和對稱性。」

拓展資料:

學數學意義

學數學的意義就是不光會做老師們純粹為了考大家的題目,更重要的是把這些討厭的問題變成人人都喜聞樂見的實際性成果,數學家們是默默無聞卻強大無比的歷史推進者!

掌握數字規律,訓練邏輯思維,能訓練人們的思維能力.開發腦力.更理性的去認識這個世界.數學一種工具,它邏輯性強,能訓練人們的思維能力;它注重方式方法,能讓你的思維更敏銳;再者就是能幫助你解決一些實際問題 掌握數字規律,訓練邏輯思維,數學是一門基礎學科,除了語言學科以外,其他學科基本上都會運用到數學.意義深遠!

D. 中國數學發展史

中國古代是一個在世界上數學領先的國家,用近代科目來分類的話,可以看出無論在算術、代數、幾何和三角各方而都十分發達。現在就讓我們來簡單回顧一下初等數學在中國發展的歷史。
(一)屬於算術方面的材料

大約在3000年以前中國已經知道自然數的四則運算,這些運算只是一些結果,被保存在古代的文字和典籍中。乘除的運算規則在後來的"孫子算經"(公元三世紀)內有了詳細的記載。中國古代是用籌來計數的,在我們古代人民的計數中,己利用了和我們現在相同的位率,用籌記數的方法是以縱的籌表示單位數、百位數、萬位數等;用橫的籌表示十位數、千位數等,在運算過程中也很明顯的表現出來。"孫子算經"用十六字來表明它,"一從十橫,百立千僵,千十相望,萬百相當。" 和其他古代國家一樣,乘法表的產生在中國也很早。乘法表中國古代叫九九,估計在2500年以前中國已有這個表,在那個時候人們便以九九來代表數學。現在我們還能看到漢代遺留下來的木簡(公元前一世紀)上面寫有九九的乘法口訣。

現有的史料指出,中國古代數學書"九章算術"(約公元一世紀前後)的分數運演算法則是世界上最早的文獻,"九章算術"的分數四則運算和現在我們所用的幾乎完全一樣。

古代學習算術也從量的衡量開始認識分數,"孫子算經"(公元三世紀)和"夏候陽算經"(公元六、七世紀)在論分數之前都開始講度量衡,"夏侯陽算經"卷上在敘述度量衡後又記著:"十乘加一等,百乘加二等,千乘加三等,萬乘加四等;十除退一等,百除退二等,千除退三等,萬除退四等。"這種以十的方冪來表示位率無疑地也是中國最早發現的。

小數的記法,元朝(公元十三世紀)是用低一格來表示,如13.56作1356 。

在算術中還應該提出由公元三世紀"孫子算經"的物不知數題發展到宋朝秦九韶(公元1247年)的大衍求一術,這就是中國剩餘定理,相同的方法歐洲在十九世紀才進行研究。 宋朝楊輝所著的書中(公元1274年)有一個1—300以內的因數表,例如297用"三因加一損一"來代表,就是說297=3×11×9,(11=10十1叫加一,9=10—1叫損一)。楊輝還用"連身加"這名詞來說明201—300以內的質數。

(二)屬於代數方面的材料

從"九章算術"卷八說明方程以後,在數值代數的領域內中國一直保持了光輝的成就。
"九章算術"方程章首先解釋正負術是確切不移的,正象我們現在學習初等代數時從正負數的四則運算學起一樣,負數的出現便豐富了數的內容。

我們古代的方程在公元前一世紀的時候已有多元方程組、一元二次方程及不定方程幾種。
一元二次方程是借用幾何圖形而得到證明。

不定方程的出現在二千多年前的中國是一個值得重視的課題,這比我們現在所熟知的希臘丟番圖方程要早三百多年。

具有x3+px2+qx=A和x3+px2=A形式的三次方程,中國在公元七世紀的唐代王孝通"緝古算經"已有記載,用"從開立方除之"而求出數字解答(可惜原解法失傳了),不難想像王孝通得到這種解法時的愉快程度,他說誰能改動他著作內的一個字可酬以千金。

十一世紀的賈憲已發明了和霍納(1786—1837)方法相同的數字方程解法,我們也不能忘記十三世紀中國數學家秦九韶在這方面的偉大貢獻。

在世界數學史上對方程的原始記載有著不同的形式,但比較起來不得不推中國天元術的簡潔明了。四元術是天元術發展的必然產物。

級數是古老的東西,二千多年前的"周髀算經"和"九章算術"都談到算術級數和幾何級數。十四世紀初中國元代朱世傑的級數計算應給予很高的評價,他的有些工作歐洲在十八、九世紀的著作內才有記錄。十一世紀時代,中國已有完備的二項式系數表,並且還有這表的編制方法。

歷史文獻揭示出在計算中有名的盈不足術是由中國傳往歐洲的。

內插法的計算,中國可上溯到六世紀的劉焯,並且七世紀末的僧一行有不等間距的內插法計算。

E. 中國數學發展史(詳細)

中國數學發展史概述
中國是世界文明古國之一,地處亞洲東部,瀕太平洋西岸。黃河流域和長江流域是中華民族文化的搖籃,大約在公元前2000年,在黃河中下游產生了第一個奴隸制國家──夏朝(前2033-前1562),共經歷十三世、十六王。其後又有奴隸制國家商(前562年—1066年,共歷十七世三十一王)和西周﹝前1027年—前771年,共歷約二百五十七年,傳十一世、十二王﹞。隨後出現了中國歷史上的第一次全國性大分裂形成的時期──春秋(前770年-前476年)戰國(前403年-前221年),春秋後期,中國文明進入封建時代,到公元前221年秦王贏政統一全國,出現了中國歷史上第一個封建帝制國家──秦朝(前221年—前206年),在以後的時間里,中國封建文明在秦帝國的封建體制的基礎不斷完善地持續發展,經歷了統一強盛的西漢(公元前206年—公元8年)帝國、東漢王朝(公元25年—公元220年)、戰亂頻仍與分裂的三國時期(公元208年-公元280年)、西晉(公元265年—公元316年)與東晉王朝(公元317年—公元420年)、漢民族以外的少數民族統治的南朝(公元420年—公元589年)與北朝(公元386年—公元518年)。到了公元581年,由隋再次統一了全國,建立了大一統的隋朝(公元581—618年),接著經歷了強大富庶文化繁榮的大唐王朝(公元618年—907年)、北方少數民族政權遼(公元916年-公元1125年)、經濟和文化發達的北宋(公元960年~公元1127年)與南宋(公元1127年-公元1279年)、蒙古族建立的控制范圍擴張至整個西亞地區的疆域最大的元朝(公元1271年-1368年)、元朝滅亡後,漢族人在華夏大地上重新建立起來的封建王朝──明朝(公元1368年-公元1644年),明王朝於17世紀中為少數民族女真族(滿族)建立的清朝(公元1616年-公元1911年)所代替。清朝是中國最後一個封建帝制國家。自此之後,中國脫離了帝制而轉入了現代民主國家。

中國文明與古代埃及、美索不達米亞、印度文明一樣,都是古老的農耕文明,但與其他文明截然不同,它其持續發展兩千餘年之久,在世界文明史上是絕無僅有的。這種文明十分注重社會事務的管理,強調實際與經驗,關心人和自然的和諧與人倫社會的秩序,儒家思想作為調解社會矛盾、維系這一文明持續發展的重要思想基礎。

一、中國數學的起源與早期發展

據《易·系辭》記載:「上古結繩而治,後世聖人易之以書契」。在殷墟出土的甲骨文卜辭中有很多記數的文字。從一到十,及百、千、萬是專用的記數文字,共有13個獨立符號,記數用合文書寫,其中有十進制制的記數法,出現最大的數字為三萬。

算籌是中國古代的計算工具,而這種計算方法稱為籌算。算籌的產生年代已不可考,但可以肯定的是籌算在春秋時代已很普遍。

用算籌記數,有縱、橫兩種方式:

表示一個多位數字時,採用十進位值制,各位值的數目從左到右排列,縱橫相間﹝法則是:一縱十橫,百立千僵,千、十相望,萬、百相當﹞,並以空位表示零。算籌為加、減、乘、除等運算建立起良好的條件。

籌算直到十五世紀元朝末年才逐漸為珠算所取代,中國古代數學就是在籌算的基礎上取得其輝煌成就的。

在幾何學方面《史記·夏本記》中說夏禹治水時已使用了規、矩、准、繩等作圖和測量工具,並早已發現「勾三股四弦五」這個勾股定理﹝西方稱勾股定理﹞的特例。戰國時期,齊國人著的《考工記》匯總了當時手工業技術的規范,包含了一些測量的內容,並涉及到一些幾何知識,例如角的概念。

戰國時期的百家爭鳴也促進了數學的發展,一些學派還總結和概括出與數學有關的許多抽象概念。著名的有《墨經》中關於某些幾何名詞的定義和命題,例如:「圓,一中同長也」、「平,同高也」等等。墨家還給出有窮和無窮的定義。《莊子》記載了惠施等人的名家學說和桓團、公孫龍等辯者提出的論題,強調抽象的數學思想,例如「至大無外謂之大一,至小無內謂之小一」、「一尺之棰,日取其半,萬世不竭」等。這些許多幾何概念的定義、極限思想和其它數學命題是相當可貴的數學思想,但這種重視抽象性和邏輯嚴密性的新思想未能得到很好的繼承和發展。

此外,講述陰陽八卦,預言吉凶的《易經》已有了組合數學的萌芽,並反映出二進制的思想。

二、中國數學體系的形成與奠基

這一時期包括從秦漢、魏晉、南北朝,共400年間的數學發展歷史。秦漢是中國古代數學體系的形成時期,為使不斷豐富的數學知識系統化、理論化,數學方面的專書陸續出現。

現傳中國歷史最早的數學專著是1984年在湖北江陵張家山出土的成書於西漢初的漢簡《算數書》,與其同時出土的一本漢簡歷譜所記乃呂後二年(公元前186年),所以該書的成書年代至晚是公元前186年(應該在此前)。

西漢末年﹝公元前一世紀﹞編纂的《周髀算經》,盡管是談論蓋天說宇宙論的天文學著作,但包含許多數學內容,在數學方面主要有兩項成就:(1)提出勾股定理的特例及普遍形式;(2)測太陽高、遠的陳子測日法,為後來重差術(勾股測量法)的先驅。此外,還有較復雜的開方問題和分數運算等。

《九章算術》是一部經幾代人整理、刪補和修訂而成的古代數學經典著作,約成書於東漢初年﹝公元前一世紀﹞。全書採用問題集的形式編寫,共收集了246個問題及其解法,分屬於方田、粟米、衰分、少廣、商功、均輸、盈不足、方程和勾股九章。主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《方程》章中所引入的負數概念及正負數加減法法則,在世界數學史上都是最早的記載;書中關於線性方程組的解法和現在中學講授的方法基本相同。就《九章算術》的特點來說,它注重應用,注重理論聯系實際,形成了以籌算為中心的數學體系,對中國古算影響深遠。它的一些成就如十進制值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過這些國家傳到歐洲,促進了世界數學的發展。

魏晉時期中國數學在理論上有了較大的發展。其中趙爽(生卒年代不詳)和劉徽(生卒年代不詳)的工作被認為是中國古代數學理論體系的開端。三國吳人趙爽是中國古代對數學定理和公式進行證明的最早的數學家之一,對《周髀算經》做了詳盡的注釋,在《勾股圓方圖注》中用幾何方法嚴格證明了勾股定理,他的方法已體現了割補原理的思想。趙爽還提出了用幾何方法求解二次方程的新方法。263年,三國魏人劉徽注釋《九章算術》,在《九章算術注》中不僅對原書的方法、公式和定理進行一般的解釋和推導,系統地闡述了中國傳統數學的理論體系與數學原理,而且在其論述中多有創造,在卷1《方田》中創立割圓術(即用圓內接正多邊形面積無限逼近圓面積的辦法),為圓周率的研究工作奠定理論基礎和提供了科學的演算法,他運用「割圓術」得出圓周率的近似值為3927/1250(即3.1416);在《商功》章中,為解決球體積公式的問題而構造了「牟合方蓋」的幾何模型,為祖暅獲得正確結果開辟了道路;為建立多面體體積理論,運用極限方法成功地證明了陽馬術;他還撰著《海島算經》,發揚了古代勾股測量術----重差術。

南北朝時期的社會長期處於戰爭和分裂狀態,但數學的發展依然蓬勃。出現了《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作。約於公元四-五世紀成書的《孫子算經》給出「物不知數」問題並作了解答,導致求解一次同餘組問題在中國的濫暢;《張丘建算經》的「百雞問題」引出三個未知數的不定方程組問題。

公元五世紀,祖沖之、祖暅父子的工作在這一時期最具代表性,他們在《九章算術》劉徽注的基礎上,將傳統數學大大向前推進了一步,成為重視數學思維和數學推理的典範。他們同時在天文學上也有突出的貢獻。其著作《綴術》已失傳,根據史料記載,他們在數學上主要有三項成就:(1)計算圓周率精確到小數點後第六位,得到3.1415926 <π< 3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值,歐洲直到十六世紀德國人鄂圖(valentinus otto)和荷蘭人安托尼茲(a.anthonisz)才得出同樣結果;(2)祖暅在劉徽工作的基礎上推導出球體體積的正確公式,並提出"冪勢既同則積不容異"的體積原理,即二立體等高處截面積均相等則二體體積相等的定理。歐洲十七世紀義大利數學家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)發展了二次與三次方程的解法。

同時代的天文歷學家何承天創調日法,以有理分數逼近實數,發展了古代的不定分析與數值逼近演算法。

三、中國數學教育制度的建立

隋朝大興土木,客觀上促進了數學的發展。唐初王孝通撰《緝古算經》,主要是通過土木工程中計算土方、工程的分工與驗收以及倉庫和地窖計算等實際問題,討論如何以幾何方式建立三次多項式方程,發展了《九章算術》中的少廣、勾股章中開方理論。

隋唐時期是中國封建官僚制度建立時期,隨著科舉制度與國子監制度的確立,數學教育有了長足的發展。656年國子監設立算學館,設有算學博士和助教,由太史令李淳風等人編纂注釋《算經十書》﹝包括《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《張丘建算經》、《夏侯陽算經》、《緝古算經》、《五曹算經》、《五經算術》和《綴術》﹞,作為算學館學生用的課本。對保存古代數學經典起了重要的作用。

由於南北朝時期的一些重大天文發現在隋唐之交開始落實到歷法編算中,使唐代歷法中出現一些重要的數學成果。公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式,這在數學史上是一項傑出的創造,唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。

唐朝後期,計算技術有了進一步的改進和普及,出現很多種實用算術書,對於乘除演算法力求簡捷。

四、中國數學發展的高峰

唐朝亡後,五代十國仍是軍閥混戰的繼續,直到北宋王朝統一了中國,農業、手工業、商業迅速繁榮,科學技術突飛猛進。從公元十一世紀到十四世紀﹝宋、元兩代﹞,籌算數學達到極盛,是中國古代數學空前繁榮,碩果累累的全盛時期。這一時期出現了一批著名的數學家和數學著作,列舉如下:賈憲的《黃帝九章演算法細草》﹝11世紀中葉﹞,劉益的《議古根源》﹝12世紀中葉﹞,秦九韶的《數書九章》﹝1247﹞,李冶的《測圓海鏡》﹝1248﹞和《益古演段》﹝1259﹞,楊輝的《詳解九章演算法》﹝1261﹞、《日用演算法》﹝1262﹞和《楊輝演算法》﹝1274-1275﹞,朱世傑的《算學啟蒙》﹝1299﹞和《四元玉鑒》﹝1303﹞等等。 宋元數學在很多領域都達到了中國古代數學,也是當時世界數學的巔峰。其中主要的工作有:

公元1050年左右,北宋賈憲(生卒年代不詳)在《黃帝九章演算法細草》中創造了開任意高次冪的「增乘開方法」,公元1819年英國人霍納(william george horner)才得出同樣的方法。賈憲還列出了二項式定理系數表,歐洲到十七世紀才出現類似的「巴斯加三角」。(《黃帝九章演算法細草》已佚)

公元1088—1095年間,北宋沈括從「酒家積罌」數與「層壇」體積等生產實踐問題提出了「隙積術」,開始對高階等差級數的求和進行研究,並創立了正確的求和公式。沈括還提出「會圓術」,得出了我國古代數學史上第一個求弧長的近似公式。他還運用運籌思想分析和研究了後勤供糧與運兵進退的關系等問題。

公元1247年,南宋秦九韶在《數書九章》中推廣了增乘開方法,敘述了高次方程的數值解法,他列舉了二十多個來自實踐的高次方程的解法,最高為十次方程。歐洲到十六世紀義大利人菲爾洛(scipio del ferro)才提出三次方程的解法。秦九韶還系統地研究了一次同餘式理論。

公元1248年,李冶(李治,公元1192一1279年)著的《測圓海鏡》是第一部系統論述「天元術」(一元高次方程)的著作,這在數學史上是一項傑出的成果。在《測圓海鏡?序》中,李冶批判了輕視科學實踐,以數學為「九九賤技」、「玩物喪志」等謬論。

公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。

公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(etienne bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(james gregory)和公元1676一1678年間牛頓(issac newton)才提出內插法的一般公式。

公元十四世紀我國人民已使用珠算盤。在現代計算機出現之前,珠算盤是世界上簡便而有效的計算工具。

五、中國數學的衰落與日用數學的發展

這一時期指十四世紀中葉明王朝建立到明末的1582年。數學除珠算外出現全面衰弱的局面,當中涉及到中算的局限、十三世紀的考試制度中已刪減數學內容、明代大興八段考試制度等復雜的問題,不少中外數學史家仍探討當中涉及的原因。

明代最大的成就是珠算的普及,出現了許多珠算讀本,及至程大位的《直指演算法統宗》﹝1592﹞問世,珠算理論已成系統,標志著從籌算到珠算轉變的完成。但由於珠算流行,籌算幾乎絕跡,建立在籌算基礎上的古代數學也逐漸失傳,數學出現長期停滯。

六、西方初等數學的傳入與中西合璧

十六世紀末開始,西方傳教士開始到中國活動,由於明清王朝制定天文歷法的需要,傳教士開始將與天文歷算有關的西方初等數學知識傳入中國,中國數學家在「西學中源」思想支配下,數學研究出現了一個中西融合貫通的局面。

十六世紀末,西方傳教士和中國學者合譯了許多西方數學專著。其中第一部且有重大影響的是義大利傳教士利馬竇和徐光啟合譯的《幾何原本》前6卷﹝1607﹞,其嚴謹的邏輯體系和演譯方法深受徐光啟推崇。徐光啟本人撰寫的《測量異同》和《勾股義》便應用了《幾何原本》的邏輯推理方法論證中國的勾股測望術。此外,《幾何原本》課本中絕大部份的名詞都是首創,且沿用至今。在輸入的西方數學中僅次於幾何的是三角學。在此之前,三角學只有零星的知識,而此後獲得迅速發展。介紹西方三角學的著作有鄧玉函編譯的《大測》﹝2卷,1631﹞、《割圓八線表》﹝6卷﹞和羅雅谷的《測量全義》﹝10卷,1631﹞。在徐光啟主持編譯的《崇禎歷書》﹝137卷,1629-1633﹞中,介紹了有關圓椎曲線的數學知識。

入清以後,會通中西數學的傑出代表是梅文鼎,他堅信中國傳統數學「必有精理」,對古代名著做了深入的研究,同時又能正確對待西方數學,使之在中國紮根,對清代中期數學研究的高潮是有積極影響的。與他同時代的數學家還有王錫闡和年希堯等人。 清康熙帝愛好科學研究,他「御定」的《數理精蘊》﹝53卷,1723﹞,是一部比較全面的初等數學書,對當時的數學研究有一定影響。

七、傳統數學的整理與復興

乾嘉年間形成一個以考據學為主的干嘉學派,編成《四庫全書》,其中數學著作有《算經十書》和宋元時期的著作,為保存瀕於湮沒的數學典籍做出重要貢獻。

在研究傳統數學時,許多數學家還有發明創造,例如有「談天三友」之稱的焦循、汪萊及李銳作出不少重要的工作。李善蘭在《垛積比類》﹝約1859﹞中得到三角自乘垛求和公式,現在稱之為「李善蘭恆等式」。這些工作較宋元時期的數學進了一步。阮元、李銳等人編寫了一部天文學家和數學家傳記《疇人傳》46卷﹝1795-1810﹞,開數學史研究之先河。

八、西方數學再次東進

1840年鴉戰爭後,閉關鎖國政策被迫中止。同文館內添設「算學」,上海江南製造局內添設翻譯館,由此開始第二次翻譯引進的高潮。主要譯者和著作有:李善蘭與英國傳教士偉烈亞力合譯的《幾何原本》後9卷﹝1857﹞,使中國有了完整的《幾何原本》中譯本;《代數學》13卷﹝1859﹞;《代微積拾級》18卷﹝1859﹞。李善蘭與英國傳教士艾約瑟合譯《圓錐曲線說》3卷,華蘅芳與英國傳教士傅蘭雅合譯《代數術》25卷﹝1872﹞,《微積溯源》8卷﹝1874﹞,《決疑數學》10卷﹝1880﹞等。在這些譯著中,創造了許多數學名詞和術語,至今仍在應用。 1898年建立京師大學堂,同文館並入。1905年廢除科舉,建立西方式學校教育,使用的課本也與西方其它各國相仿。

九、中國現代數學的建立

這一時期是從20世紀初至今的一段時間,常以1949年新中國成立為標志劃分為兩個階段。

中國近現代數學開始於清末民初的留學活動。較早出國學習數學的有1903年留日的馮祖荀,1908年留美的鄭之蕃,1910年留美的胡明復和趙元任,1911年留美的姜立夫,1912年留法的何魯,1913年留日的陳建功和留比利時的熊慶來﹝1915年轉留法﹞,1919年留日的蘇步青等人。他們中的多數回國後成為著名數學家和數學教育家,為中國近現代數學發展做出重要貢獻。其中胡明復1917年取得美國哈佛大學博士學位,成為第一位獲得博士學位的中國數學家。隨著留學人員的回國,各地大學的數學教育有了起色。最初只有北京大學1912年成立時建立的數學系,1920年姜立夫在天津南開大學創建數學系,1921年和1926年熊慶來分別在東南大學﹝今南京大學﹞和清華大學建立數學系,不久武漢大學、齊魯大學、浙江大學、中山大學陸續設立了數學系,到1932年各地已有32所大學設立了數學系或數理系。1930年熊慶來在清華大學首創數學研究部,開始招收研究生,陳省身、吳大任成為國內最早的數學研究生。三十年代出國學習數學的還有江澤涵﹝1927﹞、陳省身﹝1934﹞、華羅庚﹝1936﹞、許寶騤﹝1936﹞等人,他們都成為中國現代數學發展的骨幹力量。同時外國數學家也有來華講學的,例如英國的羅素﹝1920﹞,美國的伯克霍夫﹝1934﹞、奧斯古德﹝1934﹞、維納﹝1935﹞,法國的阿達馬﹝1936﹞等人。1935年中國數學會成立大會在上海召開,共有33名代表出席。1936年〈中國數學會學報〉和《數學雜志》相繼問世,這些標志著中國現代數學研究的進一步發展。 解放以前的數學研究集中在純數學領域,在國內外共發表論著600餘種。在分析學方面,陳建功的三角級數論,熊慶來的亞純函數與整函數論研究是代表作,另外還有泛函分析、變分法、微分方程與積分方程的成果;在數論與代數方面,華羅庚等人的解析數論、幾何數論和代數數論以及近世代數研究取得令世人矚目的成果;在幾何與拓撲學方面,蘇步青的微分幾何學,江澤涵的代數拓撲學,陳省身的纖維叢理論和示性類理論等研究做了開創性的工作:在概率論與數理統計方面,許寶騤在一元和多元分析方面得到許多基本定理及嚴密證明。此外,李儼和錢寶琮開創了中國數學史的研究,他們在古算史料的注釋整理和考證分析方面做了許多奠基性的工作,使我國的民族文化遺產重放光彩。

1949年11月即成立中國科學院。1951年3月《中國數學學報》復刊﹝1952年改為《數學學報》﹞,1951年10月《中國數學雜志》復刊﹝1953年改為《數學通報》﹞。1951年8月中國數學會召開建國後第一次國代表大會,討論了數學發展方向和各類學校數學教學改革問題。

建國後的數學研究取得長足進步。50年代初期就出版了華羅庚的《堆棧素數論》﹝1953﹞、蘇步青的《射影曲線概論》﹝1954﹞、陳建功的《直角函數級數的和》﹝1954﹞和李儼的《中算史論叢》5集﹝1954-1955﹞等專著,到1966年,共發表各種數學論文約2萬余篇。除了在數論、代數、幾何、拓撲、函數論、概率論與數理統計、數學史等學科繼續取得新成果外,還在微分方程、計算技術、運籌學、數理邏輯與數學基礎等分支有所突破,有許多論著達到世界先進水平,同時培養和成長起一大批優秀數學家。

60年代後期,中國的數學研究基本停止,教育癱瘓、人員喪失、對外交流中斷,後經多方努力狀況略有改變。1970年《數學學報》恢復出版,並創刊《數學的實踐與認識》。1973年陳景潤在《中國科學》上發表《大偶數表示為一個素數及一個不超過二個素數的乘積之和》的論文,在哥德巴赫猜想的研究中取得突出成就。此外中國數學家在函數論、馬爾可夫過程、概率應用、運籌學、優選法等方面也有一定創見。

1978年11月中國數學會召開第三次代表大會,標志著中國數學的復甦。1978年恢復全國數學競賽,1985年中國開始參加國際數學奧林匹克數學競賽。1981年陳景潤等數學家獲國家自然科學獎勵。1983年國家首批授於18名中青年學者以博士學位,其中數學工作者佔2/3。1986年中國第一次派代表參加國際數學家大會,加入國際數學聯合會,吳文俊應邀作了關於中國古代數學史的45分鍾演講。近十幾年來數學研究碩果累累,發表論文專著的數量成倍增長,質量不斷上升。1985年慶祝中國數學會成立50周年年會上,已確定中國數學發展的長遠目標。代表們立志要不懈地努力,爭取使中國在世界上早日成為新的數學大國。

十、中國數學的特點

(1)以演算法為中心,屬於應用數學。中國數學不脫離社會生活與生產的實際,以解決實際問題為目標,數學研究是圍繞建立演算法與提高計算技術而展開的。

(2)具有較強的社會性。中國傳統數學文化中,數學被儒學家培養人的道德與技能的基本知識---六藝(禮、樂、射、御、書、數)之一,它的作用在於「通神明、順性命,經世務、類萬物」,所以中國傳統數學總是被打上中國哲學與古代學術思想的烙印,往往與術數交織在一起。同時,數學教育與研究往往被封建政府所控制,唐宋時代的數學教育與科舉制度、歷代數學家往往是政府的天文官員,這些事例充分反映了這一性質。

(3)寓理於算,理論高度概括。由於中國傳統數學注重解決實際問題,而且因中國人綜合、歸納思維的決定,所以中國傳統數學不關心數學理論的形式化,但這並不意味中國傳統僅停留在經驗層次而無理論建樹。其實中國數學的演算法中蘊涵著建立這些演算法的理論基礎,中國數學家習慣把數學概念與方法建立在少數幾個不證自明、形象直觀的數學原理之上,如代數中的「率」的理論,平面幾何中的「出入相補」原理,立體幾何中的「陽馬術」、曲面體理論中的「截面原理」(或稱劉祖原理,即卡瓦列利原理)等等。

十一、中國數學對世界的影響

數學活動有兩項基本工作----證明與計算,前者是由於接受了公理化(演繹化)數學文化傳統,後者是由於接受了機械化(演算法化)數學文化傳統。在世界數學文化傳統中,以歐幾里得《幾何原本》為代表的希臘數學,無疑是西方演繹數學傳統的基礎,而以《九章算術》為代表的中國數學無疑是東方演算法化數學傳統的基礎,它們東西輝映,共同促進了世界數學文化的發展。

中國數學通過絲綢之路傳播到印度、阿拉伯地區,後來經阿拉伯人傳入西方。而且在漢字文化圈內,一直影響著日本、朝鮮半島、越南等亞洲國家的數學發展。

F. 數學起源於哪一年

數學起源於公元前4世紀。
公元前6世紀前,數學主要是關於「數」的研究。這一時期在古埃及、巴比倫、印度與中國等地區發展起來的數學,主要是計數、初等算術與演算法,幾何學則可以看作是應用算術。
從公元前6世紀開始,希臘數學的興起,突出了對「形」的研究。數學於是成為了關於數與形的研究。
公元前4世紀的希臘哲學家亞里士多德將數學定義為「數學是量的科學。」(其中「量」的涵義是模糊的,不能單純理解為「數量」。)直到16世紀,英國哲學家培根將數學分為「純粹數學」與「混合數學」。在17世紀,笛卡兒認為:「凡是以研究順序和度量為目的科學都與數學有關。」在19世紀,根據恩格斯的論述, 數學可以定義為:「數學是研究現實世界的空間形式與數量關系的科學。」從20世紀80年代開始,學者們將數學簡單的定義為關於「模式」的科學:「數學這個領域已被稱為模式的科學, 其目的是要揭示人們從自然界和數學本身的抽象世界中所觀察到的結構和對稱性。」

G. 數字的起源和中國數學的發展

數學發展http://www.hudong.com/wiki/%E4%B8%AD%E5%9B%BD%E6%95%B0%E5%AD%A6%E5%8F%91%E5%B1%95%E7%AE%80%E5%8F%B2
數字起源早在原始人時代,人們在生產活動中注意到一隻羊與許多羊,一頭狼與整群狼在數量上的差異,隨著時間的推移慢慢的產生了數的概念。數的概念的形成可能與火的使用一樣古老,大約是在30萬年以前,它對於人類文明的意義也決不亞於火的使用。

最早人們利用自己的十個指頭來記數,當指頭不敷應用時,人們開始採用「石頭記數」「結繩記數」和「刻痕記數」。在經歷了數萬年的發展後,直到距今大約五千多年前,才出現了書寫記數以及相應的記數系統。早期記數系統有:公元前3400年左右的古埃及象形數字;公元前2400年左右的巴比倫楔形數字;公元前1600年左右的中國甲骨文數字;公元前500年左右的希臘阿提卡數字;公元前500年左右的中國籌算數碼;公元前300年左右的印度婆羅門數字以及年代不詳的瑪雅數字。這些記數系統採用不同的進制,其中巴比倫楔形數字採用六十進制、瑪雅數字採用二十進制外,其他均採用十進制。記數系統的出現使人類文明向前邁進了一大步,隨著生產力的不斷發展,數字不斷完善,數學就逐漸的發展起來。

H. 數學的起源和演變誰知道哦

非洲東北部的尼羅河流域,孕育了埃及的文化。在公元前3500~3000年間,這里曾建立了一個統一的帝國。

目前我們對古埃及數學的認識,主要源於兩份用僧侶文寫成的紙草書,其一是成書於公元前1850年左右的莫斯科紙草書,另一份是約成書於公元前1650年的蘭德(Rhind)紙草書,又稱阿梅斯(Ahmes)紙草書。阿梅斯紙草書的內容相當豐富,講述了埃及的乘法和除法、單位分數的用法、試位法、求圓面積問題的解和數學在許多實際問題中的應用。

古埃及人使用象形文字,其數字以十進製表示,但並非位值制,而分數還有一套專門的記法。由埃及數系建立起來的算術具有加法特徵,其乘、除法的計算也只是利用連續加倍的方法來完成。古埃及人將所有的分數都化成單位分數(分子為 1的分數之和),在阿梅斯紙草書中,有很大一張分數表,把2/(2n+1)狀分數表示成單位分數之和,如:2/5=1/3+1/15,2/7=1/4+1/28,…,2/97=1/56+1/679+
1/776,等等。

古埃及人已經能解決一些屬於一次方程和最簡單的二次方程的問題,還有一些關於等差數列、等比數列的初步知識。

如果說巴比倫人發展了卓越的算術和代數學,那麼在另一方面,人們一般認為埃及人在幾何學方面要勝過巴比倫人。一種觀點認為尼羅河水每年一次的定期泛濫,淹沒河流兩岸的谷地。大水過後,法老要重新分配土地,長期積累起來的土地測量知識逐漸發展為幾何學。

埃及人能夠計算簡單平面圖形的面積,計算出的圓周率為 3.16049;他們還知道如何計算棱椎、圓椎、圓柱體及半球的體積。其中最驚人的成就在於方棱椎平頭截體體積的計算,他們給出的計算過程與現代的公式相符。

至於在建造金字塔和神殿過程中,大量運用數學知識的事實表明,埃及人已積累了許多實用知識,而有待於上升為系統的理論。

返回

--------------------------------------------------------------------------------

印度數學(Hin mathematics)
印度是世界上文化發達最早的地區之一,印度數學的起源和其它古老民族的數學起源一樣,是在生產實際需要的基礎上產生 的。但是,印度數學的發展也有一個特殊的因素,便是它的數學和歷法一樣,是在婆羅門祭禮的影響下得以充分發展的。再加上 佛教的交流和貿易的往來,印度數學和近東,特別是中國的數學便在互相融合,互相促進中前進。另外,印度數學的發展始終與天文學有密切的關系,數學作品大多刊載於天文學著作中的某些篇章。

《繩法經》屬於古代婆羅門教的經典,可能成書於公元前6世紀,是在數學史上有意義的宗教作品,其中講到拉繩設計祭壇時所體現到的幾何法則,並廣泛地應用了勾股定理。

此後約1000年之中,由於缺少可靠的史料,數學的發展所知甚少。

公元5-12世紀是印度數學的迅速發展時期,其成就在世界數學史上佔有重要地位。在這個時期出現了一些著名的學者,如6世紀的阿利耶波多(第一)( ryabhata),著有《阿利耶波多歷數書》;7世紀的婆羅摩笈多(Brahmagupta ),著有《婆羅摩笈多修訂體系》(Brahma-sphuta-sidd'h nta ),在這本天文學著作中,包括「算術講義」和「不定方程講義 」等數學章節;9世紀摩訶毗羅(Mah vira );12世紀的婆什迦羅(第二)(Bh skara ),著有《天文系統極致》(Siddh nta iromani ),有關數學的重要部份為《麗羅娃提》(Lil vati) )和《演算法本源》(V jaganita)等等。

在印度,整數的十進制值制記數法產生於6世紀以前,用9個數字和表示零的小圓圈,再藉助於位值制便可寫出任何數字。他們由此建立了算術運算,包括整數和分數的四則運演算法則;開平方和開立方的法則等。對於「零」,他們不單是把它看成「一無所有」或空位,還把它當作一個數來參加運算,這是印度算術的一大貢獻。

印度人創造的這套數字和位值記數法在8世紀傳入伊斯蘭世界,被阿拉伯人採用並改進。13世紀初經斐波納契的《算盤書》 流傳到歐洲,逐漸演變成今天廣為利用的1,2,3,4,…,等等,稱為印度-阿拉伯數碼。

印度對代數學做過重大的貢獻。他們用符號進行代數運算,並用縮寫文字表示未知數。他們承認負數和無理數,對負數的四 則運演算法則有具體的描述,並意識到具有實解的二次方程有兩種形式的根。印度人在不定分析中顯示出卓越的能力,他們不滿足於對一個不定方程只求任何一個有理解,而致力於求所有可能的整數解。印度人還計算過算術級數和幾何級數的和,解決過單利 與復利、折扣以及合股之類的商業問題。

印度人的幾何學是憑經驗的,他們不追求邏輯上嚴謹的證明,只注重發展實用的方法,一般與測量相聯系,側重於面積、體積的計算。其貢獻遠遠比不上他們在算術和代數方面的貢獻大。在三角學方面,印度人用半弦(即正弦)代替了希臘人的全弦, 製作正弦表,還證明了一些簡單的三角恆等式等等。他們在三角學所做的研究是十分重要的。

返回

--------------------------------------------------------------------------------

阿拉伯數學[Arabic mathematics]
從九世紀開始,數學發展的中心轉向阿拉伯和中亞細亞。

自從公元七世紀初伊斯蘭教創立後,很快形成了強大的勢力,迅速擴展到阿拉伯半島以外的廣大地區,跨越歐、亞、非三大洲。在這一廣大地區內,阿拉伯文是通用的官方文字,這里所敘述的阿拉伯數學,就是指用阿拉伯語研究的數學。

從八世紀起大約有一個到一個半世紀是阿拉伯數學的翻譯時期,巴格達成為學術中心,建有科學宮、觀象台、圖書館和一個學院。來自各地的學者把希臘、印度和波斯的古典著作大量地譯為阿拉伯文。在翻譯過程中,許多文獻被重新校訂、考證和增補,大量的古代數學遺產獲得了新生。阿拉伯文明和文化在接受外來文化的基礎上,迅速發展起來,直到15世紀還充滿活力。

花拉子米[Al-khowarizmi]是阿拉伯初期最主要的數學家,他編寫了第一本用阿拉伯語在伊斯蘭世界介紹印度數字和記數法的著作。公元十二世紀後,印度數字、十進制值制記數法開始傳入歐洲,又經過幾百年的改革,這種數字成為我們今天使用的印度—阿拉伯數碼。花拉子米的另一名著《ilm al-jabr wa'lmugabalah》[《代數學》]系統地討論了一元二次方程的解法,該種方程的求根公式便是在此書中第一次出現。現代」algebra」[代數學]一詞亦源於書名中出現的」al jabr」。

三角學在阿拉伯數學中佔有重要地位,它的產生與發展和天文學有密切關系。阿拉伯人在印度人和希臘人工作的基礎上發展了三角學。他們引進了幾種新的三角量,揭示了它們的性質和關系,建立了一些重要的三角恆等式。給出了球面三角形和平面三角形的全部解法,製造了許多較精密的三角函數表。其中著名的數學家有:阿爾.巴塔尼[Al-Battani]、阿卜爾.維法[Abu'l-Wefa]、阿爾.比魯尼[Al-Beruni]等。系統而完整地論述三角學的著作是由十三世紀的學者納西爾丁[Nasir ed-din]完成的,該著作使三角學脫離天文學而成為數學的獨立分支,對三角學在歐洲的發展有很大的影響。

在近似計算方面,十五世紀的阿爾.卡西[Al-kashi]在他的《圓周論》中,敘述了圓周率π的計算方法,並得到精確到小數點後16位的圓周率,從而打破祖沖之保持了一千年的記錄。此外,阿爾.卡西在小數方面做過重要工作,亦是我們所知道的以「帕斯卡三角形」形式處理二項式定理的第一位阿拉伯學者。

阿拉伯幾何學的成就低於代數和三角。希臘幾何學嚴密的邏輯論證沒有被阿拉伯人接受。

總的來看,阿拉伯數學較缺少創造性,但當時世界上大多數地方正處於科學上的貧瘠時期,其成績相對顯得較大,值得贊美的是他們充當了世界上大量精神財富的保存者,在黑暗時代過去後,這些精神財富才傳回歐洲。歐洲人主要就是通過他們的譯著才了解古希臘和印度以及中國數學的成就。

返回

--------------------------------------------------------------------------------

日本數學[Mathematics in Japan]
人類從何時才開始定居於日本列島,至今仍無定論。公元四世紀中葉,日本建立了第一個統一的國家。在十世紀以前,日本主要吸收外來的文化。中國、朝鮮和印度的文化對日本都有很大的影響,十世紀以後,真正的日本文化才發展起來。日本數學的繁榮則更晚,是十七世紀以後的事。

日本人把受西方數學影響以前,按自己的特點發展起來的數學叫和算,也算日本傳統數學。十七世紀後期至十九世紀中葉是和算的興盛時期。 和算在中國古代數學的影響下發展起來。公元六世紀始,中國的歷法和數學就直接或間接地[通過朝鮮]傳入日本,日本政府亦多次派留學生到中國唐朝學習數學。到八世紀初,日本已仿照隋唐時期的數學教育制度設立算學博士並採用《周髀算經》、《九章算術》、《孫子算經》、《綴術》等中國古算書作為教材,這是中國數學輸入日本的第一個時期。

十三至十七世紀,是中國數學傳入日本的第二個時期,《楊輝演算法》、《算學啟蒙》、《演算法統宗》等陸續傳入日本,對日本數學的發展有重要的影響。吉田光由的《塵劫記》[1627]使珠算術在日本迅速得到普及,其內容與《演算法統宗》極為相似,只是其中許多例題是根據日本的實際情況編寫的。這時期還有幾本著作是專門介紹和解釋《算學啟蒙》的。 十七世紀初,日本數學家開始寫出自己的著作,如毛利重能的《割算書》[1622]、今村知商的《豎亥錄》[1639]等。到十七世紀末期,通過關孝和等人的工作,逐漸形成了日本數學體系——和算。

關孝和在日本被尊為「算聖」,十七世紀末到十八世紀初,以他為核心形成一個學派[關流],這一學派的主要成就是「點 術」和「圓理」。「點 術」是把由中國傳入的天文術改為筆算,並改進了算式的記法,是和算特有的筆算代數學。「圓理」可看作是和算特有的數學分析。建部賢弘求得弧長的無窮級數表達式,又稱圓理公式。久留島義太推廣了圓理公式,發展了圓理的極數術[極值問題],並在西方數學家之前發現了歐拉函數和行列式展開定理。關氏學派的第四代大師安島直圓深入到微積分領域,提出一種求弧長的方法;又將此法推廣,形成二重積分,求出了兩相交圓柱公共部份的體積。晚期的關氏學派數學家和田寧進一步改進了圓理,使計算弧長、面積、體積等問題更加簡化,他使用的方法和現在積分法的原理相近。

除了關氏學派外,還有一些較小的學派。他們總結了和算中的各種幾何問題;深入研究了計算橢圓、球面等面積和體積的公式;探討了代數方程理論等等。 十九世紀中葉,日本政府採取了開國政策,西方數學大量傳入。明治維新時期,日本政府實行「和算廢止,洋算專用」政策,和算迅速衰廢[只有珠算沿用至今],同時開始了近代數學的研究。時至今日,日本已步入世界上數學研究先進國家的行列。

I. 數學的由來是

數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。

基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展。但當時的代數學和幾何學長久以來仍處於獨立的狀態。

代數學可以說是最為人們廣泛接受的「數學」。可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一。幾何學則是最早開始被人們研究的數學分支。

直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起。從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程,而其後更發展出更加精微的微積分。

(9)中國數學的起源擴展閱讀

數學的演進大約可以看成是抽象化的持續發展,或是題材的延展.而東西方文化也採用了不同的角度,歐洲文明發展出來幾何學,而中國則發展出算術。第一個被抽象化的概念大概是數字(中國的算籌),其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。

除了認知到如何去數實際物件的數量,史前的人類亦了解如何去數抽象概念的數量,如時間—日、季節和年。算術(加減乘除)也自然而然地產生了。

更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加人使用的奇普,歷史上曾有過許多各異的記數系統。

古時,數學內的主要原理是為了研究天文,土地糧食作物的合理分配,稅務和貿易等相關的計算。數學也就是為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的,這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。

熱點內容
探究生物實驗 發布:2025-06-16 18:46:24 瀏覽:730
流體力學教學視頻 發布:2025-06-16 18:45:37 瀏覽:474
師德師風問題整改台帳 發布:2025-06-16 17:04:31 瀏覽:523
119安全教育平台 發布:2025-06-16 15:29:18 瀏覽:355
高效語文 發布:2025-06-16 13:54:08 瀏覽:934
兵團教師資格證書領取 發布:2025-06-16 11:14:58 瀏覽:501
師德師風演講評分表 發布:2025-06-16 11:14:13 瀏覽:628
植物園的歷史 發布:2025-06-16 11:11:22 瀏覽:979
廉政警示教育片 發布:2025-06-16 08:50:03 瀏覽:924
數學考試試題 發布:2025-06-16 08:16:43 瀏覽:517