當前位置:首頁 » 語數英語 » 小學數學梳理

小學數學梳理

發布時間: 2021-08-26 12:44:37

如何對小學數學教材進行內容梳理

可以分類整理,建立知識結構。
我認為可以這樣分:
一、數與數的計算
1、你學過的各類數及其相關知識
(1)整數、小數、分數的概念、讀寫及相關知識
(2)數的整除的相關知識。
2、數的計算
(1)整數、小數、分數的四則簡單計算和混合計算;
(2)簡易方程;
(3)比與比例;
二、應用題:
1、文字題;
2、應用題:
A、整數與小數應用題;
B、分數應用題(含工程問題);
C、行程問題;
D、列方程解應用題;
E、比例應用題(含比例尺、正比例、反比例);
3、其它特殊類型的應用題。
三、幾何圖形的概念與相關計算
1、平面圖形:三角形、長方形、正方形、平行四邊形、園等;
2、立體圖形:長方體、正方體、圓錐、圓柱等;
四、統計表與統計圖
註:1、還有其它分類方法,只是思路不同。
2、分類只是建立個知識的目錄,關鍵是要把每條目錄涉及到的相關內容弄清楚。這樣才算你掌握了小學數學教學的內容。

⑵ 梳理小學數學網路圖

小學數學? 四則運算~基本公式~基本定率(交換率,分配率等總結) 圖形~線與角,平行相交等相關概念 幾何~周長,面積,體積相關知識點總結 應用~追趕,相遇,排水注水等 數列~小學主要就是看規率 概率~不知道現在小學有沒有,我學的時候沒有(96年~02年)…

⑶ 如何上好小學數學整理和復習課

一、引導自主復習,注重「理」

在復習課的教學中,可以放手讓學生採用不同的方法,獨立自主地、自由自在地操作、思考與整理,全身心地投入探究數學知識的形成過程。然後引導學生對各自獨創的結果進行分析與綜合的同時,運用「比較」異同這一思維方式逐步構建相同的結果,在學生體驗、交流、反思、辯論中尋求一種最佳的結果。通過「存異——求同——求佳」的操作策略,學生的認知結構也得到充分的發展,即達到「感悟——理解——升華」,促使學生從「無序」思維到「有序」思維再到「科學」思維方式的發展。雖然學生在「求異」過程中所使用的方式和方法,可能是正確和簡捷的,也可能是繁瑣錯誤和無序的,但他們這種別出心裁的方法是自己獨創的,是一種不可多得的「創新」行為。例如,在復習「平面圖形的分類」時,課始老師布置學生回憶在小學階段學過的平面圖形有哪些?提示學生可以用圖或表的形式表示它們的內在聯系,有兩個小組通過自我學習、自我整理、合作討論參與,最後以自己獨特的方式梳理成如下的知識網路。

二、指導復習方法,注重「建」

在復習課的教學中,要針對知識的重點、學習的難點、學生的弱點,引導學生按一定的標准把有關知識、概念作縱向、橫向聯系歸類、整理,使之「豎成線」、「橫成片」,達到所復習的知識要點條理清晰,知識結構脈絡分明。教給學生整理與歸類的方法,使學生在獲得比較系統的知識的同時,不斷構建和完善認知結構,極大地提高學生的整體素質。

在復習《平面圖形的面積和周長》時,在自己課前整理的基礎上,學生們通過小組合作交流,很多組都能夠整理出下面的網路圖。很好地再現了面積的公式推導中各個平面圖形的關系。

復習課為我們提供了重新組建學生認知結構的時機,我們必須充分運用,而且高度重視在復習課中對學生所學知識、認識事物的方法和分析,解決問題的思維方式進行高層次的歸納、概括、提煉,使新、舊知識完美融合為一體,達到構建學生良好的數學認知結構的目的,從而有效地提高學生的數學素質。

三、重視生活聯系,注重「用」

學習數學要以一定的經驗為背景,復習課的設計應該為學生提供有利於學生進一步理解數學、探索數學的情境。要給學生充分的機會,通過對實際問題的感知、操作等活動來認識數學,讓學生「做數學」比簡單地教給數學知識更重要。讓學生「做數學」的途徑之一就是設計與學生生活實際密切相關的數學情境。

例如,復習「空間與圖形」的內容,可設計這樣一道綜合題:城北新區有一塊正方形空地,面積是3600平方米。(1)如果要在這塊空地上圍出一個最大的圓,並鋪上草坪,這塊草坪的面積有多大?(2)在這塊空地上設計一片花圃,使花圃的面積占正方形面積的25%。請你設計方案。這樣聯系生活實際,把空間與圖形的知識與百分數知識相聯系,讓學生設計方案,有利於考查學生綜合知識的應用能力及整體設計思想、優化策略、創新精神和審美意識。

總之,習題的設計在內容上要「全」,在形式上要「精」,在方法上要「活」,在時間上要「足」。教師要在課堂上給學生充分的演練機會,為學生的評價提供豐富的資源,讓每一位學生都能享受到成功的喜悅。

四、注重拓展延伸,注重「延」

在復習課中精心設計開放性、綜合性的習題,給學生提供一個能夠充分表現個性、激勵創新的空間,讓學生自己動手、動腦、動口,引導和幫助學生用所學的數學知識去發現問題和解決問題,把知識結構轉化為認知結構,促進學生智力、能力的發展。

例如,在復習分數(百分數)應用題時,安排如下一道開放題,「李阿姨於2006年6月20日將5000元存入銀行定期5年,可今天(2009年6月20日)李阿姨的丈夫突然病重住院,急需5000元錢交住院費,可銀行規定,定期存款不到期提前支取按活期計息。李阿姨該怎麼辦?」

教有法而無定法。復習課的梳理不一定完全在課上,比如我們現在經常運用的讓學生辦數學小報、寫數學日記進行梳理;然後在課上,孩子們可以對數學小報,數學日記進行展評。從中相互借鑒,相互學習。比如高年級可以讓學生根據單元知識,或者是需要復習的知識,讓學生畫一些樹形圖,把知識進行梳理,並內化自己的已有認知當中。六年級的學生還可以採用小老師授課制,由學生來當老師。當然了這時教師不是閑了而是更忙了。

⑷ 通過對小學數學知識的整體梳理,我對小學知識的學習有了什麼重新的認識

通過對小學知識的整體梳理,我對小學知識有了一定的認識。在小學數學實施教學當中,首先要制定一個概況,然後根據這個概況進行有效的教學。

⑸ 小學數學知識點總結(全部)

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

⑹ 小學數學如何整體梳理

問題一:比值寫單位嗎?
在傳統教材里,小學階段比被定義為「兩數相除又叫兩數的比,比的前項除以後項的商叫做比值,比值又叫比率」,它是表示兩種量的倍數關系,所以比值是沒有單位的。比在表示同類量比時比值不帶單位;比在表示不同類量的比時是可以帶單位的,如:跑36千米大約需要2時,路程與時間的比大約是18比1,比值是18,這個比值表示表示每小時跑18千米,後面的單位是千米/時,這時是帶單位的。也就是說,由於比的概念的擴展,當兩個不同類量相比時,會產生一個新的的量,這個新的量就是兩個不同類量的比值,是一個帶單位的量。由於比的概念擴展到不同類量相比,相應地,比的意義則趨向採用比較廣義的解釋,如果教師把比值有無單位當作選學內容,恰當融入相關內容的教學中適當點撥,那麼學生進入中學後對不同類量的比就不會懷疑或抵觸。但無論點撥與否,教師應當明白:同類量的比,比值是一個比率,沒有單位;不同類量的比,比值是一個量,有單位。
問題二:整數都可以看成分母是1的假分數嗎?
分析: 小學數學五年級練習冊第48頁有一道判斷題:整數都可以看成分母是1的假分數。先來看一下假分數的定義:和真分數相對,分子大於或者等於分母的分數叫假分數。也就是假分數都大於1或等於1。再看" 整數都可以看成分母是1的假分數"這句話中「整數」也包含了0,顯然0作為分子比分母1要小。所以這句話是錯誤的。此題考查假分數的意義,要明確所有的自然數中只有0不能看作分母是1的假分數。可以更正為:所有非零自然數可以看成分母是1的假分數。
問題三:101-102=1,怎麼樣移動1個數字,才能夠使等式成立?
分析:這個問題的解決要依靠良好的數感和較好的計算能力。從這個減法算式的差入手考慮,只有數字1顯然無法移動,被減數移動任何一個數字都比減數小,減數等於被減數減差即100,102可以將2縮小移至右上角,10的平方等於100。通過這個問題看以看出小學階段數學教學應關注對於學生數感的培養,數感依賴於敏銳的觀察能力,觀察是一種有目的、有計劃、有積極思維參與的比較持久的感知活動,它是思維的門戶。任何一個數學問題都包含一定的數學條件和關系,要想解決它,就必須依據問題的具體特徵,對問題進行深入、細致、透徹的觀察,然後認真分析,透過表面現象考察其本質,才能對問題有靈敏的感覺、感受和感知的能力,並能作出迅速准確的反應。
問題四:小學階段負數的應該怎樣讀?
分析:義務教育階段從第二學段開始學生認識負數,《數學課程標准》對於這部分內容的具體目標是:「在熟悉的生活情境中,了解負數的意義,會用負數表示一些日常生活中的問題。」以往負數的教學安排在中學階段,現在安排在本單元主要是考慮到負數在生活中有著廣泛的應用,學生在日常生活中已經接觸了一些負數,有了初步認識負數的基礎。在此基礎上,初步認識負數,能進一步豐富學生對數概念的認識,有利於中小學數學的銜接,為第三學段進一步理解有理數的意義和運算打下良好的基礎。因此負數在生活中的意義、如何規范的讀寫負數在小學階段也十分重要。讀法:在所讀數的前面加上「負」,寫法:在所寫數的前面加上「-」,需要注意的是不可以講負數的讀法和它所表示的意義混淆,這一點給學生需要特別強調。例如:-3層,讀作負3層,表示地下3層。
問題五:時間的寫法有哪些?
分析:小學階段表示時間的方式可以用時分秒來表示,也可以用它電子表的形式來表示。這里需要注意的是要區分所講的時間究竟是「經過的時間」還是「時刻」。時刻表示的是時間的某個特定的時間點,比如:某列火車於下午2:30分到達北京站,這個2:30就是火車到達的時刻;時間則是表示時間的時長,比如,某列火車上午7:30從上海站出發,於15:30到達北京站,那麼,這趟火車從上海到北京所需要的時間是8個小時,即從7:30起算到15:30止,這段時長(時間)是8個小時。時刻有兩種表示方法,時分秒和電子表形式,經過的時間只能用時分秒的形式表示。其實,從中文在字面也很好地表達了這兩個概念的不同:時刻——表示時間的某一刻(被固定的節點),而時間——表示從始至終的一段間隔。
問題六:分數分為真分數、假分數和帶分數?
分析:分類要考慮遵循的原則,分類後的對象既不重復,不遺漏。分數的分類的一個標准就是「分數與1的關系」。有小於1,大於等於1兩類。也即是真分數與假分數。這一標准已涵蓋所有可能的分數,顯然帶分數就不能另為一類,它是大於1的,與假分數存在包含關系,如果硬做劃分就會出現對象重復。分數分兩類(真分數和假分數),帶分數只是假分數的另一種表示形式。

⑺ 小學數學知識點總結

數學概念整理:

整數部分:

十進制計數法;一(個)、十、百、千、萬……都叫做計數單位。其中「一」是計數的基本單位。10個1是10,10個10是100……每相鄰兩個計數單位之間的進率都是十。這種計數方法叫做十進制計數法
整數的讀法:從高位一級一級讀,讀出級名(億、萬),每級末尾0都不讀。其他數位一個或連續幾個0都只讀一個「零」。
整數的寫法:從高位一級一級寫,哪一位一個單位也沒有就寫0。
四捨五入法:求近似數,看尾數最高位上的數是幾,比5小就捨去,是5或大於5捨去尾數向前一位進1。這種求近似數的方法就叫做四捨五入法。
整數大小的比較:位數多的數較大,數位相同最高位上數大的就大,最高位相同比看第二位較大就大,以此類推。

小數部分:

把整數1平均分成10份、100份、1000份……這樣的一份或幾份是十分之幾、百分之幾、千分之幾……這些分數可以用小數表示。如1/10記作0.1,7/100記作0.07。
小數點右邊第一位叫十分位,計數單位是十分之一(0.1);第二位叫百分位,計數單位是百分之一(0.01)……小數部分最大的計數單位是十分之一,沒有最小的計數單位。小數部分有幾個數位,就叫做幾位小數。如0.36是兩位小數,3.066是三位小數
小數的讀法:整數部分整數讀,小數點讀點,小數部分順序讀。
小數的寫法:小數點寫在個位右下角。
小數的性質:小數末尾添0去0大小不變。化簡
小數點位置移動引起大小變化:右移擴大左縮小,1十2百3千倍。
小數大小比較:整數部分大就大;整數相同看十分位大就大;以此類推。

分數和百分數

■分數和百分數的意義
1、 分數的意義:把單位「 1」 平均分成若干份,表示這樣的一份或者幾份的數,叫做分數。在分數里,表示把單位「 1」 平均分成多少份的數,叫做分數的分母;表示取了多少份的數,叫做分數的分子;其中的一份,叫做分數單位。
2、 百分數的意義:表示一個數是另一個數的百分之幾的數,叫做百分數。也叫百分率或百分比。百分數通常不寫成分數的形式,而用特定的「%」來表示。百分數一般只表示兩個數量關系之間的倍數關系,後面不能帶單位名稱。
3、 百分數表示兩個數量之間的倍比關系,它的後面不能寫計量單位。
4、 成數:幾成就是十分之幾。
■分數的種類

按照分子、分母和整數部分的不同情況,可以分成:真分數、假分數、帶分數
■分數和除法的關系及分數的基本性質
1、 除法是一種運算,有運算符號;分數是一種數。因此,一般應敘述為被除數相當於分子,而不能說成被除數就是分子。
2、 由於分數和除法有密切的關系,根據除法中「商不變」的性質可得出分數的基本性質。
3、 分數的分子和分母都乘以或者除以相同的數(0除外),分數的大小不變,這叫做分數的基本性質,它是約分和通分的依據。
■約分和通分
1、 分子、分母是互質數的分數,叫做最簡分數。
2、 把一個分數化成同它相等但分子、分母都比較小的分數,叫做約分。
3、 約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
4、 把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
5、 通分的方法:先求出原來幾個分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
■倒 數
1、 乘積是1的兩個數互為倒數。
2、 求一個數(0除外)的倒數,只要把這個數的分子、分母調換位置。
3、 1的倒數是1,0沒有倒數
■分數的大小比較
1、 分母相同的分數,分子大的那個分數就大。
2、 分子相同的分數,分母小的那個分數就大。
3、 分母和分子都不同的分數,通常是先通分,轉化成通分母的分數,再比較大小。
4、 如果被比較的分數是帶分數,先要比較它們的整數部分,整數部分大的那個帶分數就大;如果整數部分相同,再比較它們的分數部分,分數部分大的那個帶分數就大。
■百分數與折數、成數的互化:
例如:三折就是30%,七五折就是75%,成數就是十分之幾,如一成就是牐 闖砂俜質 褪?0%,則六成五就是65%。
■納稅和利息:
稅率:應納稅額與各種收入的比率。
利率:利息與本金的百分率。由銀行規定按年或按月計算。
利息的計算公式:利息=本金×利率×時間

百分數與分數的區別主要有以下三點:
1.意義不同。百分數是「表示一個數是另一個數的百分之幾的數。」它只能表示兩數之間的倍數關系,不能表示某一具體數量。如:可以說 1米 是 5米 的 20%,不可以說「一段繩子長為20%米。」因此,百分數後面不能帶單位名稱。分數是「把單位『1』平均分成若干份,表示這樣一份或幾份的數」。分數不僅 可以表示兩數之間的倍數關系,如:甲數是3,乙數是4,甲數是乙數的?;還可以表示一定的數量,如:犌Э恕 米等。
2.應用范圍不同。百分數在生產、工作和生活中,常用於調查、統計、分析與比較。而分數常常是在測量、計算中,得不到整數結果時使用。
3.書寫形式不同。百分數通常不寫成分數形式,而採用百分號「%」來表示。如:百分之四十五,寫作:45%;百分數的分母固定為100,因此,不論百分數 的分子、分母之間有多少個公約數,都不約分;百分數的分子可以是自然數,也可以是小數。而分數的分子只能是自然數,它的表示形式有:真分數、假分數、帶分 數,計算結果不是最簡分數的一般要通過約分化成最簡分數,是假分數的要化成帶分數。

數的整除

■整除的意義

整數a除以整數b(b≠0),除得的商正好是整數而沒有餘數,我們就說a能被b整除(也可以說b能整除a)
除盡的意義 甲數除以乙數,所得的商是整數或有限小數而余數也為0時,我們就說甲數能被乙數除盡,(或者說乙數能除盡甲數)這里的甲數、乙數可以是自然數,也可以是小數(乙數不能為0)。
■約數和倍數

1、如果數a能被數b整除,a就叫b的倍數,b就叫a的約數。2、一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它本身。3、一個數的倍數的個數是無限的,其中最小的是它本身,它沒有最大的倍數。
■奇數和偶數

1、能被2整除的數叫偶數。例如:0、2、4、6、8、10……註:0也是偶數 2、不能被2整除的數叫基數。例如:1、3、5、7、9……

■整除的特徵

1、能被2整除的數的特徵:個位上是0、2、4、6、8。

2、能被5整除的數的特徵:個位上是0或5。

3、能被3整除的數的特徵:一個數的各個數位上的數之和能被3整除,這個數就能被3 整除。
■質數和合數

1、一個數只有1和它本身兩個約數,這個數叫做質數(素數)。

2、一個數除了1和它本身外,還有別的約數,這個數叫做合數。

3、1既不是質數,也不是合數。

4、自然數按約數的個數可分為:質數、合數

5、自然數按能否被2整除分為:奇數、偶數
■分解質因數

1、每個合數都可以寫成幾個質數相乘的形式,這幾個質數叫做這個合數的質因數。例如:18=3×3×2,3和2叫做18的質因數。

2、把一個合數用幾個質因數相乘的形式表示出來,叫做分解質因數。通常用短除法來分解質因數。
3、幾個數公有的因數叫做這幾個數的公因數。其中最大的一個叫這幾個數的最大公因數。公因數只有1的兩個數,叫做互質數。幾個數公有的倍數叫做這幾個數的公倍數。其中最大的一個叫這幾個數的最大公倍數。
4、特殊情況下幾個數的最大公約數和最小公倍數。(1)如果幾個數中,較大數是較小數的倍數,較小數是較大數的約數,則較大數是它們的最小公倍數,較小數是它們的最大公約數。(2)如果幾個數兩兩互質,則它們的最大公約數是1,小公倍數是這幾個數連乘的積。

■奇數和偶數的運算性質:
1、相鄰兩個自然數之和是奇數,之積是偶數。
2、奇數+奇數=偶數,奇數+偶數=奇數,偶數+偶數=偶數;奇數-奇數=偶數,

奇數-偶數=奇數,偶數-奇數=奇數,偶數-偶數=偶數;奇數×奇數=奇數,奇數×偶數=偶數,偶數×偶數=偶數。

整數、小學、分數四則混合運算

■四則運算的法則

1、加法a、整數和小數:相同數位對齊,從低位加起,滿十進一b、同分母分數:分母不變,分子相加;異分母分數:先通分,再相加

2、減法a、整數和小數:相同數位對齊,從低位減起,哪一位不夠減,退一當十再減b、同分母分數:分母不變,分子相減;異分母分數:先通分,再相減

3、乘法a、整數和小數:用乘數每一位上的數去乘被乘數,用哪一位上的數去乘,得數的末位就和哪一位對起,最後把積相加,因數是小數的,積的小數位數與兩位因數的小數位數相同b、分數:分子相乘的積作分子,分母相乘的積作分母。能約分的先約分,結果要化簡

4、除法a、整數和小數:除數有幾位,先看被除數的前幾位,(不夠就多看一位),除到被除數的哪一位,商就寫到哪一位上。除數是小數是,先化成整數再除,商中的小數點與被除數的小數點對齊b、甲數除以乙數(0除外),等於甲數除以乙數的倒數

■運算定律

加法交換律 a+b=b+a

結合律 (a+b)+c=a+(b+c)

減法性質 a-b-c=a-(b+c)

a-(b-c)=a-b+c

乘法交換律 a×b=b×a

結合律 (a×b)×c=a×(b×c)

分配律 (a+b)×c=a×c+b×c

除法性質 a÷(b×c)=a÷b÷c

a÷(b÷c)=a÷b×c

(a+b)÷c=a÷c+b÷c

(a-b)÷c=a÷c-b÷c
商不變性質m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)

■積的變化規律:在乘法中,一個因數不變,另一個因數擴大(或縮小)若干倍,積也擴大(或縮小)相同的倍數。

推廣:一個因數擴大A倍,另一個因數擴大B倍,積擴大AB倍。
一個因數縮小A倍,另一個因數縮小B倍,積縮小AB倍。

■商不變規律:在除法中,被除數和除數同時擴大(或縮小)相同的倍數,商不變。

推廣:被除數擴大(或縮小)A倍,除數不變,商也擴大(或縮小)A倍。
被除數不變,除數擴大(或縮小)A倍,商反而縮小(或擴大)A倍。

■利用積的變化規律和商不變規律性質可以使一些計算簡便。但在有餘數的除法中要注意余數。

如:8500÷200= 可以把被除數、除數同時縮小100倍來除,即85÷2= ,商不變,但此時的余數1是被縮小100被後的,所以還原成原來的余數應該是100。

簡易方程

■用字母表示數

用字母表示數是代數的基本特點。既簡單明了,又能表達數量關系的一般規律。

■用字母表示數的注意事項
1、數字與字母、字母和字母相乘時,乘號可以簡寫成「•「或省略不寫。數與數相乘,乘號不能省略。
2、當1和任何字母相乘時,「 1」 省略不寫。
3、數字和字母相乘時,將數字寫在字母前面。

■含有字母的式子及求值
求含有字母的式子的值或利用公式求值,應注意書寫格式

■等式與方程
表示相等關系的式子叫等式。
含有未知數的等式叫方程。
判斷一個式子是不是方程應具備兩個條件:一是含有未知數;二是等式。所以,方程一定是等式,但等式不一定是方程。

■方程的解和解方程
使方程左右兩邊相等的未知數的值,叫方程的解。
求方程的解的過程叫解方程。

■在列方程解文字題時,如果題中要求的未知數已經用字母表示,解答時就不需要寫設,否則首先演將所求的未知數設為x。

■解方程的方法
1、直接運用四則運算中各部分之間的關系去解。如x-8=12
加數+加數=和 一個加數=和-另一個加數
被減數-減數=差 減數=被減數-差 被減數=差+減數
被乘數×乘數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=除數×商
2、先把含有未知數x的項看作一個數,然後再解。如3x+20=41
先把3x看作一個數,然後再解。
3、按四則運算順序先計算,使方程變形,然後再解。如2.5×4-x=4.2,
要先求出2.5×4的積,使方程變形為10-x=4.2,然後再解。
4、利用運算定律或性質,使方程變形,然後再解。如:2.2x+7.8x=20
先利用運算定律或性質使方程變形為(2.2+7.8)x=20,然後計算括弧裡面使方程變形為10x=20,最後再解。

比和比例

■比和比例應用題
在工業生產和日常生活中,常常要把一個數量按照一定的比例來進行分配,這種分配方法通常叫「按比例分配」。
■解題策略
按比例分配的有關習題,在解答時,要善於找准分配的總量和分配的比,然後把分配的比轉化成分數或份數來進行解答
■正、反比例應用題的解題策略
1、審題,找出題中相關聯的兩個量
2、分析,判斷題中相關聯的兩個量是成正比例關系還是成反比例關系。
3、設未知數,列比例式
4、解比例式
5、檢驗,寫答語

數感和符號感

■在數學教學中發展學生的數感主要指,使學生具有應用數字表示具體的數據和數量關系的能力;能夠判定不同的算術運算,有能力進行計算,並具有選擇適當方法(心算、筆算、使用計算器)實施計算的經驗;能根據數據進行推論,並對數據和推論的精確性和可靠性進行檢驗,等等。
■培養學生的數感的目的就在於使學生學會數學地思考,學會用數學的方法理解和解釋現實問題。
■ 數感的培養有利於學生提出問題和解決問題能力的提高。學生在遇到問題時,自覺主動地與一定的數學知識和技能建立起聯系,這樣才有可能建構與具體事物相聯系 的數學模型。具備一定的數感是完成這類任務的重要條件。如,怎樣為參加學校運動會的全體運動員編號?這是一個實際問題,沒有固定的解法,你可以用不同的方 式編,而不同的編排方案可能在實用性和便捷性上是不同的。如,從號碼上就可以分辨出年級和班級,區分出男生和女生,或很快的知道一名隊員是參加哪類項目。

■ 數概念本身是抽象的,數概念的建立不是一次完成的,學生理解和掌握數的概念要經歷一個過程。讓學生在認識數的過程中,更多地接觸和經歷有關的情境和實例, 在現實的背景下感受和體驗會使學生更具體更深刻地把握數的概念,建立數感。在認識數的過程中,讓學生說一說自己身邊的數,生活中用到的數,如何用數表示周 圍的事物等,會讓學生感覺到數就在自己身邊,運用數可以簡單明了地表示許多現象。估計一頁書的字數,一本書有多少頁,一把黃豆有多少粒等,這些對具體數量 的感知與體驗,是學生建立數感的基礎,這對學生理解數的意義會有很大的幫助。
■無論在哪個學段,都應鼓勵學生用自己獨特的方式表示具體的情境中的數量關系和變化規律,這是發展學生符號感的決定性因素。
■引進字母表示,是學習數學符號、學會用符號表示具體情境中隱含的數量關系和變化規律的重要一步。盡可能從實際問題中引入,使學生感受到字母表示的意義。
第一,用字母表示運演算法則、運算定律以及計算公式。演算法的一般化,深化和發展了對數的認識。
第二,用字母表示現實世界和各門學科中的各種數量關系。例如,勻速運動中的速度v、時間t和路程s的關系是s=vt。
第三,用字母表示數,便於從具體情境中抽象出數量關系和變化規律,並確切地表示出來,從而有利於進一步用數學知識去解決問題。例如,我們用字母表示實際問題中的未知量,利用問題中的相等關系列出方程。
■字母和表達式在不同場合有不同的意義。如:
5=2x+1表示x所滿足的一個條件,事實上,x這里只佔一個特殊數的位置,可以利用解方程找到它的值;
Y=2x表示變數之間的關系,x是自變數,可以取定義域內任何數,y是因變數,y隨x的變換而變化;
(a+b)(a-b)=a-b表示一個一般化的演算法,表示一個恆等式;
如果a和b分別表示矩形的長和寬,S表示矩形的面積,那麼S=ab表示計算矩形面積公式,同時也表示矩形的面積隨長和寬的變化而變化。
■如何培養學生的符號感
要盡可能在實際問題情境中幫助學生理解符號以及表達式、關系式意義,在解決實際問題中發展學生的符號感。
必須要對符號運算進行訓練,要適當地、分階段地進行一定數量的符號運算。但是並不主張進行過繁的形式運算訓練。
學生的符號感的發展不是一朝一夕就可以完成的,而是應該貫穿於數學學習的全過程,伴隨著學生數學思維的提高逐步發展。

量的計算

■事物的多少、長短、大小、輕重、快慢等,這些可以測定的客觀事物的特徵叫做量。把一個要測定的量同一個作為標準的量相比較叫做計量。用來作為計量標準的量叫做計量單位。
■數+單位名稱=名數
只帶有一個單位名稱的叫做單名數。
帶有兩個或兩個以上單位名稱的叫做復名數
高級單位的數如把米改成厘米 低級單位的數如把厘米改成米
■只帶有一個單位名稱的數叫做單名數。如:5小時, 3千克 (只有一個單位的)
帶有兩個或兩個以上單位名稱的叫做復名數。如:5小時6分,3千克500克(有兩個單位的)
56平方分米=(0.56)平方米 就是單名數轉化成單名數
560平方分米=(5)平方米(60平方分米) 就是單名數轉化成復名數的例子.
■高級單位與低級單位是相對的.比如,"米"相對於分米,就是高級單位,相對於千米就是低級單位.
■常用計算公式表
(1)長方形面積=長×寬,計算公式s=a b
(2)正方形面積=邊長×邊長,計算公式s=a × a
(3)長方形周長:(長+寬)× 2,計算公式s=(a+b)× 2
(4)正方形周長=邊長× 4,計算公式s= 4a i
(5)平形四邊形面積=底×高,計算公式s=a h.
(6)三角形面積=底×高÷2,計算公式s=a×h÷2
(7)梯形面積=(上底+下底)×高÷2,計算公式s=(a+b)×h÷2
(8)長方體體積=長×寬×高,計算公式v=a bh
(9)圓的面積=圓周率×半徑平方,計算公式s=лr2
(10)正方體體積=棱長×棱長×棱長,計算公式v=a3
(11)長方體和正方體的體積都可以寫成底面積×高,計算公式v=sh
(12)圓柱的體積=底面積×高,計算公式v=s h

■1年12個月(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11.月份,平年2月28天,閏年2月29天
■閏年年份是4的倍數,整百年份須是400的倍數。
■平年一年365天,閏年一年366天。
■公元1年—100年是第一世紀,公元1901—2000是第二十世紀。

平面圖形的認識和計算

■三角形
1、三角形是由三條線段圍成的圖形。它具有穩定性。從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高。一個三角形有三條高。
2、三角形的內角和是180度
3、三角形按角分,可以分為:銳角三角形、直角三角形、鈍角三角形
4、三角形按邊分,可以分為:等腰三角形、等邊三角形、不等邊三角形
■四邊形
1、四邊形是由四條線段圍成的圖形。
2、任意四邊形的內角和是360度。
3、只有一組對邊平行的四邊形叫梯形。
4、兩組對邊分別平行的四邊形叫平行四邊形,它容易變形。長方形、正方形是特殊的平行四邊形;正方形是特殊的長方形。
■圓
圓是平面上的一種曲線圖形。同圓或等圓的直徑都相等,直徑等於半徑的2倍。圓有無數條對稱軸。圓心確定圓的位置,半徑確定圓的大小。
■扇形 由圓心角的兩條半徑和它所對的弧圍成的圖形。扇形是軸對稱圖形。
■軸對稱圖形
1、如果一個圖形沿著一條直線對折,兩邊的圖形能夠完全重合,這個圖形叫做軸對稱圖形;這條窒息那叫做對稱軸。
2、線段、角、等腰三角形、長方形、正方形等都是軸對稱圖形,他們的對稱軸條數不等。
■周長和面積
1、平面圖形一周的長度叫做周長。
2、平面圖形或物體表面的大小叫做面積。
3、常見圖形的周長和面積計算公式

⑻ 怎樣做小學數學單元梳理

先回顧本單元所學知識, 形成知識網路,把同類的歸納到一起,再做一些基本練習題,把基本知識應用一下,這樣就會知道這個單元都學了什麼知識。

熱點內容
師德萬能演講稿 發布:2025-05-17 12:55:25 瀏覽:311
天台歷史 發布:2025-05-17 12:53:02 瀏覽:135
六一班主任祝福語 發布:2025-05-17 11:16:00 瀏覽:389
丙酮物理常數 發布:2025-05-17 08:07:23 瀏覽:784
職校家訪活動 發布:2025-05-17 03:05:09 瀏覽:998
天盾生物 發布:2025-05-17 02:23:17 瀏覽:788
物理過程模擬 發布:2025-05-16 19:11:36 瀏覽:878
賞識教育作文 發布:2025-05-16 18:49:59 瀏覽:234
集英語 發布:2025-05-16 17:04:47 瀏覽:492
老師被虐漫畫 發布:2025-05-16 14:44:27 瀏覽:702