數學必
㈠ 數學必採納
沒搞清哪個是題目.....
2x^2 + 7x - 4 = (2x-1)(x+4) = 0, x = 1/2, -4
A = { 1/2, -4 }
6x^2 - 5x + 1 = (2x-1)(3x-1) = 0, x = 1/2, 1/3
B = { 1/2, 1/3 }
第二張圖:
不是很簡單么,答案都有了....
㈡ 高考數學必考的有哪些
文科高考數抄學的重點:高襲考數學雖然難度很大,但命題思路相對穩定,重點難點比較突出。高中數學主要有函數導數板塊,三角函數板塊,概率板塊,數列板塊,解析幾何板塊,立體幾何板塊六大部分,高考命題中每6大板塊各出一道大題,是高考中的重點。其中高一上學期所學的函數板塊是高中數學的核心與基石,也是高考的難點,高一新生如未經預習,學習如此抽象的問題,接受難度較大。高二上學期所學的解析幾何部分歷來是高考六道大題中得分率最低的一道之一,通常得分率只有0.1~0.2,這主要因為該題計算復雜,很難掌握其中的技巧,所以只有通過提前經過一定量的訓練,才能較好的掌握本章內容。
㈢ 高中數學必記的東西
公式咯,不論什麼時候的數學都是必須對公式理解透徹,活用公式。數學只要你能夠很好地運用公式,數學就沒什麼難的。我有一份高中文科數學公式,樓主要的話可以給我郵箱,我發給你。
㈣ 初中數學必背知識點
總結的有點多,請耐心看哈!
希望能幫助你,還請及時採納謝謝!
數學,是一門關於如何思維的科學。熟記數學口訣,是解題的一條捷徑,孩子做題思維就會變快。從而更加深刻的記住知識點,減輕孩子的學習負擔,輕松學習。
下面小優老師將初中數學必須掌握的26個知識點口訣總結如下,希望對你有幫助。
圓的證明不算難,常把半徑直徑連;
有弦可作弦心距,它定垂直平分弦;
直徑是圓最大弦,直圓周角立上邊,
它若垂直平分弦,垂徑、射影響耳邊;
還有與圓有關角,勿忘相互有關聯,
圓周、圓心、弦切角,細找關系把線連
同弧圓周角相等,證題用它最多見,
圓中若有弦切角,夾弧找到就好辦;
圓有內接四邊形,對角互補記心間,
外角等於內對角,四邊形定內接圓;
直角相對或共弦,試試加個輔助圓;
若是證題打轉轉,四點共圓可解難;
要想證明圓切線,垂直半徑過外端,
直線與圓有共點,證垂直來半徑連,
直線與圓未給點,需證半徑作垂線;
四邊形有內切圓,對邊和等是條件;
如果遇到圓與圓,弄清位置很關鍵,
兩圓相切作公切,兩圓相交連公弦。
㈤ 數學必修一為什麼
初中數學和高中數學的區別 1、高中數學內容抽象性、理論性更強,尤其是在高一代數中,首先碰到的就是理論性很強的函數,使一些初中數學很好的學生難以適應。 2、高中數學的思維方法向理性層次躍進,初中數學要簡單些,按一定步驟就可解決,而高中數學的解題更復雜,要求學生多角度多方面思考。 3、知識內容有所增加,學生在同樣時間內掌握知識的工作量要明顯增多。【應對策略】 1、別有依賴心理初中數學學習中,教師會列出中考各類型題目進行反復練習,學生易養成依賴老師、套用模式的習慣。到高中這種模式就完全轉變了,況且初中數學家長還可以稍加輔導,但到了高中,大多數家長知識水平已無法跟上。這時候,能靠的只有自己。 2、不能思想鬆懈如果用初中方法學習高中數學,沒有在思想上重視,方法上改變,即使是拔尖的學生也很容易跟不上。高一是高中三年中最關鍵、打基礎的階段,一旦跟不上就很難趕上。所以,高中學習,一天都不能鬆懈。 3、暑假裡做些准備由於高中數學與初中數學比較變化很大,學生在暑假裡做好休整的同時,還是需要做一些過渡性的調適。比如整理一下自己的知識儲備,初中沒有解決的問題要查漏補缺;選擇一些像《教材完全解讀》《課堂完全解讀》這樣的同步類教輔,對高一的教材進行預習,適當做一些基礎的題但不提倡大量做題。
㈥ 數學初三必背定理大全
初中數學的幾何部分,有很多定理需要記憶理解。但平時我們對知識點的學習都是分散的,不利於記憶!
今天,整理了中考數學必背的幾何定理,這些基本定理對我們解幾何題目而言是關鍵中的關鍵,一定要牢記,平時也可以多看看~
點、線、角
點的定理:過兩點有且只有一條直線
點的定理:兩點之間線段最短
角的定理:對頂角相等
角的定理:同角或等角的補角相等
角的定理:同角或等角的餘角相等
直線定理:在同一平面內,過一點有且只有一條直線和已知直線垂直
直線定理:直線外一點與直線上各點連接的所有線段中,垂線段最短
幾何平行
平行定理:經過直線外一點,有且只有一條直線與這條直線平行
推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行
證明兩直線平行定理:同位角相等,兩直線平行;內錯角相等,兩直線平行;同旁內角互補,兩直線平行
兩直線平行推論:兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補
三角形的邊和角
定理:三角形兩邊的和大於第三邊
推論:三角形兩邊的差小於第三邊
三角形內角和定理:三角形三個內角的和等於180°
全等三角形判定
定理:全等三角形的對應邊、對應角相等
邊角邊定理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等
角邊角定理(ASA):有兩角和它們的夾邊對應相等的兩個三角形全等
推論(AAS):有兩角和其中一角的對邊對應相等的兩個三角形全等
邊邊邊定理(SSS):有三邊對應相等的兩個三角形全等
斜邊、直角邊定理(HL):有斜邊和一條直角邊對應相等的兩個直角三角形全等
角的平分線
定理1:在角的平分線上的點到這個角的兩邊的距離相等
定理2:在一個角的內部,且到這個角的兩邊的距離相等的點,在這個角的平分線上
角的平分線是到角的兩邊距離相等的所有點的集合
等腰三角形性質
等腰三角形的性質定理:等腰三角形的兩個底角相等(即等邊對等角)
推論1:等腰三角形頂角的平分線平分底邊並且垂直於底邊
拓展:等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
等腰三角形的判定定理:如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
對稱定理
定理:線段垂直平分線上的點到這條線段兩個端點的距離相等
逆定理:到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
線段的垂直平分線可看作到線段兩端點距離相等的所有點的集合
定理1:關於某條直線對稱的兩個圖形是全等形
定理2:如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
定理3:兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
逆定理:如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
直角三角形定理
定理:在直角三角形中,如果一個銳角等於30°,那麼它所對的直角邊等於斜邊的一半
直角三角形斜邊上的中線等於斜邊的一半
勾股定理:直角三角形兩直角邊a、b的平方和等於斜邊c的平方,即a² +b²= c²
勾股定理的逆定理:如果三角形的三邊長a、b、c有關系a² +b²= c² ,那麼這個三角形是直角三角形
多邊形內角和定理
定理:四邊形的內角和等於360°;四邊形的外角和等於360°
多邊形內角和定理:n邊形的內角和等於(n-2)×180°
推論:任意多邊形的外角和等於360°
平行四邊形定理
平行四邊形性質定理:
1.平行四邊形的對角相等
2.平行四邊形的對邊相等
3.平行四邊形的對角線互相平分
推論:夾在兩條平行線間的平行線段相等
平行四邊形判定定理:
1.兩組對角分別相等的四邊形是平行四邊形
2.兩組對邊分別相等的四邊形是平行四邊形
3.對角線互相平分的四邊形是平行四邊形
4.一組對邊平行且相等的四邊形是平行四邊形
矩形定理
矩形性質定理1:矩形的四個角都是直角
矩形性質定理2:矩形的對角線相等
矩形判定定理1:有三個角是直角的四邊形是矩形
矩形判定定理2:對角線相等的平行四邊形是矩形
菱形定理
菱形性質定理1:菱形的四條邊都相等
菱形性質定理2:菱形的對角線互相垂直,並且每一條對角線平分一組對角
菱形面積=對角線乘積的一半,即S=(a×b)÷2
菱形判定定理1:四邊都相等的四邊形是菱形
菱形判定定理2:對角線互相垂直的平行四邊形是菱形
正方形定理
正方形性質定理1:正方形的四個角都是直角,四條邊都相等
正方形性質定理2:正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
中心對稱定理
定理1:關於中心對稱的兩個圖形是全等的
定理2:關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
逆定理:如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
等腰梯形性質定理
等腰梯形性質定理:
1.等腰梯形在同一底上的兩個角相等
2.等腰梯形的兩條對角線相等
等腰梯形判定定理:
1.在同一底上的兩個角相等的梯形是等腰梯形
2.對角線相等的梯形是等腰梯形
平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰
推論2:經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
中位線定理
三角形中位線定理:三角形的中位線平行於第三邊,並且等於它的一半
梯形中位線定理:梯形的中位線平行於兩底,並且等於兩底和的一半L=(a+b)÷2,S=L×h
相似三角形定理
相似三角形定理:平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
相似三角形判定定理:
1.兩角對應相等,兩三角形相似
2.兩邊對應成比例且夾角相等,兩三角形相似
直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
判定定理3:三邊對應成比例,兩三角形相似
相似直角三角形定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
性質定理:
1.相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
2.相似三角形周長的比等於相似比
3.相似三角形面積的比等於相似比的平方
三角函數定理
任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
圓的定理
定理:過不共線的三個點,可以作且只可以作一個圓
定理:垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧
推論1:平分弦(不是直徑)的直徑垂直於弦並且平分弦所對的兩條弧
推論2:弦的垂直平分弦經過圓心,並且平分弦所對的兩條弧
推論3:平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
定理:
1.在同圓或等圓中,相等的弧所對的弦相等,所對的弦的弦心距相等
2.經過圓的半徑外端點,並且垂直於這條半徑的直線是這個圓的切線
3.圓的切線垂直於經過切點的半徑
4.三角形的三個內角平分線交於一點,這點是三角形的內心
5.從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
6.圓的外切四邊形的兩組對邊的和相等
比例性質定理
比例的基本性質
如果a:b=c:d,那麼ad=bc;如果ad=bc,那麼a:b=c:d
合比性質
如果a/b=c/d,那麼(a±b)/b=(c±d)/d
等比性質
如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)/(b+d+…+n)=a/b
㈦ 考研數學必做的書有哪些
高等數學 高等教育出版社 同濟大學應用數學系編 第六版或第五版都可 以 很經典
線性代數 清華大學出版社 居余馬 第二版 個人認為講的比較透徹,一些比較深的東西可以選擇性的看一下
概率論與數理統計 高等教育出版社 浙江大學盛驟 謝式千 潘承毅等編 第三版,雖然已經有第四版了但個人還是認為這一版親切些 四版新增內容有:在數理統計中應用Excel,bootstrap方法,戶值檢驗法,箱線圖等;同時吸收了國內外優秀教材的優點對習題的類型和數量進行了調整和充實,就考研來說沒太大用,所以用三版就夠了。
習題冊以復習全書為主,陳文燈的復習全書講得比較重技巧,李永樂的比較基礎,視個人情況選擇,多做幾遍,吃透基礎知識,掌握解題方法。另外比較重要的就是歷年試題,我用的李永樂的,感覺還不錯。其他一些練習冊像是基礎過關、模擬什麼的,視自己的復習情況,可以選擇性的做一下, 我用了陳文燈的基礎過關和李永樂的全真模擬,感覺在思路方面還是蠻有啟發的