❶ 「數學的力量是什麼」「抄完答案看不懂」 「語文的力量是什麼」「看完答案不想抄」「英語的力量是什
政治的力量是什麼?知道答案也不能的滿分
❷ 看誰力量大數學名詞,看誰力量大 (打一數學名詞)
1.分母 2.比例 or 對頂角 3.整除 4.假分數 5.圓心 4假分數參考資料:祝你學習進
❸ 比誰的力量大打數學家名
比誰的力量大打數學家名
答案是:比例(力)。
❹ 數學的力量是什麼""抄完答案看不懂,""語文的力量是什麼
「數學的力量是什麼?」 「抄完答案看不懂!」 「語文的力量是什麼?」 「看完答案不想抄!
英文的力量是抄著抄著就抄錯了~~
❺ 數學勵志名言
1. 問題是數學的心臟。——P.R.Halmos
2. 上帝創造了整數,所有其餘的數都是人造的。——克隆內克
3. 第一是數學,第二是數學,第三是數學。——倫琴
4. 沒有任何問題可以向無窮那樣深深的觸動人的情感,很少有別的觀念能像無窮那樣激勵理智產生富有成果的思想,然而也沒有任何其他的概念能向無窮那樣需要加以闡明。——希爾伯特(Hilbert)
5. 現代高能物理到了量子物理以後,有很多根本無法做實驗,在家用紙筆來算,這跟數學家想樣的差不了多遠,所以說數學在物理上有著不可思議的力量。——邱成桐
6. 沒有任何問題可以像無窮那樣深深地觸動人的情感,很少有別的觀念能像無窮那樣激勵理智產生富有成果的思想,然而也沒有任何其它的概念能像無窮那樣需要加以闡明。――希爾伯特
7. 寧可少些,但要好些。——高斯
8. 一個數學家越超脫越好。——無名氏
9. 數學主要的目標是公眾的利益和自然現象的解釋。——傅立葉
10. 宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁,無處不用數學。——華羅庚
11. 觀察可能導致發現,觀察將揭示某種規則模式或定律。——波利亞
12. 在數學中最令我欣喜的,是那些能夠被證明的東西。——羅素
13. 給我最大快樂的,不是已懂得知識,而是不斷的學習;不是已有的東西,而是不斷的獲取;不是已達到的高度,而是繼續不斷的攀登。——高斯
14. 數學不可比擬的永久性和萬能性及他對時間和文化背景的獨立行是其本質的直接後果。——A•埃博
15. 數學是各式各樣的證明技巧。——維特根斯坦
❻ 數學可以培養哪些能力
數學可以說是自然科學中最古老、最基礎的學科,也是學習和研究現代科學技術必不可少的基本工具。從人類結繩記事起,數學就一直伴隨人類的發展與進化。
數學能夠培養5種能力。
1. 數字計算能力
這個相信大家不難理解,數學中的「數」字,直接可以說明數學是一門與數字打交道的科學,這也是人類對數學的最原始、最直觀的認識,雖然近現代數學早已超越了數字的范疇。
數字計算能力的價值不用我多說,日常生活的購物、計算工資、買房買車、朋友聚餐等等都少不了用到數字計算。數字計算能力好,至少你可以快速應對這些與數字計算相關的事情,節省你的時間,減少你的麻煩。其實很多計算都潛移默化到我們的意識中了,比如過馬路時判斷車輛離你的距離和速度,決定過馬路是否安全,相信大多數人都可以進行很好的直覺判斷。
雖然現在大家都有手機,很多復雜的計算我們可以用手機上的計算器來完成,但在簡單場景和特殊場景下,我們還得自己來處理和計算。現在很多中小學可以用計算器,這是一個不好的現象,扼殺了學生們熟練掌握數字計算的能力。
2. 抽象思維能力
抽象概念是非常重要的,可以說抽象思維是人類區別於動物的最重要的一種能力,抽象思維伴隨著人類的發展與進化。數字1、2、3... 本身就是很抽象的,結繩記事中的一個結代表的的是某一件事情的發生,比如打獵打到了一隻羊。現代社會更不用說了,文字就是一種抽象的體現,自然與社會科學,如哲學、計算機、金融、經濟學、法律等裡面都包含大量的抽象概念。
可以說數學是自然科學中最抽象的一門學科,數學中的任何一個概念都是抽象的,甚至數學中的方法都是抽象的。數學中抽象概念很多來源於生活,比如數字、簡單的幾何形狀、集合、函數、概率、極限、積分、圖等,抽象方法如數學歸納法、反證法等也來源於生活。數學中更多的抽象來源於基本概念的疊加及抽象方法疊加於抽象概念,數學是一門來源於生活但是超越了生活的科學。
抽象的東西往往是很難理解的,2-3歲的小孩,要想真正理解1、2、3還是要經過很長時間的鍛煉。正因為數學概念的抽象性,很多人不太喜歡數學,也較難學好數學。
從小學習數學,培養了我們的抽象思維能力,讓我們更容易理解抽象的概念,這對於我們學習新的知識、理解現代生活與社會交往中的抽象概念是大有裨益的。
3. 邏輯推理能力
數學是一門關於邏輯推理的科學。數學中的數字計算、公式推導、我們很多人可能討厭的證明、數學歸納法等等都是邏輯推理的過程與方法。高等數學中的公理化體系,基於初始的幾個公理,推導出一切正確的公式、定理、推論,是邏輯推理的最好體現。現代概率論就是俄國大數學家柯爾莫哥洛夫基於3個公理假設(設隨機實驗E的樣本空間為Ω。若按照某種方法,對E的每一事件A賦於一個實數P(A),且滿足以下公理: (1)非負性:P(A)≥0; (2)規范性:P(Ω)=1; (3)可列(完全)可加性:對於兩兩互不相容的可列無窮多個事件A1,A2,……,An,……,有
圖片
則稱實數P(A)為事件A的概率。)而建立起來的一個非常實用的學科。數學中的分支學科數理邏輯學本身就是一門關於邏輯推理的學科。
數學中充斥著的大量邏輯思維與方法,通過數學的培養與學習,可以大大提升我們的邏輯推理能力,最終可以幫助我們更好地分析解決問題。
邏輯推理的價值是非常巨大的。自然科學的重大發現,如日心說、電磁波的發現、相對論的提出等無不都是基於數學公式推理而發現的。現實生活中的偵探和破案都需要藉助邏輯推理的力量。很多人喜歡的懸疑偵探小說,就是邏輯思維在文學上的發展與體現。
對人性的揣摩、對競爭對手的分析、對問題與故障的排查、對過往的總結與反思、對多種可能性(如多個交往對象、多個offer)的選擇等都少不了邏輯推理能力的幫助。就連我們日常生活丟了一件東西,思考可能會丟在哪裡,也需要經過一番邏輯推理過程,邏輯推理無處不在,時時刻刻幫助我們。
4. 類比聯想能力
數學來源於生活,數學中很多概念可以找到生活中的對應,比如映射這個概念就可以很好地找到生活的對應,每個人都有名字,從人到名字就是一個映射,但是有很多人重名,為了將人一一區分開來,每個人還有一個身份證號,身份證號每個人都是唯一的,任何兩個人的都不一樣,這樣每個人到身份證號碼就建立了一對一關系,這就是一一映射。幾何形狀更不用說了,就是直接來源於生活中物體的形狀。這種生活與數學概念中的對應,可以輔助我們更好地學習和理解數學,鍛煉我們的類比聯想能力。
在高等數學中,在兩個代數空間之間的元素之間的映射如果保持運算的一致性(即如果 圖片 滿足 圖片 , 圖片和 圖片分別是A和B中的運算),那麼這兩個空間是「等價」的。一個空間的性質可以遷移到另外一個空間。這種方法就是一種類比聯想的方法,是數學概念到數學概念之間的類比聯想,比起日常生活到數學概念的聯想,更具有抽象性。這種方法在數學上是非常有價值的,對於我們日常生活也具有借鑒意義。
通過數學知識的學習,我們可以學到大量這樣的類比聯想的知識點和方法,當這些思維固化到我們的認知中時,它們有助於我們更好地工作和生活。
拿計算機編程語言來說,程序中的方法跟數學中的函數是類似的,輸入就是自變數,而輸出就是函數值。對於函數式編程語言,輸入輸出都可以是其他函數,這跟泛函分析中的泛函概念也是可以直接類比的。面向對象編程語言就是代數學中代數結構的一種類比,代數結構中的元素相當於類的變數,代數結構中的運算相當於類的函數。有了這些數學知識,對於我們更好地理解和掌握編程是非常有幫助的。
舉個生活中的例子,葯物研發階段在測試新葯時,往往先在低等哺乳動物或者靈長類身上做實驗,這就是直接利用了人跟這些動物身體葯物反應上的相似性(可以看成前面提到的代數空間的等價的一種類比聯想),從而確保葯物最終對人類是安全的。
5.空間想像能力
數學中的空間想像能力始於幾何,我們在初中學習的平面幾何,高中學習的立體幾何(相信大家對幾何中各種巧妙的輔助線都不陌生),讓我們更好地理解了我們生活的三維空間。
在高等數學中,我們將空間拓展到了更高的維數甚至是無窮維空間,線性代數中的向量就可以看成高維空間中的一個點(維數就是向量的分量個數)。泛函分析中的函數空間,絕大多數就是無限維空間,比如由多項式組成的多項式函數空間。
超過了3維的概念,我們很難在生活的三維空間找到對應,因此人類是很難直觀理解的。高維空間會產生很多復雜的問題和現象,讓我們非常難以處理。學習過機器學習的人都知道的「維數災難」就是高維空間中的普遍而難解的現象。
高維空間需要藉助人的想像能力來理解和認知,而數學中研究了大量的高維空間,通過數學的學習和練習,可以更好地鍛煉我們的空間想像能力。
空間想像能力在現實中的價值最直接的體現莫過於設計行業,不管是建築設計、裝修設計、道路橋梁設計、隧道設計、航空航天飛行器設計、汽車船舶設計、醫療器械的設計等都需要對空間有比較好的認知和把握。
❼ 數學的力量是什麼
數學的力量非常非常大,從買菜到天體物理
❽ 數學的力量是什麼抄完答案看不懂,語文的力量是什麼
看不懂也抄不完(文言文)
看得懂不能抄(閱讀題)
看得懂不敢抄(作文)
❾ "數學的力量是什麼""抄完答案看不懂.""語文的力量是什麼
「數學的力量是什麼?」 「抄完答案看不懂!」 「語文的力量是什麼?」 「看完答案不想抄!」「英語的力量是什麼?」「
給你答案都未必抄的對!」