常點數學
A. 高中數學知識點總結超全
2020蔡德錦數學全年聯報(高清視頻33.5G有水印)網路網盤
鏈接: https://pan..com/s/1fOcJOu0cv_LHWVEOMErXCA 提取碼: ebvb 復制這段內容後打開網路網盤手機App,操作更方便哦
若資源有問題歡迎追問~
B. 小學數學知識點總結(全部)
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
C. 數學常考公式有哪些
你這個問題太泛。第一,你說常考公式,那你是初中?高中?大學?第二,這個還是需要自己總結,自己做題會有感覺啊。重點在哪裡。你這個問題很可能放在這里沒有答案。
D. 學而思數學超常班是怎麼回事
學而思的班次分為兩個體系,一個是培優體系,一個是超常體系。培優體系又分為:基礎班,提高班,尖子班;超常體系分為:超常班,超常預備班。超常體系和培優體系使用不同的教材,培優體系封面印的是優秀兒童,超常體系封面寫著超常兒童。同一體系裡用的教材是相同的,但會根據班型不同講的側重點不同,基礎班還會講學校課本里的東西,尖子班基本上就不講了,默認為在學校里已經掌握了;超常班更是直接跳過簡單難度,一筆帶過中等難度,重點講高難度的題目。有一種說法是教案超前,三年級學六年級的內容,這個觀點是錯誤的,學而思把小學數學分成12級體系,數百個知識點,在同級學習的,不管是哪個班型,知識點是相同的,只是越高班型刷的是更難的例題(偶爾在刷題是會要講到高年級的知識點,但依然鼓勵用該年級的知識點解決問題)。超常班的學生是通過學而思自己的考試選拔出來的。每年年底會有一次超常班選拔考試(原超常班的也參加,考不上的淘汰回尖子班),年中會有一次補錄考試(原超常班不參加亦不淘汰)。超常體系的收費標准與培優體系的收費標准相同,如果在學而思杯里取得好成績還可以打折,並且各種杯賽的強化訓練營對超常體系學員免費的。更重要的是,超常體系配置的老師都是最優秀的。據說低年級超常體系內的人員變動還比較大,到了高年級基本上就沒什麼變動了,因為能在超常體系內挺過3-4學期,就會與培優體系內的學生差距越拉越大很難撼動他們的位子。培優體系的目標是提高學生的成績,普通學校成績比較好的才能進到基層班,能上尖子班的至少都是班級學霸。超常體系的目標是各大杯賽,是獲獎大戶,也是學而思的金字招牌。為了這塊招牌,學而思也是不掙錢不餘力。
E. 高中必背知識點數學
教版高中數學必背知識點
1.課程內容:
必修課程由5個模塊組成:
必修1:集合、函數概念與基本初等函數(指、對、冪函數)
必修2:立體幾何初步、平面解析幾何初步。
必修3:演算法初步、統計、概率。
必修4:基本初等函數(三角函數)、平面向量、三角恆等變換。
必修5:解三角形、數列、不等式。
以上是每一個高中學生所必須學習的。
上述內容覆蓋了高中階段傳統的數學基礎知識和基本技能的主要部分,其中包括集合、函數、數列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎的同時,進一步強調了這些知識的發生、發展過程和實際應用,而不在技巧與難度上做過高的要求。
此外,基礎內容還增加了向量、演算法、概率、統計等內容。
2.重難點及考點:
重點:函數,數列,三角函數,平面向量,圓錐曲線,立體幾何,導數
難點:函數、圓錐曲線
高考相關考點:
⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件
⑵函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質、函數圖象、指數與指數函數、對數與對數函數、函數的應用
⑶數列:數列的有關概念、等差數列、等比數列、數列求和、數列的應用
⑷三角函數:有關概念、同角關系與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函數的圖象與性質、三角函數的應用
⑸平面向量:有關概念與初等運算、坐標運算、數量積及其應用
⑹不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應用
⑺直線和圓的方程:直線的方程、兩直線的位置關系、線性規劃、圓、直線與圓的位置關系
⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關系、軌跡問題、圓錐曲線的應用
⑼直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、稜柱、棱錐、球、空間向量
⑽排列、組合和概率:排列、組合應用題、二項式定理及其應用
⑾概率與統計:概率、分布列、期望、方差、抽樣、正態分布
⑿導數:導數的概念、求導、導數的應用
⒀復數:復數的概念與運算
F. 應該點學數學
你好!要回答這個似乎非常簡單:把定理、公式都記住,勤思好問,多做幾道題,不就行了。 事實上並非如此,比如:有的同學把書上的黑體字都能一字不落地背下來,可就是不會用;有的同學不重視知識、方法的產生過程,死記結論,生搬硬套;有的同學眼高手低,「想」和「說」都沒問題,一到「寫」和「算」,就漏洞百出,錯誤連篇;有的同學懶得做題,覺得做題太辛苦,太枯燥,負擔太重;也有的同學題做了不少,輔導書也看了不少,成績就是上不去,還有的同學復習不得力,學一段、丟一段。 究其原因有兩個:一是學習態度問題:有的同學在學習上態度曖昧,說不清楚是進取還是退縮,是堅持還是放棄,是維持還是改進,他們勤奮學習的決心經常動搖,投入學習的精力也非常有限,思維通常也是被動的、淺層的和粗放的,學習成績也總是徘徊不前。反之,有的同學學習目的明確,學習動力強勁,他們擁有堅韌不拔的意志、刻苦鑽研的精神和自主學習的意識,他們總是想方設法解決學習中遇到的困難,主動向同學、老師求教,具有良好的自我認識能力和創造學習條件的能力。二是學習方法問題:有的同學根本就不琢磨學習方法,被動地跟著老師走,上課記筆記,下課寫作業,機械應付,效果平平;有的同學今天試這種方法、明天試那種方法,「病急亂投醫」,從不認真領會學習方法的實質,更不會將多種學習方法融入自己的日常學習環節,養成良好的學習習慣;更多的同學對學習方法存在片面的、甚至是錯誤的理解,比如,什麼叫「會了」?是「聽懂了」還是「能寫了」,或者是「會講了」?這種帶有評價性的體驗,對不同的學生來說,差異是非常大的,這種差異影響著學生的學習行為及其效果。 由此可見,正確的學習態度和科學的學習方法是學好數學的兩大基石。這兩大基石的形成又離不開平時的數學學習實踐,下面就幾個數學學習實踐中的具體問題談一談如何學好數學。 一、數學運算 運算是學好數學的基本功。初中階段是培養數學運算能力的黃金時期,初中代數的主要內容都和運算有關,如有理數的運算、整式的運算、因式分解、分式的運算、根式的運算和解方程。初中運算能力不過關,會直接影響高中數學的學習:從目前的數學評價來說,運算準確還是一個很重要的方面,運算屢屢出錯會打擊學生學習數學的信心,從個性品質上說,運算能力差的同學往往粗枝大葉、不求甚解、眼高手低,從而阻礙了數學思維的進一步發展。從學生試卷的自我分析上看,會做而做錯的題不在少數,且出錯之處大部分是運算錯誤,並且是一些極其簡單的小運算,如71-19=68,(3+3)2=81等,錯誤雖小,但決不可等閑視之,決不能讓一句「馬虎」掩蓋了其背後的真正原因。幫助學生認真分析運算出錯的具體原因,是提高學生運算能力的有效手段之一。在面對復雜運算的時候,常常要注意以下兩點: ①情緒穩定,算理明確,過程合理,速度均勻,結果准確; ②要自信,爭取一次做對;慢一點,想清楚再寫;少心算,少跳步,草稿紙上也要寫清楚。 二、數學基礎知識 理解和記憶數學基礎知識是學好數學的前提。 ★什麼是理解? 按照建構主義的觀點,理解就是用自己的話去解釋事物的意義,同一個數學概念,在不同學生的頭腦中存在的形態是不一樣的。所以理解是個體對外部或內部信息進行主動的再加工過程,是一種創造性的「勞動」。 理解的標準是「准確」、「簡單」和「全面」。「准確」就是要抓住事物的本質;「簡單」就是深入淺出、言簡意賅;「全面」則是「既見樹木,又見森林」,不重不漏。對數學基礎知識的理解可以分為兩個層面:一是知識的形成過程和表述;二是知識的引申及其蘊涵的數學思想方法和數學思維方法。 ★什麼是記憶? 一般地說,記憶是個體對其經驗的識記、保持和再現,是信息的輸入、編碼、儲存和提取。藉助關鍵詞或提示語嘗試回憶的方法是一種比較有效的記憶方法,比如,看到「拋物線」三個字,你就會想到:拋物線的定義是什麼?標准方程是什麼?拋物線有幾個方面的性質?關於拋物線有哪些典型的數學問題?不妨先寫下所想到的內容,再去查找、對照,這樣印象就會更加深刻。另外,在數學學習中,要把記憶和推理緊密結合起來,比如在三角函數一章中,所有的公式都是以三角函數定義和加法定理為基礎的,如果能在記憶公式的同時,掌握推導公式的方法,就能有效地防止遺忘。 總之,分階段地整理數學基礎知識,並能在理解的基礎上進行記憶,可以極大地促進數學的學習。 三、數學解題 學數學沒有捷徑可走,保證做題的數量和質量是學好數學的必由之路。 1、如何保證數量? ① 選准一本與教材同步的輔導書或練習冊。 ② 做完一節的全部練習後,對照答案進行批改。千萬別做一道對一道的答案,因為這樣會造成思維中斷和對答案的依賴心理;先易後難,遇到不會的題一定要先跳過去,以平穩的速度過一遍所有題目,先徹底解決會做的題;不會的題過多時,千萬別急躁、泄氣,其實你認為困難的題,對其他人來講也是如此,只不過需要點時間和耐心;對於例題,有兩種處理方式:「先做後看」與「先看後測」。 ③選擇有思考價值的題,與同學、老師交流,並把心得記在自習本上。 ④每天保證1小時左右的練習時間。 2、如何保證質量? ①題不在多,而在於精,學會「解剖麻雀」。充分理解題意,注意對整個問題的轉譯,深化對題中某個條件的認識;看看與哪些數學基礎知識相聯系,有沒有出現一些新的功能或用途?再現思維活動經過,分析想法的產生及錯因的由來,要求用口語化的語言真實地敘述自己的做題經過和感想,想到什麼就寫什麼,以便挖掘出一般的數學思想方法和數學思維方法;一題多解,一題多變,多元歸一。 ②落實:不僅要落實思維過程,而且要落實解答過程。 ③復習:「溫故而知新」,把一些比較「經典」的題重做幾遍,把做錯的題當作一面「鏡子」進行自我反思,也是一種高效率的、針對性較強的學習方法。 四、數學思維 數學思維與哲學思想的融合是學好數學的高層次要求。比如,數學思維方法都不是單獨存在的,都有其對立面,並且兩者能夠在解決問題的過程中相互轉換、相互補充,如直覺與邏輯,發散與定向、宏觀與微觀、順向與逆向等等,如果我們能夠在一種方法受阻的情況下自覺地轉向與其對立的另一種方法,或許就會有「山重水復疑無路,柳暗花明又一村」的感覺。比如,在一些數列問題中,求通項公式和前n項和公式的方法,除了演繹推理外,還可用歸納推理。應該說,領悟數學思維中的哲學思想和在哲學思想的指導下進行數學思維,是提高學生數學素養、培養學生數學能力的重要方法。 總而言之,只要我們重視運算能力的培養,扎扎實實地掌握數學基礎知識,學會聰明地做題,並且能夠站到哲學的高度去反思自己的數學思維活動,我們就一定能早日進入數學學習的自由王國。
G. 數學物理方法常點與奇點的判定
有時,我們研究的函數在區域上並非處處解析,而是在某些點或者某些子區域上不可導(甚至不連續或者根本沒有定義),這些店就叫做奇點。怎麼求?這個就是通過奇點的定義而看出來,如對sinz/z,很容易發現z=0是奇點。奇點的類型有三:將函數展成洛朗級數,即f(z)=Σak(z-z0)^k(1)級數無負冪項,奇點為可去奇點,如sinz/z(2)有限個負冪項,奇點為極點,如1/(z??-1)(3)無窮多負冪項,奇點為本性奇點,如e^(1/z)另外的,有限個負冪項即lim(z→z0) f(z)=∞若lim(z→z0) (z-z0)^m×f(z)=有限非零,則稱是m階極點。
H. 成人高考數學常見知識點
成人高考數學的知識點有很多,建議多看一下官方招生信息及考試大綱,在此基礎上好好准備,