當前位置:首頁 » 語數英語 » 用數學論文

用數學論文

發布時間: 2021-08-28 00:29:37

數學小論文,2000字以上 急急急

數學是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學家們拓展這些概念,為了公式化新的猜想以及從合適選定的公理及定義中建立起嚴謹推導出的真理。
數學,作為人類思維的表達形式,反映了人們積極進取的意志、縝密周詳的推理及對完美境界的追求。它的基本要素是:邏輯和直觀、分析和推理、共性和個性。雖然不同的傳統學派可以強調不同的側面,然而正是這些互相對立的力量的相互作用,以及它們綜合起來的努力,才構成了數學科學的生命力、可用性和它的崇高價值。
數學史
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展,直至16世紀的文藝復興時期,因著和新科學發現相作用而生成的數學革新導致了知識的加速,直至今日。 今日,數學被使用在世界不同的領域上,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展。數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標。雖然許多以純數學開始的研究,但之後會發現許多應用。 創立於二十世紀三十年代的法國的布爾巴基學派認為:數學,至少純數學,是研究抽象結構的理論。結構,就是以初始概念和公理出發的演繹系統。布學派認為,有三種基本的抽象結構:代數結構(群,環,域……),序結構(偏序,全序……),拓撲結構(鄰域,極限,連通性,維數……)。
數學分類
符號、語言與嚴謹 在現代的符號中,簡單的表示式可能描繪出復雜的概念。此一圖像即是由一簡單方程所產生的。 我們現今所使用的大部分數學符號都是到了16世紀後才被發明出來的。在此之前,數學被文字書寫出來,這是個會限制住數學發展的刻苦程序。現今的符號使得數學對於專家而言更容易去控作,但初學者卻常對此感到怯步。它被極度的壓縮:少量的符號包含著大量的訊息。如同音樂符號一般,現今的數學符號有明確的語法和難以以其他方法書寫的訊息編碼。 數學語言亦對初學者而言感到困難。如何使這些字有著比日常用語更精確的意思。亦困惱著初學者,如開放和域等字在數學里有著特別的意思。數學術語亦包括如同胚及可積性等專有名詞。但使用這些特別符號和專有術語是有其原因的:數學需要比日常用語更多的精確性。數學家將此對語言及邏輯精確性的要求稱為「嚴謹」。 嚴謹是數學證明中很重要且基本的一部分。數學家希望他們的定理以系統化的推理依著公理被推論下去。這是為了避免錯誤的「定理」,依著不可靠的直觀,而這情形在歷史上曾出現過許多的例子。在數學中被期許的嚴謹程度因著時間而不同:希臘人期許著仔細的論點,但在牛頓的時代,所使用的方法則較不嚴謹。牛頓為了解決問題所做的定義到了十九世紀才重新以小心的分析及正式的證明來處理。今日,數學家們則持續地在爭論電腦輔助證明的嚴謹度。當大量的計量難以被驗證時,其證明亦很難說是有效地嚴謹。
中國古代數學的發展
魏、晉時期出現的玄學,不為漢儒經學束縛,思想比較活躍;它詰辯求勝,又能運用邏輯思維,分析義理,這些都有利於數學從理論上加以提高。吳國趙爽注《周髀算經》,漢末魏初徐岳撰《九章算術》注,魏末晉初劉徽撰《九章算術》注、《九章重差圖》都是出現在這個時期。趙爽與劉徽的工作為中國古代數學體系奠定了理論基礎。 趙爽是中國古代對數學定理和公式進行證明與推導的最早的數學家之一。他在《周髀算經》書中補充的「勾股圓方圖及注」和「日高圖及注」是十分重要的數學文獻。在「勾股圓方圖及注」中他提出用弦圖證明勾股定理和解勾股形的五個公式;在「日高圖及注」中,他用圖形面積證明漢代普遍應用的重差公式,趙爽的工作是帶有開創性的,在中國古代數學發展中佔有重要地位。 劉徽約與趙爽同時,他繼承和發展了戰國時期名家和墨家的思想,主張對一些數學名詞特別是重要的數學概念給以嚴格的定義,認為對數學知識必須進行「析理」,才能使數學著作簡明嚴密,利於讀者。他的《九章算術》注不僅是對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且在論述的過程中有很大的發展。劉徽創造割圓術,利用極限的思想證明圓的面積公式,並首次用理論的方法算得圓周率為 157/50和 3927/1250。 劉徽用無窮分割的方法證明了直角方錐與直角四面體的體積比恆為2:1,解決了一般立體體積的關鍵問題。在證明方錐、圓柱、圓錐、圓台的體積時,劉徽為徹底解決球的體積提出了正確途徑。 東晉以後,中國長期處於戰爭和南北分裂的狀態。祖沖之父子的工作就是經濟文化南移以後,南方數學發展的具有代表性的工作,他們在劉徽注《九章算術》的基礎上,把傳統數學大大向前推進了一步。他們的數學工作主要有:計算出圓周率在3.1415926~3.1415927之間;提出祖暅原理;提出二次與三次方程的解法等。 據推測,祖沖之在劉徽割圓術的基礎上,算出圓內接正6144邊形和正12288邊形的面積,從而得到了這個結果。他又用新的方法得到圓周率兩個分數值,即約率22/7和密率355/113。祖沖之這一工作,使中國在圓周率計算方面,比西方領先約一千年之久; 祖沖之之子祖暅總結了劉徽的有關工作,提出「冪勢既同則積不容異」,即等高的兩立體,若其任意高處的水平截面積相等,則這兩立體體積相等,這就是著名的祖暅公理。祖暅應用這個公理,解決了劉徽尚未解決的球體積公式。 隋煬帝好大喜功,大興土木,客觀上促進了數學的發展。唐初王孝通的《緝古算經》,主要討論土木工程中計算土方、工程分工、驗收以及倉庫和地窖的計算問題,反映了這個時期數學的情況。王孝通在不用數學符號的情況下,立出數字三次方程,不僅解決了當時社會的需要,也為後來天元術的建立打下基礎。此外,對傳統的勾股形解法,王孝通也是用數字三次方程解決的。 唐初封建統治者繼承隋制,656年在國子監設立算學館,設有算學博士和助教,學生30人。由太史令李淳風等編纂注釋《算經十書》,作為算學館學生用的課本,明算科考試亦以這些算書為准。李淳風等編纂的《算經十書》,對保存數學經典著作、為數學研究提供文獻資料方面是很有意義的。他們給《周髀算經》、《九章算術》以及《海島算經》所作的註解,對讀者是有幫助的。隋唐時期,由於歷法的需要,天算學家創立了二次函數的內插法,豐富了中國古代數學的內容。 算籌是中國古代的主要計算工具,它具有簡單、形象、具體等優點,但也存在布籌佔用面積大,運籌速度加快時容易擺弄不正而造成錯誤等缺點,因此很早就開始進行改革。其中太乙算、兩儀算、三才算和珠算都是用珠的槽算盤,在技術上是重要的改革。尤其是「珠算」,它繼承了籌算五升十進與位值制的優點,又克服了籌算縱橫記數與置籌不便的缺點,優越性十分明顯。但由於當時乘除演算法仍然不能在一個橫列中進行。算珠還沒有穿檔,攜帶不方便,因此仍沒有普遍應用。 唐中期以後,商業繁榮,數字計算增多,迫切要求改革計算方法,從《新唐書》等文獻留下來的算書書目,可以看出這次演算法改革主要是簡化乘、除演算法,唐代的演算法改革使乘除法可以在一個橫列中進行運算,它既適用於籌算,也適用於珠算。

整理一下就好了!!

❷ 數學論文

數學學習興趣及其培養
內容摘要:學習興趣是學習動機的一種最重要的成分,它對學生的學習起著重要的作用。
學習興趣促進學生智力的發展,獲得較大的成功;同時,這種愉快的精神感受又促進學生對
數學學習產生更大的興趣,二者之間相互促進,使數學學習活動更加活躍、有效,學生的心理
素質得到更加和諧的發展。本文討論了興趣的特點、形成、發展規律及在教師教學中的應用
等,給出了米切爾關於興趣的結構模型研究。影響興趣的形成與發展的因素有個體需要、年
齡、性格和能力、他人、集體與地區的影響等。在數學教學中,如何培養和激發學生的學習
興趣,是廣大數學教師必須重視的一個問題。教師應將對學生學習興趣的培養滲透到每個教
學環節,貫穿於數學教學的全過程。
關鍵詞:學習興趣 興趣 認知
學習興趣對數學學習具有一定的影響。興趣是學習活動中的重要動力,是學習獲得良好效果的必要條件。數學學習是學生根據數學教學計劃、目的要求進行的,由獲得數學知識經
驗而引起的比較持久的行為變化過程。由於數學有其突出的特點,所以學生在獲得數學知識
經驗時也有其特殊性的表現和要求,如數學學習中的再創造性比其它學科要高,數學學習需
要較強的抽象概括能力等。這樣學生在學習數學時保持濃厚的興趣就猶為必要。
學習數學的興趣產生於教學過程的趣味性和藝術性情感中,產生於學習過程中的成功與
愉快體驗之中。當學生的精神處於興奮狀態展開數學學習活動時,學生就會產生強烈的求知
慾望,就會在追求與探討中發展數學的思維能力,促進智力的發展,獲得較大的成功;同時,
這種愉快的精神感受又促進學生對數學學習產生更大的興趣,二者之間相互促進,使數學學
習活動更加活躍、有效,學生的心理素質得到更加和諧的發展。
1.學習興趣及特點
1.1 學習興趣
興趣是人們愛好某種活動或力求認識某種事物的傾向,這種傾向和一定的情感聯系著,
興趣是在需要的基礎上產生的,是在生活實踐的過程中形成與發展起來的。學習興趣是學生
基於自己的學習需要而表現出來的一種認識傾向。從表現形式上講,學習興趣是學生學習需
要的動態表現形式,是社會和教育對學生的客觀要求在學生頭腦中的反映;從系統上講,學
習興趣是學習動機系統中的一個子系統,它是學習動機中最現實、最活躍的成分,是力求認
識世界、渴望獲得科學文化知識的帶有情緒色彩的認識傾向。
教育心理學的研究表明,如果大腦中有關學習的神經細胞處於高度的興奮狀態,而無關
部分處於高度的抑制狀態,有關學習的神經纖維通道便能高度暢通,學習時信息傳輸就會處
於最佳狀態。學生一旦對數學知識產生興趣,就會產生巨大的認識能力,能集中注意力學習,
使信息的傳導達到最佳狀態;反之,如果學生的學習存在著被迫、苦惱、煩躁、緊張,就會
使神經細胞中應當抑制的部分變為興奮,而應當興奮的部分受到抑制,從而影響學習效果。
1.2 興趣的特點
1.2.1 興趣是後天形成的,是在需要的基礎上發展起來的。人們在實踐活動中,通過對
某種事物反復接觸和了解,隨著有關知識經驗的不斷積累,逐漸形成和發展了對某事物的興
趣。學習的興趣是可以誘發和培養的。
1.2.2 興趣具有指向性。任何一種興趣都對一定事件或活動,為實現某種目的而產生的。
人對他感興趣的事物總是心馳神往,積極地把注意指向並集中於該種活動。興趣的指向性是
建立在需要的基礎之上的。
1.2.3 興趣具有情緒性。在許多心理學教材和工具書中給興趣下定義時都指出興趣帶有
情緒性。生活實踐也表明,人們從事感興趣的活動時,總會處在愉快、滿意、興致淋漓的情
緒狀態;一個人做沒有興趣的工作時總覺得在做苦差事。
1.2.4 興趣具有動力性。興趣的動力作用可以概括為:(1)對一個人所從事的活動起支
持、推動和促進作用。(2)為未來活動做准備。
1.2.5 興趣具有衍生性。人們對事物的認識一般是在舊有的認知結構的基礎上進行擴
展,而事物之間往往相互聯系,所以從舊有的興趣中往往會產生出新的興趣。
1.2.6 興趣具有穩定性。興趣的穩定性是指下軀持續時間而言,按興趣維持時間長短可
分為持久興趣與短暫興趣。直觀興趣是一種短暫興趣,數學內容的有趣性和實用性、數學美
感引起的自覺興趣和潛在興趣則是持久興趣。
2 影響興趣形成與發展的因素
2.1 興趣與需要的關系
皮亞傑指出:「興趣,實際上,就是需要的延伸,它表現出對象與需要之間的關系,因
為我們之所以對一個對象發生興趣,是由於它能滿足我們的需要。」人的需要是多種多樣的,
興趣也隨需要而異。研究表明,一般具有高認知需要的人更喜歡復雜任務;而具有低認知需
要的人則更喜歡簡單的任務。
2.2 興趣與年齡的關系
不同年齡的人有不同的興趣。年齡的增長直接影響到人的興趣的數量和質量,對認識興
趣中具有中心意義的讀書傾向變化的研究表明,不同年齡階段的兒童的讀書興趣是有其各自
的特點的。9—13 歲的兒童是讀書最盛的,進入青年期讀書活動的比率逐漸減少。但年齡越
增長,選擇力越強,感受性和理解力越敏銳,讀書興趣的質量在提高。
2.3 興趣與性格和能力的關系
不同性格的人興趣有所區別。如情緒穩定的人興趣也較穩定。此外,興趣受能力制約。
當自己感到問題的難度太大或太小時,個人對它就難於發生興趣。
2.4 興趣與他人、集體及地區的影響有關
學生的興趣常常受教師興趣 的影響。個人的興趣也受集體、地區、集團的影響。
2.5 興趣與性別的關系
從調查中可知興趣有受性別影響的傾向。田中在蘇州、無錫、鎮江3 地區6 縣市9 所學
校的初三縣市中進行調查顯示,對數學表現興趣的是男生多於女生,聲明對數學不感興趣甚
至討厭數學的也是男生多於女生。
3 興趣的形成過程
兒童的興趣在最初主要是與刺激聯系在一起的。首先,刺激本身固有的一些特性都先於
經驗而有引起人注意和興趣的功能。其次,使人覺得有趣的活動和經驗本身也將引起人們的
注意和興趣。
要引起或培養一個人的興趣要按以下兩個步驟進行:(1)發現個人或團體目前感興趣的
具體領域和現有水平;(2)把希望其從事的活動直接或通過中間的步驟與其目前的興趣領域
連接起來。
章凱和張必隱提出了興趣的「信息—目標」理論。該理論認為,個體心理的發展是以不
斷從環境獲得信息為基礎的;個體在與環境相互作用時希望從中獲得信息,以消除原有的或
新產生的心理不確定性,實現心理目標的形成、演化和發展的心理過程即興趣。
4 興趣的作用
興趣在學生的學習活動中起著重要的作用。俄國大教育家烏申斯基指出:「沒有絲毫興
趣的強制性學習,將會扼殺學生探求真理的慾望。」教育實踐證明,學生對學習本身、對學
習科目有興趣,就可以激起他的學習積極性,推動他在學習中取得好成績。
興趣對未來活動具有準備作用,對正在進行的活動具有推動作用,對活動的創造性態度
具有促進作用。興趣是推動認識活動的重要動力,是影響學習效果的重要因素。
興趣作為人從事活動的內容或方向,並不是固定不變的。興趣可以被培養,被「鑲嵌」
於人的個性之中。由於興趣—注意的指向性和集中性等特點,人的興趣和認知的相互作用經
常會導致一種恆常而穩定的興趣—認知傾向。當認知傾向在個體身上內化而恆常地表現出來
時,就表現為一種穩定的興趣的個性傾向性。
5 興趣的發展規律
5.1 興趣發展逐步深化
人的興趣的發展,一般要經過有趣—樂趣—志趣三個階段。有趣是興趣發展的低級水平,
它往往是由某些外在的新異現象所引起而產生的直接興趣。它為時短暫,帶有直觀性、盲目
性和廣泛性。
樂趣是興趣發展的中級水平,它是在有趣的基礎上逐步定向而形成的。在這個階段,學
生的興趣會向專一的、深入的方向發展,即對某一客體產生了特殊愛好。樂趣已具有專一性、
自發性和堅持性的特點。
志趣則是興趣發展的最高水平。它與崇高的理想和遠大的奮斗目標相結合,是在樂趣的
基礎上發展起來的。其特點是具有社會性、自覺性、方向性和更強的堅持性,甚至終身不變。
5.2 直接興趣與間接興趣的相互轉化
興趣一般分為直接興趣和間接興趣兩類。直接興趣是對事物本身感到需要而引起的興
趣,間接興趣只是對這種事物或活動的將來結果感到重要,而對事物本身並沒有興趣。間接
興趣在一定條件下可以轉化為直接興趣。學生遇到稍微簡單、容易和生動有趣的知識時,便
會產生直接興趣;但一旦遇到復雜的、困難的和枯燥的知識時,便需要有間接興趣來維持學
習。當學生通過頑強學習,克服了學習中的困難時,便又會對這種知識產生直接興趣。
5.3 中心興趣與廣泛興趣的相互促進
中心興趣是指對某一方面的事物或活動有著極濃厚又穩定的興趣;廣泛興趣是指對多方
面的事物或活動具有的興趣。廣泛興趣是中心興趣的基礎。
5.4 好奇心、求知慾、興趣密切聯系,逐步發展
從橫的方面來看,好奇心、求知慾和興趣是相互促進、彼此強化的;從縱的方面看,三
者又是沿著好奇心—求知慾—興趣的方向發展的。
好奇心是人們對新奇事物積極探求的一種心理傾向,它可以說是一種本能。好奇心兒童
期最為強烈。求知慾是人們積極探求新知識的一種慾望,它帶有一定的感情色彩。青少年時
期是求知慾最旺盛的時期。某一方面的求知慾如果反復地表現出來,就形成了某一個人對某
事物或活動的興趣。
5.5 興趣與努力不可分割
興趣與努力是可以相互促進的,而不是兩個對立面。學生的學習活動既離不開學習興趣,
也離不開勤奮努力,興趣與努力不斷相互促進,方能使學習達到最佳境地。
6 激發和培養學生學習數學的興趣
數學的特點是抽象、嚴謹、應用廣泛。徐德雄對江山中學、武漢中學、金陵中學、浦城
一中的高三畢業班學生的調查顯示45.4%的學生認為課業負擔較重的科目是數學,32.8%
的學生認為考試次數最多的是數學。因此,在數學教學中,如何培養和激發學生的學習興趣,
是廣大數學教師必須十分重視的一個問題,對於學習興趣的培養應當滲透到每個教學環節,
貫穿於數學教學的全過程。
6.1 要求學生建立積極的心理准備狀態
教師要教會學生在學習中遇到不懂的地方有積極的心理暗示,鼓勵學生創造性地使用一
些方法,增加學習的趣味性。興趣是可以自己培養的,關鍵是有積極的態度。
6.2 幫助學生形成正確的學習價值觀
學習價值觀使學生形成明確的學習需要,為興趣的生成奠定基礎。在教學中,教師要充
分挖掘教學內容的功利和精神價值,並及時准確地傳遞給學生,幫助學生形成正確的學習目
的,明確學習的價值和意義,以喚醒學生學習的內在沖動和激情,促進學習興趣的生成。 學
習價值觀激發學習動機和求知慾,為興趣的深入發展注入動力。教師應善於從幫助學生確立
科學合理的學習價值觀入手,以培養學生正確的學習理念和優秀的學習品質為切入點,將興
趣根植於崇高的理想信仰和正確的價值觀基礎之上。只有這樣,學生才能形成真實的、穩定
的、深入的、持久的學習興趣,才能真正達到興趣促進學習的目的。
6.3 提高教學水平引發學生學習興趣
6.3.1 設懸激趣
創設懸念,是教師根據教材的數學內容,設置問題情境,使學生產生強烈的求知慾望,激發學習興趣。如教學「正比例」知識時,教師向學生提出一個實際問題:誰能有辦法測量
我們校內操場楓樹的高度呢?同學們頓時興趣大發,爭論不休,卻又想不出什麼好辦法。這
時教師對同學們說:「我倒有一個且很簡單的測量辦法,不用爬樹也不用砍樹便可以測出樹
的高度」。同學們嘩然,產生懸念:老師是用什麼辦法測量樹高的呢?很自然地產生了求知
慾望,由此學生主動學習,興趣盎然,從而達到了預期的教學目的。收到良好效果,懸念也
得到解決。
6.3.2 實踐激趣
數學教學中,給學生設置創造思考問題的機會和條件,指導學生在實踐中,觀察的基礎
上,動腦筋思考獲得新知識。《數學課程標准》中指出:「學生能夠認識到數學存在於現實生
活中,並被廣泛應用於現實世界,才能切實體會到數學的應用價值。」學好數學知識,是為
了更好地為生活服務。把知識應用於生活,做到學以致用,讓學生充分體驗數學的應用價值,
同時讓學生在解決實際生活中的數學問題時,體驗到探索數學的無窮樂趣,從而形成長久的
興趣。
6.3.3 競爭激趣
課堂教學中,教師要注重學生爭勝好強的特點,發揮他們的學習積極性,給他們提供足
夠的機會,鼓勵他們競爭。
6.3.4 操作激趣
感知-表象—概念是兒童認識數學的過程,從具體到抽象,從感性到理性的過程。教學
時要注重學生的操作訓練,激發學習興趣,發展學生思維,把抽象的知識轉變為具體的內容,
使學生的認識由感性的基礎上升到理性知識。
6.3.5 評價激趣
教學中不管學生對知識的接受理解能力如何。教師都要以親切的語言給予評價和誘導,
忌用簡單、粗糙的語言挫傷學生的學習知識性:
第一、利用成功評價激趣。如學生通過自己學習實踐得出圓周率時,教師評價學生說:
「圓周率是我國古代數學家花了很長的時間,反復實驗才計算出來,而今你們通過自己的實
踐也成功地算出來了,真了不起。希望同學們從小就要這樣認真學習,事業一定能成功。」
從而激發學生的學習興趣。
第二、利用誘導語言激趣。個別同學在學習過程中遇到困難時,要及時給予點撥誘導,
讓他們跳一下也能摘到果子。給予「試試看」、「再想想」等親切的語言鼓勵他們學習成功,
產生興趣。
6.3.6 加強直觀,引導動手操作
在課堂教學中,採用直觀教具、投影儀等生動形象的教學手段,能使靜態的數學知識動
態化,不但能激發學生學習的積極性,而且學生學到的知識也能印象深刻,永久不忘。動手
操作能有效地引發學生的學習興趣。
6.4 建立平等和諧的師生關系
教育是心靈的藝術,應該體現出民主與平等的現代意識。學生對堂課的興趣與積極性的
高低,常依賴於對教師的情感。由此可見,高尚純潔的愛則是師生心靈的通道,是啟發學生
心扉的鑰匙,是引導學生前進的路標。教師除了要有人格魅力外,在教學中,要以一顆火熱
的心愛護學生,真誠地對待學生。對學生要一視同仁,才能贏得學生的信賴。在生活上關心
他們,在學習上幫助他們,在課堂上注重多表揚少批評,經常走到他們中間,找他們談心,
參加他們的活動,為他們服務,這樣才能成為他們的知心朋友,尤其是對學習困難的學生更
應多給他們關愛,多找出其閃光點培養他們的自信心,只有這樣,建立了平等和諧的師生關
系,學生才會親其師、信其道、學其知,產生興趣。
6.5 應用現代化教學手段培養學習興趣
學生的認識能力是否會有長足的進步,常常取決於我們能否提供一個良好的外界條件。
在過去教學中,多數是填鴨式教學,教師只是講講、寫寫,學生只是聽聽、記記,對知識的
理解、認識的提高,很多都是抽象的、模糊的,很難真正搞清楚,而現代教學手段的應用恰
好彌補了這一不足。
隨著科學技術的發展,現代媒介也逐漸走入課堂,廣泛用於教學中。應用現代化教學手
段,諸如電影,電視,尤其是多媒體計算機輔助教學,代替了過去把黑板、粉筆作為教具的
教學模式,既可以提高學生的認識能力,還可以培養學生的學習興趣,讓學生把動畫、圖象、
立體聲融合起來,真正做到「圖文並茂」,把學生帶入一種心曠神怡的境界,有身臨其境之
感,覺得生動有趣,這樣就能激發起學生的學習熱情,從而收到良好的效果。
參考文獻:
[1]陳在瑞、路碧澄注。數學教育心理學。北京:中國人民大學出版社,1995。
[2]李洪玉,何一粟著。學習動力。武漢:湖北教育出版社,1999。
[3]李洪玉,何一粟著。學習能力發展心理學。合肥:安徽教育出版社,2004。
[4]劉顯國。激發學習興趣藝術。北京:中國林業出版社,2004。
[5]田中。初中學生性別與數學學習關系的問卷調查分析。數學通報,2000(6)。
[6]徐德雄。高中數學學業負擔的調查及對策。中學數學教學參考,1997(3)。

❸ 數學小論文

只要用心寫啊
我也寫過,給你參考一下:
第一先寫一些自己在生活中遇到的困難,
然後再寫自己是怎麼樣探究的、怎麼樣解決問題的
然後在寫一個簡單的結尾就好了
我反正是這樣寫的
我也是六年級
我寫的是簡算

例如(這是我寫的):
簡便方法計算

每一次考試,基本上都要考到計算,同學們肯定都厭煩計算,特別是四則混合運算,再加上分數、小數,真是煩上加煩。但是,考試終究是要考到計算,那怎樣讓計算不那麼煩,不容易出錯呢?那就要用上簡便計算的定律了。
常見的簡便計算的定律有:加法交換律a+b=b+a,加法結合律a+b+c=a+(b+c)等定律。
比如說下面一題就是在我們三訓上出現的題目:0.88×100.1
如果這道題目列豎式計算的話會很麻煩,也有可能算錯。如果要簡便計算的話就可以把100.1拆成100+0.1,然後就可以用乘法分配律簡便計算了:
0.88×100.1
=0.88×(100+0.1)
=0.88×100+0.88×0.1
=88+0.088
=88.088
這樣計算就簡便多了,不用再去死算,而且不容易出錯。
在計算中,雖然可以用計算公式但是有一些題目還需要一步一步地算,比如說有兩組很容易就上當的四則運算:12×48÷12×48和12×48÷(12×48)。第一個看上去可以很快的算出來,其實,這只是一個陷阱,如果非要在第一個上簡算,也可以用12和÷12抵消,轉化成48×48。而第二個的運算順序和第一個是相反的,先算括弧里的12×48,然後按照運算順序把前面的12×48算出來,就可以轉化成1÷1結果等於1。
計算,看看是挺難的,其實,只要用上一些運算定律,它們就像是魔術師,使計算變的簡單了。所以,數學是很奇妙的,只要用心去鑽研,去思考,再難的數學題也會被攻破

❹ 數學的重要性(論文1000字)

巧贏硬幣
記得暑假裡的一天,我們到叔叔家裡玩,正玩到興頭上,叔叔拿了10個硬幣走了過來,說:「你們想要這些硬幣嗎?」「當然想啦!」大家異口同聲地回答道。我望著叔叔,真有點丈二和尚——摸不著頭腦,我心裡琢磨著,不知道叔叔葫蘆里賣的是什麼葯。「你們想要這些硬幣,就要回答我的問題,誰答對,硬幣就全歸他了。」說完,叔叔就提出一個問題:「怎樣才能把10個硬幣放進3個杯子里,使每個杯子里的硬幣數都是奇數,看誰能找出最多的方法。」
聽完叔叔的題目,大家冥思苦想。只見表弟在客廳里走來走去,表姐坐在椅子上冷靜地思考著。不一會,我看見妹妹找來了材料,試著做。可是,做了很久,妹妹還是沒找到具體解題的方法。我也不甘示弱,開動腦筋想著。哎,要是能把這硬幣拿到手,那該多好啊!
過了十多分鍾,大家都沒有想到怎麼做,叔叔見此情景,對我們說:「給你們一點提示吧!解這道題要學會多轉幾個彎,不要……」「等等!」話沒說完,表弟好象想到了什麼似的。只見他拿起10個硬幣,先把第1個硬幣放到第1個杯子里去,然後把3個硬幣投進第2個杯子里,看到這里,我不禁想道:這個辦法嘛,我早就想過了,根本就不行,剩下的硬幣有6個,6是偶數,我可以肯定地說一句:「這個辦法是行不通的。」當表弟把剩下的6個硬幣放到第3個杯子時,我插嘴道:「這辦法根本……」我的話還沒說完,表弟就把我的話打斷了,「表姐,你還是看我的表演吧!」表弟神氣地說。只見他拿起第1個杯子,把那個硬幣放到第3個杯子里去。「這就是第一種方法。」表弟得意地扮了個鬼臉。「哎呀!我真笨,怎麼想到第三步就放棄了呢?真不值得!」接著,表弟按照第一次那樣做,先把3個硬幣放到第1個杯子里,然後在第二個杯子里放5個硬幣,接著把剩下的硬幣放到第三個杯子里,最後,把第一個杯子里的硬幣放到第三個杯里去。這樣第二種方法就完成了。按著這樣的方法,表弟連續做了13次。
看到這里,站在一旁的叔叔拍起了手掌,點點頭說:「真想不到,你這小鬼還會有動腦筋的時候,這回你贏了,10個硬幣都歸你了。」叔叔一邊稱贊表弟,一邊撫摸著他的小腦袋。「不過,小瑜呀,你可得加把勁了,這回連表弟都贏了你。記住,凡事多動腦筋,別輕易放棄。」
是呀,叔叔說得對,凡事多動腦筋,別輕易放棄。如果我剛才想到第三步沒放棄的話,再動動腦筋,那道題就被我解開了。以後,真的要加把勁,要努力學好數學,掌握好數學,更要學會在生活中靈活運用好數學。

❺ 數學論文

說起數學思想,其實就是,就某一道題來說,有兩種或以上的方法去解,也就是說,從兩種或以上的角度去看問題,分析問題。現在就數學中四大思想作一篇論文。(數學四大思想:函數與方程思想、轉化與化歸思想、分類討論思想與數形結合思想;)
(一)函數與方程
函數思想,是指用函數的概念和性質去分析問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化等式或是不等式,然後通過解方程(組)或不等式(組)來使問題獲解。有時,還實現函數與方程的互相轉化、接軌,達到解決問題的目的。
「宇宙世界,充斥著等式和不等式。」換句話說,哪裡有等式,哪裡就有方程;哪裡有公式,哪裡就有方程;不等式問題也與方程是近親,密切相關。應用方程思想時特別需要重點考慮的大體就是列方程、解方程和研究方程的特性。
函數描述了自然界中數量之間的關系,函數思想通過題目中數量的關系,解決問題。一般地,函數思想是構造函數從而利用函數的性質解題,在解題中,善於挖掘題目中的隱含條件,構造出函數解析式和妙用函數的性質,是應用函數思想的關鍵。要對所給的問題觀察、分析、判斷比較深入、充分、全面時,才能發現由此及彼的聯系。另外,方程問題、不等式問題和某些代數問題也可以轉化為與其相關的函數問題,即用函數思想解答非函數問題。
(二)等量代換
等量代換是把未知解的問題轉化到在已有知識范圍內可解的問題的一種重要的思想方法。通過不斷的轉化,把不熟悉、不規范、復雜的問題轉化為熟悉、規范甚至模式法、簡單的問題。我們要不斷培養和訓練自覺的轉化意識,這有利於強化解決數學問題中的應變能力,提高思維能力和技能、技巧。等量代換要求轉化過程中前因後果是充分必要的,才保證轉化後的結果仍為原問題的結果。它能給人帶來思維的閃光點,找到解決問題的突破口。
「解題就是把要解題轉化為已經解過的題」。數學的解題過程,就是從未知向已知、從復雜到簡單的化歸轉換過程。」
等量代換思想方法的特點是具有靈活性和多樣性。它可以在數與數、形與形、數與形之間進行轉換;它可以在分析和解決實際問題的過程中進行,在普通語言向數學語言的翻譯中進行;消元法、換元法、數形結合法、求值求范圍問題等等,都體現了等量代換思想,但是由於其多樣性和靈活性,我們要合理地設計好轉化的途徑和方法,避免死搬硬套題型。
在數學操作中實施等量代換時,我們要盡量熟悉、簡單、直觀、標准,即把我們遇到的問題,通過轉化變成我們比較熟悉的問題來處理;或者將較為繁瑣、復雜的問題,變成比較簡單的問題;或者比較難以解決、比較抽象的問題,轉化為比較直觀的問題,以便准確把握問題的求解過程,比如數形結合法;或者從非標准型向標准型進行轉化。按照這些原則進行數學操作,轉化過程省時省力,順水推舟,經常滲透等量代換思想,可以提高解題的水平和能力。
(三)分類討論
在解答某些數學問題時,有時會遇到多種情況,需要對各種情況加以分類,並逐類求解,然後綜合得解,這就是分類討論法。
引起分類討論的原因主要是以下幾個方面:
① 問題所涉及到的數學概念是分類進行定義的。如|a|的定義分a>0、a=0、a<0三種情況。這種分類討論題型可以稱為概念型。
② 問題中涉及到的數學定理、公式和運算性質、法則有范圍或者條件限制,或者是分類給出的。如等比數列的前n項和的公式,分q=1和q≠1兩種情況。這種分類討論題型可以稱為性質型。
③ 解含有參數的題目時,必須根據參數的不同取值范圍進行討論。如解不等式ax>2時分a>0、a=0和a<0三種情況討論。這稱為含參型。
另外,某些不確定的數量、不確定的圖形的形狀或位置、不確定的結論等,都主要通過分類討論,保證其全面性,更使之具有確定性。
進行分類討論時,我們要遵循的原則是:分類的對象是確定的,標準是統一的,不遺漏、不重復。
解答分類討論問題時,我們的基本方法和步驟是:首先要確定討論對象以及所討論對象的全體的范圍;其次確定分類標准,正確進行合理分類,即標准統一、不漏不重、分類互斥(沒有重復);再對所分類逐步進行討論,分級進行,獲取階段性結果;最後進行歸納小結,綜合得出結論。
(四)數形結合
中學數學的基本知識分三類:一類是純粹數的知識,如實數、代數式、方程(組)、不等式(組)、函數等;一類是關於純粹形的知識,如平面幾何、立體幾何等;一類是關於數形結合的知識,主要體現是解析幾何。
數形結合是一個數學思想方法,包含「以形助數」和「以數輔形」兩個方面,其應用大致可以分為兩種情形:或者是藉助形的生動和直觀性來闡明數之間的聯系,即以形作為手段,數為目的,比如應用函數的圖像來直觀地說明函數的性質;或者是藉助於數的精確性和規范嚴密性來闡明形的某些屬性,即以數作為手段,形作為目的。
恩格斯曾說過:「數學是研究現實世界的量的關系與空間形式的科學。」數形結合就是根據數學問題的條件和結論之間的內在聯系,既分析其代數意義,又揭示其幾何直觀,使數量關的精確刻劃與空間形式的直觀形象巧妙、和諧地結合在一起,充分利用這種結合,尋找解題思路,使問題化難為易、化繁為簡,從而得到解決。華羅庚先生說過:數缺形時少直觀,形少數時難入微,數形結合百般好,隔裂分家萬事休。
數形結合的思想,其實質是將抽象的數學語言與直觀的圖像結合起來,關鍵是代數問題與圖形之間的相互轉化,它可以使代數問題幾何化,幾何問題代數化。在運用數形結合思想分析和解決問題時,要注意三點:第一要徹底明白一些概念和運算的幾何意義以及曲線的代數特徵;第二是恰當設參、合理用參,建立關系,由數思形,以形想數,做好數形轉化;第三是正確確定參數的取值范圍。

❻ 數學論文

(1)
《勾股定理的證明方法探究》 勾股定理又叫畢氏定理:在一個直角三角形中,斜邊邊長的平方等於兩條直角邊邊長平方之和。 據考證,人類對這條定理的認識,少說也超過 4000 年!又據記載,現時世上一共有超過 300 個對這定理的證明! 勾股定理是幾何學中的明珠,所以它充滿魅力,千百年來,人們對它的證明趨之若鶩,其中有著名的數學家,也有業余數學愛好者,有普通的老百姓,也有尊貴的政要權貴,甚至有國家總統。也許是因為勾股定理既重要又簡單,更容易吸引人,才使它成百次地反復被人炒作,反復被人論證。1940年出版過一本名為《畢達哥拉斯命題》的勾股定理的證明專輯,其中收集了367種不同的證明方法。實際上還不止於此,有資料表明,關於勾股定理的證明方法已有500餘種,僅我國清末數學家華蘅芳就提供了二十多種精彩的證法。這是任何定理無法比擬的。 勾股定理的證明:在這數百種證明方法中,有的十分精彩,有的十分簡潔,有的因為證明者身份的特殊而非常著名。 首先介紹勾股定理的兩個最為精彩的證明,據說分別來源於中國和希臘。 1.中國方法:畫兩個邊長為(a+b)的正方形,如圖,其中a、b為直角邊,c為斜邊。這兩個正方形全等,故面積相等。 左圖與右圖各有四個與原直角三角形全等的三角形,左右四個三角形面積之和必相等。從左右兩圖中都把四個三角形去掉,圖形剩下部分的面積必相等。左圖剩下兩個正方形,分別以a、b為邊。右圖剩下以c為邊的正方形。於是 a^2+b^2=c^2。 這就是我們幾何教科書中所介紹的方法。既直觀又簡單,任何人都看得懂。 2.希臘方法:直接在直角三角形三邊上畫正方形,如圖。 容易看出, △ABA』 ≌△AA'C 。 過C向A』』B』』引垂線,交AB於C』,交A』』B』』於C』』。 △ABA』與正方形ACDA』同底等高,前者面積為後者面積的一半,△AA』』C與矩形AA』』C』』C』同底等高,前者的面積也是後者的一半。由△ABA』≌△AA』』C,知正方形ACDA』的面積等於矩形AA』』C』』C』的面積。同理可得正方形BB』EC的面積等於矩形B』』BC』C』』的面積。 於是, S正方形AA』』B』』B=S正方形ACDA』+S正方形BB』EC, 即 a2+b2=c2。 至於三角形面積是同底等高的矩形面積之半,則可用割補法得到(請讀者自己證明)。這里只用到簡單的面積關系,不涉及三角形和矩形的面積公式。 這就是希臘古代數學家歐幾里得在其《幾何原本》中的證法。
(2)
今天,在我們數學俱樂部里,老師給我們研究了一道有趣的題目,其實也是一道有些復雜的找規律題目,題目是這樣的「有一列數:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。這列數字中前240個數字的和是多少?」我一拿到題目,心裡猛然想到,這題目必須得按照規律來做!!! 想法一:開始我便先試著先3個一組來求和,6,5,10,9,12,15,14……。這樣一看,這些數字各有特徵,關鍵就是找不出合適的規律。於是,我又找4個一組來求和,8,10,12,16,20……。仔細一看,好像也沒什麼規律,我只好再試著找5個一組來求和,9,14,19,24……,這樣一來就非常明顯的看出它們是等數列,我非常高興,再把240÷5=48(組),5個一組,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那麼就可以求出末項的和,9+47×5=244,把首項加末項的和乘項數除以2,(9+244)×48÷2=6072。這樣就完成了! 想法二:我又發現每組開頭第一個數字恰好分別是1,2,3,4……48,那麼另一種方法就產生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。這樣想也合乎情理,也是一個理得清楚而且又實用的方法! 想法三:我又發現有N組時,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N組數的和,比如(1+2+3+4+……+48)×5+4×48=6072。這個規律也是要通過不斷來細心觀察與研究得來的,這個規律雖然有些抽象,但如果是自己弄明白了,那還要比其他兩種方法更容易些。 我做的只是其中的三種解法,其實方法還有很多,但是要靠自己來找其中的規律,解其中的奧秘!
(3)
大千世界,無奇不有,在我們數學王國里也有許多有趣的事情。比如,在我現在的第九冊的練習冊中,有一題思考題是這樣說的:「一輛客車從東城開向西城,每小時行45千米,行了2.5小時後停下,這時剛好離東西兩城的中點18千米,東西兩城相距多少千米?王星與小英在解上面這道題時,計算的方法與結果都不一樣。王星算出的千米數比小英算出的千米數少,但是許老師卻說兩人的結果都對。這是為什麼呢?你想出來了沒有?你也列式算一下他們兩人的計算結果。」其實,這道題我們可以很快速地做出一種方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔細推敲看一下,就覺得不對勁。其實,在這里我們忽略了一個非常重要的條件,就是「這時剛好離東西城的中點18千米」這個條件中所說的「離」字,沒說是還沒到中點,還是超過了中點。如果是沒到中點離中點18千米的話,列式就是前面的那一種,如果是超過中點18千米的話,列式應該就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正確答案應該是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。兩個答案,也就是說王星的答案加上小英的答案才是全面的。 在日常學習中,往往有許多數學題目的答案是多個的,容易在練習或考試中被忽略,這就需要我們認真審題,喚醒生活經驗,仔細推敲,全面正確理解題意。否則就容易忽略了另外的答案,犯以偏概全的錯誤。
(4)
關於「0」

0,可以說是人類最早接觸的數了。我們祖先開始只認識沒有和有,其中的沒有便是0了,那麼0是不是沒有呢?記得小學里老師曾經說過「任何數減去它本身即等於0,0就表示沒有數量。」這樣說顯然是不正確的。我們都知道,溫度計上的0攝氏度表示水的冰點(即一個標准大氣壓下的冰水混合物的溫度),其中的0便是水的固態和液態的區分點。而且在漢字里,0作為零表示的意思就更多了,如:1)零碎;小數目的。2)不夠一定單位的數量……至此,我們知道了「沒有數量是0,但0不僅僅表示沒有數量,還表示固態和液態水的區分點等等。」

「任何數除以0即為沒有意義。」這是小學至中學老師仍在說的一句關於0的「定論」,當時的除法(小學時)就是將一份分成若干份,求每份有多少。一個整體無法分成0份,即「沒有意義」。後來我才了解到a/0中的0可以表示以零為極限的變數(一個變數在變化過程中其絕對值永遠小於任意小的已定正數),應等於無窮大(一個變數在變化過程中其絕對值永遠大於任意大的已定正數)。從中得到關於0的又一個定理「以零為極限的變數,叫做無窮小」。

「105、203房間、2003年」中,雖都有0的出現,粗「看」差不多;彼此意思卻不同。105、2003年中的0指數的空位,不可刪去。203房間中的0是分隔「樓(2)」與「房門號(3)」的(即表示二樓八號房),可刪去。0還表示……

愛因斯坦曾說:「要探究一個人或者一切生物存在的意義和目的,宏觀上看來,我始終認為是荒唐的。」我想研究一切「存在」的數字,不如先了解0這個「不存在」的數,不至於成為愛因斯坦說的「荒唐」的人。作為一個中學生,我的能力畢竟是有限的,對0的認識還不夠透徹,今後望(包括行動)能在「知識的海洋」中發現「我的新大陸」

❼ 關於數學論文

數學教學中培養學生創造思維能力
21世紀將是一個知識創新的世紀,新世紀正在召喚大批高素質創造型人才。人的創造力包括創造思維能力和創造個性兩個方面,而創造思維是創造力的核心。所謂創造思維就是與眾不同的思考。數學教學中所研究的創造思維,一般是指對思維主體來說是新穎獨到的一種思維活動。它包括發現新事物,提示新規律,創造新方法,解決新問題等思維過程。盡管這種思維結果通常並不是首次發現或前所未有的,但一定是思維主體自身的首次發現或超越常規的思考。它具有獨特性、求異性、批判性等思維特徵,思考問題的突破常規和新穎獨特是創造思維的具體表現。這種思維能力是正常人經過培養可以具備的。那麼如何培養學生的創造思維能力呢?
一、指導觀察
觀察是信息輸入的通道,是思維探索的大門。敏銳的觀察力是創造思維的起步器。可以說,沒有觀察就沒有發現,更不能有創造。兒童的觀察能力是在學習過程中實現的,在課堂中,怎樣培養學生的觀察力呢?
首先,在觀察之前,要給學生提出明確而又具體的目的、任務和要求。其次,要在觀察中及時指導。比如要指導學生根據觀察的對象有順序地進行觀察,要指導學生選擇適當的觀察方法,要指導學生及時地對觀察的結果進行分析總結等。第三,要科學地運用直觀教具及現代教學技術,以支持學生對研究的問題做仔細、深入的觀察。第四,要努力培養學生濃厚的觀察興趣。例如教學圓的認識時,我把一根細線的兩端各系一個小球,然後 甩動其中一個小球,使它旋轉成一個圓。引導學生觀察小球被甩動時,一端固定不動,另一端旋轉一周形成圓的過程。提問:"你發現了什麼?"學生們紛紛發言:"小球旋轉形成了一個圓"小球始終繞著中心旋轉而不跑到別的地方去。"我還看見好像有無數條線"……¨從這些學生樸素的語言中,其實蘊含著豐富的內涵,滲透了圓的定義:到定點的距離相等的點的軌跡。看到"無數條線"則為理解圓的半徑有無數條提供了感性材料。
二、引導想像
想像是思維探索的翅膀。愛因斯坦說:"想像比知識更重要,因為知識是有限的,而想像可以包羅整個宇宙。"在教學中,引導學生進行數學想像,往往能縮短解決問題的時間,獲得數學發現的機會,鍛煉數學思維。
想像不同於胡思亂想。數學想像一般有以下幾個基本要素。第一,因為想像往往是一種知識飛躍性的聯結,因此要有扎實的基礎知識和豐富的經驗的支持。第二,是要有能迅速擺脫表象干擾的敏銳的洞察力和豐富的想像力。第三,要有執著追求的情感。因此,培養學生的想像力,首先要使學生學好有關的基礎知識。其次,新知識的產生除去推理外,常常包含前人的想像因素,因此在教學中應根據教材潛在的因素,創設想像情境,提供想像材料,誘發學生的創造性想像。例如,在復習三角形、平行四邊形、梯形面積時,要求學生想像如何把梯形的上底變得與下底同樣長,這時變成什麼圖形?與梯形面積有什麼關系?如果把梯形上底縮短為0,這時又變成了什麼圖形?與梯形面積有什麼關系?問題一提出學生想像的閘門打開了:三角形可以看作上底為0的梯形,平行四邊形可以看作是上底和下底相等的梯形。這樣拓寬了學生思維的空間,培養了學生想像思維的能力。

三、鼓勵求異
求異思維是創造思維發展的基礎。它具有流暢性、變通性和創造性的特徵。求異思維是指從不同角度,不同方向,去想別人沒想不到,去找別人沒有找到的方法和竅門。要求異必須富有聯想,好於假設、懷疑、幻想,追求盡可能新,盡可能獨特,即與眾不同的思路。課堂教學要鼓勵學生去大膽嘗試,勇於求異,激發學生創新慾望。例如:教學"分數應用題"時,有這么一道習題:"修路隊修一條3600米的公路,前4天修了全長的1/6,照這樣的速度,修完餘下的工
程還要多少天?"就要引導學生從不同角度去思考,用不同方法去解答。用上具體量,解1;3600÷(3600×1/6÷4)-4;解2:(3600-3600×1/6)÷(3600×1/6÷4);解3:4×[(3600-3600×1/6)] ÷(3600×1/6÷4)。思維較好的同學將本題與工程問題聯系起來,拋開3600米這個具體量,將全程看作單位「1」,解4:1÷(1/6÷4)-4;解5:(1-1/6)÷(1/6÷4);解6:4×(1÷1/6-1);此時學生思維處於高度活躍狀態,又有同學想出 解7:4÷1/6-4;解8:4×(1÷1/6)-4;解9:4×(6-1)。學生在求異思維中不斷獲得解決問題的簡捷方法,有利於各層次的同學參與,有利於創造思維能力的發展。
四、誘發靈感
靈感是一種直覺思維。它大體是指由於長期實踐,不斷積累經驗和知識而突然產生的富有創造性的思路。它是認識上質的飛躍。靈感的發生往往伴隨著突破和創新。
在教學中,教師應及時捕捉和誘發學生學習中出現的靈感,對於學生別出心裁的想法,違反常規的解答,標新立異的構思,哪怕只有一點點的新意,都應及時給予肯定。同時,還應當運用數形結合、變換角度、類比形式等方法去誘導學生的數學直覺和靈感,促使學生能直接越過邏輯推理而尋找到解決問題的突破口。
例如,有這樣的一道題:把3/7、6/13、4/9、12/25用">"號排列起來。對於這道題,學生通常都是採用先通分再比較的方法,但由於公分母太大,解答非常麻煩。為此,我在教學中,安排學生回頭觀察後桌同學抄的題目(7/3、13/6、9/4、25/12),然後再想一想可以怎樣比較這些數的大小,倒過來的數字誘發了學生瞬間的靈感,使很多學生尋找到把這些分數化成同分子分數再比較大小的簡捷方法。
總之,人貴在創造,創造思維是創造力的核心。培養有創新意識和創造才能的人才是中華民族振興的需要,讓我們共同從課堂做起。

熱點內容
哪個醫院打美白針好 發布:2025-06-15 12:34:13 瀏覽:291
教學測量 發布:2025-06-15 11:53:01 瀏覽:585
殺的英語 發布:2025-06-15 11:23:56 瀏覽:956
藝高教育 發布:2025-06-15 05:20:19 瀏覽:1
帶教老師職責 發布:2025-06-15 04:42:58 瀏覽:754
語文一年級教學反思 發布:2025-06-15 03:33:08 瀏覽:538
2014年師德學習筆記 發布:2025-06-14 23:02:08 瀏覽:141
教師有錢嗎 發布:2025-06-14 22:40:12 瀏覽:159
畢業生登記表班主任 發布:2025-06-14 21:21:18 瀏覽:387
連環畫教學反思 發布:2025-06-14 18:11:55 瀏覽:68